Abstract

We experimentally demonstrate photon-number squeezing at 1.55 μm using a noisy erbium-doped fiber amplifier (EDFA). We employ a collinear balanced detection (CBD) technique, where the intensity noise at a specific radio frequency is canceled between two pulse trains. In spite of substantially large excess noise (>10dB) in an EDFA due to amplified spontaneous emission, we successfully cancel the intensity noise and achieve a shot noise limit at a specific radio frequency with the CBD technique. We exploit two sets of fiber polarization interferometers to generate squeezed light and observe a maximal photon-number squeezing of −2.6dB.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys.77(2), 513–577 (2005).
    [CrossRef]
  2. L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A49(2), 1473–1476 (1994).
    [CrossRef] [PubMed]
  3. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett.80(4), 869–872 (1998).
    [CrossRef]
  4. C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett.69(20), 2881–2884 (1992).
    [CrossRef] [PubMed]
  5. S. L. Braunstein and H. J. Kimble, “Dense coding for continuous variables,” Phys. Rev. A61(4), 042302 (2000).
    [CrossRef]
  6. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67(6), 661–663 (1991).
    [CrossRef] [PubMed]
  7. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett.57(6), 691–694 (1986).
    [CrossRef] [PubMed]
  8. S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett.77(18), 3775–3778 (1996).
    [CrossRef] [PubMed]
  9. M. Rosenbluh and R. M. Shelby, “Squeezed optical solitons,” Phys. Rev. Lett.66(2), 153–156 (1991).
    [CrossRef] [PubMed]
  10. S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett.81(12), 2446–2449 (1998).
    [CrossRef]
  11. M. Margalit, C. X. Yu, E. P. Ippen, and H. A. Haus, “Cross phase modulation squeezing in optical fibers,” Opt. Express2(3), 72–76 (1998).
    [CrossRef] [PubMed]
  12. N. Nishizawa, K. Sone, J. Higuchi, M. Mori, K. Yamane, and T. Goto, “Squeezed vacuum generation using symmetric nonlinear polarization interferometer,” Jpn. J. Appl. Phys.41(Part 2, No. 2A), L130–L132 (2002).
    [CrossRef]
  13. J. Heersink, V. Josse, G. Leuchs, and U. L. Andersen, “Efficient polarization squeezing in optical fibers,” Opt. Lett.30(10), 1192–1194 (2005).
    [CrossRef] [PubMed]
  14. J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon number squeezed light generation,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), L1220–L1222 (2001).
    [CrossRef]
  15. K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, “Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique,” Opt. Express20(13), 13958–13965 (2012).
    [CrossRef] [PubMed]
  16. S. Barnett and P. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, 2003).
  17. C. Silberhorn, “Detecting quantum light,” Contemp. Phys.48(3), 143–156 (2007).
    [CrossRef]
  18. R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter31(8), 5244–5252 (1985).
    [CrossRef] [PubMed]

2012 (1)

2007 (1)

C. Silberhorn, “Detecting quantum light,” Contemp. Phys.48(3), 143–156 (2007).
[CrossRef]

2005 (2)

J. Heersink, V. Josse, G. Leuchs, and U. L. Andersen, “Efficient polarization squeezing in optical fibers,” Opt. Lett.30(10), 1192–1194 (2005).
[CrossRef] [PubMed]

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys.77(2), 513–577 (2005).
[CrossRef]

2002 (1)

N. Nishizawa, K. Sone, J. Higuchi, M. Mori, K. Yamane, and T. Goto, “Squeezed vacuum generation using symmetric nonlinear polarization interferometer,” Jpn. J. Appl. Phys.41(Part 2, No. 2A), L130–L132 (2002).
[CrossRef]

2001 (1)

J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon number squeezed light generation,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), L1220–L1222 (2001).
[CrossRef]

2000 (1)

S. L. Braunstein and H. J. Kimble, “Dense coding for continuous variables,” Phys. Rev. A61(4), 042302 (2000).
[CrossRef]

1998 (3)

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett.80(4), 869–872 (1998).
[CrossRef]

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett.81(12), 2446–2449 (1998).
[CrossRef]

M. Margalit, C. X. Yu, E. P. Ippen, and H. A. Haus, “Cross phase modulation squeezing in optical fibers,” Opt. Express2(3), 72–76 (1998).
[CrossRef] [PubMed]

1996 (1)

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett.77(18), 3775–3778 (1996).
[CrossRef] [PubMed]

1994 (1)

L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A49(2), 1473–1476 (1994).
[CrossRef] [PubMed]

1992 (1)

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett.69(20), 2881–2884 (1992).
[CrossRef] [PubMed]

1991 (2)

M. Rosenbluh and R. M. Shelby, “Squeezed optical solitons,” Phys. Rev. Lett.66(2), 153–156 (1991).
[CrossRef] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67(6), 661–663 (1991).
[CrossRef] [PubMed]

1986 (1)

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett.57(6), 691–694 (1986).
[CrossRef] [PubMed]

1985 (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter31(8), 5244–5252 (1985).
[CrossRef] [PubMed]

Andersen, U. L.

Bayer, P. W.

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter31(8), 5244–5252 (1985).
[CrossRef] [PubMed]

Bennett, C. H.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett.69(20), 2881–2884 (1992).
[CrossRef] [PubMed]

Braunstein, S. L.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys.77(2), 513–577 (2005).
[CrossRef]

S. L. Braunstein and H. J. Kimble, “Dense coding for continuous variables,” Phys. Rev. A61(4), 042302 (2000).
[CrossRef]

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett.80(4), 869–872 (1998).
[CrossRef]

DeVoe, R. G.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett.57(6), 691–694 (1986).
[CrossRef] [PubMed]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67(6), 661–663 (1991).
[CrossRef] [PubMed]

Ficker, J.

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett.81(12), 2446–2449 (1998).
[CrossRef]

Friberg, S. R.

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett.77(18), 3775–3778 (1996).
[CrossRef] [PubMed]

Fukui, K.

Goto, T.

N. Nishizawa, K. Sone, J. Higuchi, M. Mori, K. Yamane, and T. Goto, “Squeezed vacuum generation using symmetric nonlinear polarization interferometer,” Jpn. J. Appl. Phys.41(Part 2, No. 2A), L130–L132 (2002).
[CrossRef]

J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon number squeezed light generation,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), L1220–L1222 (2001).
[CrossRef]

Haus, H. A.

Heersink, J.

Higuchi, J.

N. Nishizawa, K. Sone, J. Higuchi, M. Mori, K. Yamane, and T. Goto, “Squeezed vacuum generation using symmetric nonlinear polarization interferometer,” Jpn. J. Appl. Phys.41(Part 2, No. 2A), L130–L132 (2002).
[CrossRef]

J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon number squeezed light generation,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), L1220–L1222 (2001).
[CrossRef]

Ippen, E. P.

Itoh, K.

Josse, V.

Kanematsu, Y.

Kimble, H. J.

S. L. Braunstein and H. J. Kimble, “Dense coding for continuous variables,” Phys. Rev. A61(4), 042302 (2000).
[CrossRef]

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett.80(4), 869–872 (1998).
[CrossRef]

Kishi, T.

König, F.

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett.81(12), 2446–2449 (1998).
[CrossRef]

Leuchs, G.

J. Heersink, V. Josse, G. Leuchs, and U. L. Andersen, “Efficient polarization squeezing in optical fibers,” Opt. Lett.30(10), 1192–1194 (2005).
[CrossRef] [PubMed]

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett.81(12), 2446–2449 (1998).
[CrossRef]

Levanon, A.

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett.77(18), 3775–3778 (1996).
[CrossRef] [PubMed]

Levenson, M. D.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett.57(6), 691–694 (1986).
[CrossRef] [PubMed]

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter31(8), 5244–5252 (1985).
[CrossRef] [PubMed]

Machida, S.

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett.77(18), 3775–3778 (1996).
[CrossRef] [PubMed]

Margalit, M.

Mori, M.

N. Nishizawa, K. Sone, J. Higuchi, M. Mori, K. Yamane, and T. Goto, “Squeezed vacuum generation using symmetric nonlinear polarization interferometer,” Jpn. J. Appl. Phys.41(Part 2, No. 2A), L130–L132 (2002).
[CrossRef]

J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon number squeezed light generation,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), L1220–L1222 (2001).
[CrossRef]

Mukai, T.

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett.77(18), 3775–3778 (1996).
[CrossRef] [PubMed]

Nishizawa, N.

K. Nose, Y. Ozeki, T. Kishi, K. Sumimura, N. Nishizawa, K. Fukui, Y. Kanematsu, and K. Itoh, “Sensitivity enhancement of fiber-laser-based stimulated Raman scattering microscopy by collinear balanced detection technique,” Opt. Express20(13), 13958–13965 (2012).
[CrossRef] [PubMed]

N. Nishizawa, K. Sone, J. Higuchi, M. Mori, K. Yamane, and T. Goto, “Squeezed vacuum generation using symmetric nonlinear polarization interferometer,” Jpn. J. Appl. Phys.41(Part 2, No. 2A), L130–L132 (2002).
[CrossRef]

J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon number squeezed light generation,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), L1220–L1222 (2001).
[CrossRef]

Nose, K.

Ozeki, Y.

Perlmutter, S. H.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett.57(6), 691–694 (1986).
[CrossRef] [PubMed]

Rosenbluh, M.

M. Rosenbluh and R. M. Shelby, “Squeezed optical solitons,” Phys. Rev. Lett.66(2), 153–156 (1991).
[CrossRef] [PubMed]

Schmitt, S.

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett.81(12), 2446–2449 (1998).
[CrossRef]

Shelby, R. M.

M. Rosenbluh and R. M. Shelby, “Squeezed optical solitons,” Phys. Rev. Lett.66(2), 153–156 (1991).
[CrossRef] [PubMed]

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett.57(6), 691–694 (1986).
[CrossRef] [PubMed]

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter31(8), 5244–5252 (1985).
[CrossRef] [PubMed]

Silberhorn, C.

C. Silberhorn, “Detecting quantum light,” Contemp. Phys.48(3), 143–156 (2007).
[CrossRef]

Sizmann, A.

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett.81(12), 2446–2449 (1998).
[CrossRef]

Sone, K.

N. Nishizawa, K. Sone, J. Higuchi, M. Mori, K. Yamane, and T. Goto, “Squeezed vacuum generation using symmetric nonlinear polarization interferometer,” Jpn. J. Appl. Phys.41(Part 2, No. 2A), L130–L132 (2002).
[CrossRef]

Sumimura, K.

Vaidman, L.

L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A49(2), 1473–1476 (1994).
[CrossRef] [PubMed]

van Loock, P.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys.77(2), 513–577 (2005).
[CrossRef]

Walls, D. F.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett.57(6), 691–694 (1986).
[CrossRef] [PubMed]

Werner, M. J.

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett.77(18), 3775–3778 (1996).
[CrossRef] [PubMed]

Wiesner, S. J.

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett.69(20), 2881–2884 (1992).
[CrossRef] [PubMed]

Wolff, M.

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett.81(12), 2446–2449 (1998).
[CrossRef]

Yamane, K.

N. Nishizawa, K. Sone, J. Higuchi, M. Mori, K. Yamane, and T. Goto, “Squeezed vacuum generation using symmetric nonlinear polarization interferometer,” Jpn. J. Appl. Phys.41(Part 2, No. 2A), L130–L132 (2002).
[CrossRef]

J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon number squeezed light generation,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), L1220–L1222 (2001).
[CrossRef]

Yu, C. X.

Contemp. Phys. (1)

C. Silberhorn, “Detecting quantum light,” Contemp. Phys.48(3), 143–156 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (2)

N. Nishizawa, K. Sone, J. Higuchi, M. Mori, K. Yamane, and T. Goto, “Squeezed vacuum generation using symmetric nonlinear polarization interferometer,” Jpn. J. Appl. Phys.41(Part 2, No. 2A), L130–L132 (2002).
[CrossRef]

J. Higuchi, N. Nishizawa, M. Mori, K. Yamane, and T. Goto, “Nonlinear polarization interferometer for photon number squeezed light generation,” Jpn. J. Appl. Phys.40(Part 2, No. 11B), L1220–L1222 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (2)

L. Vaidman, “Teleportation of quantum states,” Phys. Rev. A49(2), 1473–1476 (1994).
[CrossRef] [PubMed]

S. L. Braunstein and H. J. Kimble, “Dense coding for continuous variables,” Phys. Rev. A61(4), 042302 (2000).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

R. M. Shelby, M. D. Levenson, and P. W. Bayer, “Guided acoustic-wave Brillouin scattering,” Phys. Rev. B Condens. Matter31(8), 5244–5252 (1985).
[CrossRef] [PubMed]

Phys. Rev. Lett. (7)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67(6), 661–663 (1991).
[CrossRef] [PubMed]

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-band parametric deamplification of quantum noise in an optical fiber,” Phys. Rev. Lett.57(6), 691–694 (1986).
[CrossRef] [PubMed]

S. R. Friberg, S. Machida, M. J. Werner, A. Levanon, and T. Mukai, “Observation of optical soliton photon-number squeezing,” Phys. Rev. Lett.77(18), 3775–3778 (1996).
[CrossRef] [PubMed]

M. Rosenbluh and R. M. Shelby, “Squeezed optical solitons,” Phys. Rev. Lett.66(2), 153–156 (1991).
[CrossRef] [PubMed]

S. Schmitt, J. Ficker, M. Wolff, F. König, A. Sizmann, and G. Leuchs, “Photon-number squeezed solitons from an asymmetric fiber-optic Sagnac interferometer,” Phys. Rev. Lett.81(12), 2446–2449 (1998).
[CrossRef]

S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett.80(4), 869–872 (1998).
[CrossRef]

C. H. Bennett and S. J. Wiesner, “Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states,” Phys. Rev. Lett.69(20), 2881–2884 (1992).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys.77(2), 513–577 (2005).
[CrossRef]

Other (1)

S. Barnett and P. Radmore, Methods in Theoretical Quantum Optics (Oxford University Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup to reduce intensity noise by CBD technique. ATT: attenuator; HWP: half wave plate; PBS: polarization beam splitter; BS: 50:50 beam splitter; AMP: RF amplifier; S.A.: RF spectrum analyzer; PDs: photodiodes.

Fig. 2
Fig. 2

Plots of noise relative to SNL as a function of laser power. Values were recorded at 23 MHz. Square and diamond plots correspond to noise level of original pulse train and delayed and recombined pulse trains with CBD technique, respectively.

Fig. 3
Fig. 3

Noise spectra of femtosecond laser pulse trains. Red curve: original pulse train; green curve: delayed and recombined pulse trains with CBD technique; blue curve: shot noise; and purple curve: electric noise.

Fig. 4
Fig. 4

Experimental setup of intensity noise cancellation after propagation of optical fibers. The left one is in the case of using a common fiber. The right one is in the case of using two separate fibers.

Fig. 5
Fig. 5

Plots of noise relative to SNL measured at 23 MHz as function of laser power. Square plots: original pulse train; triangle plots: two pulse trains after propagating through a common fiber; and diamond plots: two pulse trains after propagating through two separate fibers.

Fig. 6
Fig. 6

Experimental setup of photon number squeezing using fiber interferometers. ATT: attenuator, HWP: half wave plate, PBS: polarization beam splitter, QWP: quarter wave plate; BS: 50:50 beam splitter; PZT: piezoelectric transducer; AMP: RF amplifier; S.A.: RF spectrum analyzer; PDs: photodiodes.

Fig. 7
Fig. 7

Plots of noise relative to SNL as a function of coupled laser power into the fiber. Square, anti-squeezed noise; diamond, squeezed noise. The values were recorded at 22MHz.

Fig. 8
Fig. 8

Measurement of amplitude noise as a function of radio frequency. Red curve: shot noise; blue curve: noise level of squeezed light when the relative phase difference between orthogonally polarized pulses was swept; green curve: minimum noise level of squeezed light; purple curve: maximum noise level of anti-squeezed light.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I( t ) = I 1 ( t ) + I 2 ( t ) = I 1 ( t ) + I 1 (tt)
I(w) = I 1 (w) + I 2 (w) = I 1 (w) + I 1 (w)exp(iwt),    

Metrics