Abstract

we develop a precise modelling where nonlocal electro-opto-thermal interactions are comprehensively included for the analysis of nonlinear Raman enhancement and plasmonic heating. An interaction enhancement factor GIEF is introduced to quantify the coupling between the electromagnetic field and the temperature field which is rarely considered in the estimation of Raman enhancement. For the case of isolated single nanosphere, GIEF can be up to ten, indicating a thermal origin which well explains the observed temperature rise, shortened blinking period, and the nonlinearly enhanced Raman cross-section. For the case of nanodimer, the suppression of plasmon heating was analyzed, demonstrating the great capability to mitigate biomolecular degradation and blinking.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
    [CrossRef]
  2. S. L. McCall and P. M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B22(4), 1660–1662 (1980).
    [CrossRef]
  3. J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys.84(8), 4174–4180 (1986).
    [CrossRef]
  4. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
    [CrossRef] [PubMed]
  5. T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
    [CrossRef]
  6. V. L. Schlegel and T. M. Cotton, “Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity,” Anal. Chem.63(3), 241–247 (1991).
    [CrossRef] [PubMed]
  7. J. T. Bahns, F. Yan, D. Qiu, R. Wang, and L. Chen, “Hole-enhanced Raman scattering,” Appl. Spectrosc.60(9), 989–993 (2006).
    [CrossRef] [PubMed]
  8. K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
    [CrossRef] [PubMed]
  9. P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem.88(24), 5935–5944 (1984).
    [CrossRef]
  10. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  11. K. Kneipp, H. Kneipp, R. Manoharan, E. B. Hanlon, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Appl. Spectrosc.52(12), 1493–1497 (1998).
    [CrossRef]
  12. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
    [CrossRef]
  13. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
    [CrossRef]
  14. Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature373(6510), 132–134 (1995).
    [CrossRef]
  15. S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss.132, 249–259, discussion 309–319 (2006).
    [CrossRef] [PubMed]
  16. A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B104(50), 11965–11971 (2000).
    [CrossRef]
  17. A. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett.78(6), 1110–1113 (1997).
  18. K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B106(33), 8096–8099 (2002).
    [CrossRef]
  19. Z. Wang and L. J. Rothberg, “Origins of blinking in single-molecule Raman spectroscopy,” J. Phys. Chem. B109(8), 3387–3391 (2005).
    [CrossRef] [PubMed]
  20. Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B108(2), 673–678 (2004).
    [CrossRef]
  21. G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104(13), 136805 (2010).
    [CrossRef] [PubMed]
  22. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9(3), 1139–1146 (2009).
    [CrossRef] [PubMed]
  23. P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B Condens. Matter53(19), 12659–12662 (1996).
    [CrossRef] [PubMed]
  24. L. Xu and Y. Fang, “Temperature-induced effect on surface-enhanced Raman scattering of p, m-hydroxybenzoic acid on silver nanoparticles,” Spectroscopy18, 26–31 (2003).
  25. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
    [CrossRef] [PubMed]
  26. R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys.120(24), 11746–11753 (2004).
    [CrossRef] [PubMed]
  27. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010).
    [CrossRef] [PubMed]
  28. R. Franz and G. Wiedemann, “Ueber die wärme-leitungsfähigkeit der metalle,” Annalen der Physik165(8), 497–531 (1853).
    [CrossRef]
  29. N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Harcourt Brace College Publishers, 1976), Chap. 1.
  30. K. Linko and K. Hynynen, “Erythrocyte damage caused by the Haemotherm microwave blood warmer,” Acta Anaesthesiol. Scand.23(4), 320–328 (1979).
    [CrossRef] [PubMed]
  31. M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med.29(1), 33–37 (2001).
    [CrossRef] [PubMed]
  32. S. W. Kuo and F. C. Chang, “Studies of miscibility behavior and hydrogen bonding in blends of poly(vinylphenol) and poly(vinylpyrrolidone),” Macromolecules34(15), 5224–5228 (2001).
    [CrossRef]
  33. J. R. Wünsch, “Polystyrene-synthesis, production and applications,” Rapra Review Reports10, 15 (2000).
  34. D. E. Johnson, “Pyrolysis of benzenethiol,” Fuel66(2), 255–260 (1987).
    [CrossRef]
  35. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  36. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006).
    [CrossRef]
  37. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
    [CrossRef] [PubMed]

2010 (2)

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104(13), 136805 (2010).
[CrossRef] [PubMed]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010).
[CrossRef] [PubMed]

2009 (1)

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9(3), 1139–1146 (2009).
[CrossRef] [PubMed]

2008 (1)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

2007 (1)

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

2006 (4)

S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss.132, 249–259, discussion 309–319 (2006).
[CrossRef] [PubMed]

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

J. T. Bahns, F. Yan, D. Qiu, R. Wang, and L. Chen, “Hole-enhanced Raman scattering,” Appl. Spectrosc.60(9), 989–993 (2006).
[CrossRef] [PubMed]

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006).
[CrossRef]

2005 (1)

Z. Wang and L. J. Rothberg, “Origins of blinking in single-molecule Raman spectroscopy,” J. Phys. Chem. B109(8), 3387–3391 (2005).
[CrossRef] [PubMed]

2004 (2)

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B108(2), 673–678 (2004).
[CrossRef]

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys.120(24), 11746–11753 (2004).
[CrossRef] [PubMed]

2003 (2)

L. Xu and Y. Fang, “Temperature-induced effect on surface-enhanced Raman scattering of p, m-hydroxybenzoic acid on silver nanoparticles,” Spectroscopy18, 26–31 (2003).

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

2002 (1)

K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B106(33), 8096–8099 (2002).
[CrossRef]

2001 (2)

M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med.29(1), 33–37 (2001).
[CrossRef] [PubMed]

S. W. Kuo and F. C. Chang, “Studies of miscibility behavior and hydrogen bonding in blends of poly(vinylphenol) and poly(vinylpyrrolidone),” Macromolecules34(15), 5224–5228 (2001).
[CrossRef]

2000 (2)

J. R. Wünsch, “Polystyrene-synthesis, production and applications,” Rapra Review Reports10, 15 (2000).

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B104(50), 11965–11971 (2000).
[CrossRef]

1999 (2)

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

1998 (2)

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

A. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett.78(6), 1110–1113 (1997).

1996 (2)

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B Condens. Matter53(19), 12659–12662 (1996).
[CrossRef] [PubMed]

1995 (1)

Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature373(6510), 132–134 (1995).
[CrossRef]

1991 (1)

V. L. Schlegel and T. M. Cotton, “Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity,” Anal. Chem.63(3), 241–247 (1991).
[CrossRef] [PubMed]

1987 (1)

D. E. Johnson, “Pyrolysis of benzenethiol,” Fuel66(2), 255–260 (1987).
[CrossRef]

1986 (1)

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys.84(8), 4174–4180 (1986).
[CrossRef]

1984 (1)

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem.88(24), 5935–5944 (1984).
[CrossRef]

1980 (1)

S. L. McCall and P. M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B22(4), 1660–1662 (1980).
[CrossRef]

1979 (1)

K. Linko and K. Hynynen, “Erythrocyte damage caused by the Haemotherm microwave blood warmer,” Acta Anaesthesiol. Scand.23(4), 320–328 (1979).
[CrossRef] [PubMed]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

1853 (1)

R. Franz and G. Wiedemann, “Ueber die wärme-leitungsfähigkeit der metalle,” Annalen der Physik165(8), 497–531 (1853).
[CrossRef]

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Baffou, G.

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104(13), 136805 (2010).
[CrossRef] [PubMed]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010).
[CrossRef] [PubMed]

Bahns, J. T.

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Basché, Th.

Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature373(6510), 132–134 (1995).
[CrossRef]

Bawendi, M. G.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Birke, R. L.

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys.84(8), 4174–4180 (1986).
[CrossRef]

Bosnick, K. A.

K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B106(33), 8096–8099 (2002).
[CrossRef]

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Bräuchle, C.

Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature373(6510), 132–134 (1995).
[CrossRef]

Brown, R. J. C.

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys.120(24), 11746–11753 (2004).
[CrossRef] [PubMed]

Brus, L.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B104(50), 11965–11971 (2000).
[CrossRef]

Brus, L. E.

K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B106(33), 8096–8099 (2002).
[CrossRef]

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Carlson, M. T.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9(3), 1139–1146 (2009).
[CrossRef] [PubMed]

Chang, F. C.

S. W. Kuo and F. C. Chang, “Studies of miscibility behavior and hydrogen bonding in blends of poly(vinylphenol) and poly(vinylpyrrolidone),” Macromolecules34(15), 5224–5228 (2001).
[CrossRef]

Chen, L.

Cohen, L. F.

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys.120(24), 11746–11753 (2004).
[CrossRef] [PubMed]

Coombs, R. R. H.

M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med.29(1), 33–37 (2001).
[CrossRef] [PubMed]

Cotton, T. M.

V. L. Schlegel and T. M. Cotton, “Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity,” Anal. Chem.63(3), 241–247 (1991).
[CrossRef] [PubMed]

Dabbousi, B. O.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Dasari, R. R.

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Duval, M. L.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Efros, A. L.

A. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett.78(6), 1110–1113 (1997).

Emory, S. R.

S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss.132, 249–259, discussion 309–319 (2006).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Etchegoin, P.

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys.120(24), 11746–11753 (2004).
[CrossRef] [PubMed]

Fang, Y.

L. Xu and Y. Fang, “Temperature-induced effect on surface-enhanced Raman scattering of p, m-hydroxybenzoic acid on silver nanoparticles,” Spectroscopy18, 26–31 (2003).

Feld, M. S.

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

Franz, R.

R. Franz and G. Wiedemann, “Ueber die wärme-leitungsfähigkeit der metalle,” Annalen der Physik165(8), 497–531 (1853).
[CrossRef]

Futamata, M.

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B108(2), 673–678 (2004).
[CrossRef]

García de Abajo, F. J.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Girard, C.

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104(13), 136805 (2010).
[CrossRef] [PubMed]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Gordon, R.

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006).
[CrossRef]

Govorov, A. O.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9(3), 1139–1146 (2009).
[CrossRef] [PubMed]

Hafez, M. I.

M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med.29(1), 33–37 (2001).
[CrossRef] [PubMed]

Halas, N. J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Han, M.

S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss.132, 249–259, discussion 309–319 (2006).
[CrossRef] [PubMed]

Hanlon, E. B.

Harris, T. D.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Hartigan, H. J. N.

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys.120(24), 11746–11753 (2004).
[CrossRef] [PubMed]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

Hernandez, P.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9(3), 1139–1146 (2009).
[CrossRef] [PubMed]

Hider, M. H.

P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B Condens. Matter53(19), 12659–12662 (1996).
[CrossRef] [PubMed]

Hildebrandt, P.

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem.88(24), 5935–5944 (1984).
[CrossRef]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Hossain, M. K.

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

Hynynen, K.

K. Linko and K. Hynynen, “Erythrocyte damage caused by the Haemotherm microwave blood warmer,” Acta Anaesthesiol. Scand.23(4), 320–328 (1979).
[CrossRef] [PubMed]

Imura, K.

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

Ishikawa, M.

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B108(2), 673–678 (2004).
[CrossRef]

Itzkan, I.

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Jensen, R. A.

S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss.132, 249–259, discussion 309–319 (2006).
[CrossRef] [PubMed]

Jensen, T. R.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

Jiang, J.

K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B106(33), 8096–8099 (2002).
[CrossRef]

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B104(50), 11965–11971 (2000).
[CrossRef]

Johnson, D. E.

D. E. Johnson, “Pyrolysis of benzenethiol,” Fuel66(2), 255–260 (1987).
[CrossRef]

Kelly, K. L.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

Kitajima, M.

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

Kneipp, H.

Kneipp, K.

Kummer, S.

Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature373(6510), 132–134 (1995).
[CrossRef]

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Kuo, S. W.

S. W. Kuo and F. C. Chang, “Studies of miscibility behavior and hydrogen bonding in blends of poly(vinylphenol) and poly(vinylpyrrolidone),” Macromolecules34(15), 5224–5228 (2001).
[CrossRef]

Lazarides, A. A.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

Leung, P. T.

P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B Condens. Matter53(19), 12659–12662 (1996).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Linko, K.

K. Linko and K. Hynynen, “Erythrocyte damage caused by the Haemotherm microwave blood warmer,” Acta Anaesthesiol. Scand.23(4), 320–328 (1979).
[CrossRef] [PubMed]

Lombardi, J. R.

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys.84(8), 4174–4180 (1986).
[CrossRef]

Lu, T.

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys.84(8), 4174–4180 (1986).
[CrossRef]

Macklin, J. J.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Maher, R. C.

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys.120(24), 11746–11753 (2004).
[CrossRef] [PubMed]

Manoharan, R.

Maruyama, Y.

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B108(2), 673–678 (2004).
[CrossRef]

McCall, S. L.

S. L. McCall and P. M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B22(4), 1660–1662 (1980).
[CrossRef]

McCarthy, I. D.

M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med.29(1), 33–37 (2001).
[CrossRef] [PubMed]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

Michaels, A. M.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B104(50), 11965–11971 (2000).
[CrossRef]

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

Milton, M. J. T.

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys.120(24), 11746–11753 (2004).
[CrossRef] [PubMed]

Nie, S.

S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss.132, 249–259, discussion 309–319 (2006).
[CrossRef] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Nordlander, P.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Okamoto, H.

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

Platzman, P. M.

S. L. McCall and P. M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B22(4), 1660–1662 (1980).
[CrossRef]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Qiu, D.

Quidant, R.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010).
[CrossRef] [PubMed]

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104(13), 136805 (2010).
[CrossRef] [PubMed]

Richardson, H. H.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9(3), 1139–1146 (2009).
[CrossRef] [PubMed]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Rosen, M.

A. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett.78(6), 1110–1113 (1997).

Rothberg, L. J.

Z. Wang and L. J. Rothberg, “Origins of blinking in single-molecule Raman spectroscopy,” J. Phys. Chem. B109(8), 3387–3391 (2005).
[CrossRef] [PubMed]

Sanchez, E. J.

P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B Condens. Matter53(19), 12659–12662 (1996).
[CrossRef] [PubMed]

Schatz, G. C.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

Schlegel, V. L.

V. L. Schlegel and T. M. Cotton, “Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity,” Anal. Chem.63(3), 241–247 (1991).
[CrossRef] [PubMed]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Stockburger, M.

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem.88(24), 5935–5944 (1984).
[CrossRef]

Tandler, P. J.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9(3), 1139–1146 (2009).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Trautman, J. K.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Van Duyne, R. P.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Wang, R.

Wang, Z.

Z. Wang and L. J. Rothberg, “Origins of blinking in single-molecule Raman spectroscopy,” J. Phys. Chem. B109(8), 3387–3391 (2005).
[CrossRef] [PubMed]

Wenda, T.

S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss.132, 249–259, discussion 309–319 (2006).
[CrossRef] [PubMed]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Wiedemann, G.

R. Franz and G. Wiedemann, “Ueber die wärme-leitungsfähigkeit der metalle,” Annalen der Physik165(8), 497–531 (1853).
[CrossRef]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Wünsch, J. R.

J. R. Wünsch, “Polystyrene-synthesis, production and applications,” Rapra Review Reports10, 15 (2000).

Xu, J.

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys.84(8), 4174–4180 (1986).
[CrossRef]

Xu, L.

L. Xu and Y. Fang, “Temperature-induced effect on surface-enhanced Raman scattering of p, m-hydroxybenzoic acid on silver nanoparticles,” Spectroscopy18, 26–31 (2003).

Yan, F.

Zhou, S.

M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med.29(1), 33–37 (2001).
[CrossRef] [PubMed]

ACS Nano (2)

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano4(2), 709–716 (2010).
[CrossRef] [PubMed]

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008).
[CrossRef] [PubMed]

Acta Anaesthesiol. Scand. (1)

K. Linko and K. Hynynen, “Erythrocyte damage caused by the Haemotherm microwave blood warmer,” Acta Anaesthesiol. Scand.23(4), 320–328 (1979).
[CrossRef] [PubMed]

Anal. Chem. (1)

V. L. Schlegel and T. M. Cotton, “Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity,” Anal. Chem.63(3), 241–247 (1991).
[CrossRef] [PubMed]

Annalen der Physik (1)

R. Franz and G. Wiedemann, “Ueber die wärme-leitungsfähigkeit der metalle,” Annalen der Physik165(8), 497–531 (1853).
[CrossRef]

Appl. Spectrosc. (2)

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett.26(2), 163–166 (1974).
[CrossRef]

Faraday Discuss. (1)

S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss.132, 249–259, discussion 309–319 (2006).
[CrossRef] [PubMed]

Fuel (1)

D. E. Johnson, “Pyrolysis of benzenethiol,” Fuel66(2), 255–260 (1987).
[CrossRef]

J. Am. Chem. Soc. (1)

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc.121(43), 9932–9939 (1999).
[CrossRef]

J. Chem. Phys. (2)

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys.120(24), 11746–11753 (2004).
[CrossRef] [PubMed]

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys.84(8), 4174–4180 (1986).
[CrossRef]

J. Phys. Chem. (1)

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem.88(24), 5935–5944 (1984).
[CrossRef]

J. Phys. Chem. B (5)

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B103(45), 9846–9853 (1999).
[CrossRef]

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B104(50), 11965–11971 (2000).
[CrossRef]

K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B106(33), 8096–8099 (2002).
[CrossRef]

Z. Wang and L. J. Rothberg, “Origins of blinking in single-molecule Raman spectroscopy,” J. Phys. Chem. B109(8), 3387–3391 (2005).
[CrossRef] [PubMed]

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B108(2), 673–678 (2004).
[CrossRef]

Lasers Surg. Med. (1)

M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med.29(1), 33–37 (2001).
[CrossRef] [PubMed]

Macromolecules (1)

S. W. Kuo and F. C. Chang, “Studies of miscibility behavior and hydrogen bonding in blends of poly(vinylphenol) and poly(vinylpyrrolidone),” Macromolecules34(15), 5224–5228 (2001).
[CrossRef]

Nano Lett. (3)

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett.7(7), 1929–1934 (2007).
[CrossRef] [PubMed]

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett.9(3), 1139–1146 (2009).
[CrossRef] [PubMed]

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

Nature (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature383(6603), 802–804 (1996).
[CrossRef]

Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature373(6510), 132–134 (1995).
[CrossRef]

Phys. Rev. B (2)

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B73(15), 153405 (2006).
[CrossRef]

S. L. McCall and P. M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B22(4), 1660–1662 (1980).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B Condens. Matter53(19), 12659–12662 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

A. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett.78(6), 1110–1113 (1997).

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett.104(13), 136805 (2010).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A.100(23), 13549–13554 (2003).
[CrossRef] [PubMed]

Rapra Review Reports (1)

J. R. Wünsch, “Polystyrene-synthesis, production and applications,” Rapra Review Reports10, 15 (2000).

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Spectroscopy (1)

L. Xu and Y. Fang, “Temperature-induced effect on surface-enhanced Raman scattering of p, m-hydroxybenzoic acid on silver nanoparticles,” Spectroscopy18, 26–31 (2003).

Other (1)

N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Harcourt Brace College Publishers, 1976), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The flow chart of the computational procedure.

Fig. 2
Fig. 2

The near and far-field characteristics of isolated gold nanosphere with/without electro-opto-thermal interactions. (a) The absorption cross section as functions of the incident wavelength and illumination intensity I. (b) The enhanced EM field and the temperature field as a function of the illumination intensity at the near-field region.

Fig. 3
Fig. 3

The surface temperature and spatially averaged interaction enhancement factor as a function of the illumination intensity. The bottom level of each bar gives the degradation temperature for the noted molecules. The values on top axis give the degradation intensities.

Fig. 4
Fig. 4

Near and far-field characteristics of isolated gold nanodimer. (a) The absorption cross section as functions of the incident wavelength and illumination intensity. (b) The enhanced electromagnetic field and the temperature field as a function of the illumination intensity in the near-field region. (c) The nonlinear relationship of the gap temperature and the GIEF as a function of the illumination intensity.

Tables (1)

Tables Icon

Table 1 Fitting Functions of GIEF(I), GIEF(T), and T(I) near LSPR for Gold Nanosphere and Gold Nanodimer.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[κ( r )T( r )]=ρ( r )
ρ( r )= ω 0 ε''( r )<E ( r ,t) 2 >
κ( r )/σ( r )T( r )=L
× H ( r ,t)=σ E ( r ,t)+jωε' E ( r ,t)
G IEF ( r )= | E int ( r ) | 4 | E nonint ( r ) | 4

Metrics