Abstract

we develop a precise modelling where nonlocal electro-opto-thermal interactions are comprehensively included for the analysis of nonlinear Raman enhancement and plasmonic heating. An interaction enhancement factor GIEF is introduced to quantify the coupling between the electromagnetic field and the temperature field which is rarely considered in the estimation of Raman enhancement. For the case of isolated single nanosphere, GIEF can be up to ten, indicating a thermal origin which well explains the observed temperature rise, shortened blinking period, and the nonlinearly enhanced Raman cross-section. For the case of nanodimer, the suppression of plasmon heating was analyzed, demonstrating the great capability to mitigate biomolecular degradation and blinking.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
    [Crossref]
  2. S. L. McCall and P. M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B 22(4), 1660–1662 (1980).
    [Crossref]
  3. J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys. 84(8), 4174–4180 (1986).
    [Crossref]
  4. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
    [Crossref] [PubMed]
  5. T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
    [Crossref]
  6. V. L. Schlegel and T. M. Cotton, “Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity,” Anal. Chem. 63(3), 241–247 (1991).
    [Crossref] [PubMed]
  7. J. T. Bahns, F. Yan, D. Qiu, R. Wang, and L. Chen, “Hole-enhanced Raman scattering,” Appl. Spectrosc. 60(9), 989–993 (2006).
    [Crossref] [PubMed]
  8. K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6(10), 2173–2176 (2006).
    [Crossref] [PubMed]
  9. P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
    [Crossref]
  10. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  11. K. Kneipp, H. Kneipp, R. Manoharan, E. B. Hanlon, I. Itzkan, R. R. Dasari, and M. S. Feld, “Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters,” Appl. Spectrosc. 52(12), 1493–1497 (1998).
    [Crossref]
  12. A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121(43), 9932–9939 (1999).
    [Crossref]
  13. M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383(6603), 802–804 (1996).
    [Crossref]
  14. Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature 373(6510), 132–134 (1995).
    [Crossref]
  15. S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss. 132, 249–259, discussion 309–319 (2006).
    [Crossref] [PubMed]
  16. A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
    [Crossref]
  17. A. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78(6), 1110–1113 (1997).
  18. K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B 106(33), 8096–8099 (2002).
    [Crossref]
  19. Z. Wang and L. J. Rothberg, “Origins of blinking in single-molecule Raman spectroscopy,” J. Phys. Chem. B 109(8), 3387–3391 (2005).
    [Crossref] [PubMed]
  20. Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B 108(2), 673–678 (2004).
    [Crossref]
  21. G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
    [Crossref] [PubMed]
  22. H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
    [Crossref] [PubMed]
  23. P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B Condens. Matter 53(19), 12659–12662 (1996).
    [Crossref] [PubMed]
  24. L. Xu and Y. Fang, “Temperature-induced effect on surface-enhanced Raman scattering of p, m-hydroxybenzoic acid on silver nanoparticles,” Spectroscopy 18, 26–31 (2003).
  25. A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
    [Crossref] [PubMed]
  26. R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys. 120(24), 11746–11753 (2004).
    [Crossref] [PubMed]
  27. G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
    [Crossref] [PubMed]
  28. R. Franz and G. Wiedemann, “Ueber die wärme-leitungsfähigkeit der metalle,” Annalen der Physik 165(8), 497–531 (1853).
    [Crossref]
  29. N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Harcourt Brace College Publishers, 1976), Chap. 1.
  30. K. Linko and K. Hynynen, “Erythrocyte damage caused by the Haemotherm microwave blood warmer,” Acta Anaesthesiol. Scand. 23(4), 320–328 (1979).
    [Crossref] [PubMed]
  31. M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med. 29(1), 33–37 (2001).
    [Crossref] [PubMed]
  32. S. W. Kuo and F. C. Chang, “Studies of miscibility behavior and hydrogen bonding in blends of poly(vinylphenol) and poly(vinylpyrrolidone),” Macromolecules 34(15), 5224–5228 (2001).
    [Crossref]
  33. J. R. Wünsch, “Polystyrene-synthesis, production and applications,” Rapra Review Reports 10, 15 (2000).
  34. D. E. Johnson, “Pyrolysis of benzenethiol,” Fuel 66(2), 255–260 (1987).
    [Crossref]
  35. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  36. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
    [Crossref]
  37. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
    [Crossref] [PubMed]

2010 (2)

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

2009 (1)

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

2008 (1)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

2007 (1)

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

2006 (4)

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[Crossref]

J. T. Bahns, F. Yan, D. Qiu, R. Wang, and L. Chen, “Hole-enhanced Raman scattering,” Appl. Spectrosc. 60(9), 989–993 (2006).
[Crossref] [PubMed]

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6(10), 2173–2176 (2006).
[Crossref] [PubMed]

S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss. 132, 249–259, discussion 309–319 (2006).
[Crossref] [PubMed]

2005 (1)

Z. Wang and L. J. Rothberg, “Origins of blinking in single-molecule Raman spectroscopy,” J. Phys. Chem. B 109(8), 3387–3391 (2005).
[Crossref] [PubMed]

2004 (2)

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B 108(2), 673–678 (2004).
[Crossref]

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys. 120(24), 11746–11753 (2004).
[Crossref] [PubMed]

2003 (2)

L. Xu and Y. Fang, “Temperature-induced effect on surface-enhanced Raman scattering of p, m-hydroxybenzoic acid on silver nanoparticles,” Spectroscopy 18, 26–31 (2003).

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

2002 (1)

K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B 106(33), 8096–8099 (2002).
[Crossref]

2001 (2)

M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med. 29(1), 33–37 (2001).
[Crossref] [PubMed]

S. W. Kuo and F. C. Chang, “Studies of miscibility behavior and hydrogen bonding in blends of poly(vinylphenol) and poly(vinylpyrrolidone),” Macromolecules 34(15), 5224–5228 (2001).
[Crossref]

2000 (2)

J. R. Wünsch, “Polystyrene-synthesis, production and applications,” Rapra Review Reports 10, 15 (2000).

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

1999 (2)

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121(43), 9932–9939 (1999).
[Crossref]

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

1998 (2)

1997 (2)

A. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78(6), 1110–1113 (1997).

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

1996 (2)

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383(6603), 802–804 (1996).
[Crossref]

P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B Condens. Matter 53(19), 12659–12662 (1996).
[Crossref] [PubMed]

1995 (1)

Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature 373(6510), 132–134 (1995).
[Crossref]

1991 (1)

V. L. Schlegel and T. M. Cotton, “Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity,” Anal. Chem. 63(3), 241–247 (1991).
[Crossref] [PubMed]

1987 (1)

D. E. Johnson, “Pyrolysis of benzenethiol,” Fuel 66(2), 255–260 (1987).
[Crossref]

1986 (1)

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys. 84(8), 4174–4180 (1986).
[Crossref]

1984 (1)

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

1980 (1)

S. L. McCall and P. M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B 22(4), 1660–1662 (1980).
[Crossref]

1979 (1)

K. Linko and K. Hynynen, “Erythrocyte damage caused by the Haemotherm microwave blood warmer,” Acta Anaesthesiol. Scand. 23(4), 320–328 (1979).
[Crossref] [PubMed]

1974 (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

1853 (1)

R. Franz and G. Wiedemann, “Ueber die wärme-leitungsfähigkeit der metalle,” Annalen der Physik 165(8), 497–531 (1853).
[Crossref]

Aizpurua, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Baffou, G.

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

Bahns, J. T.

Bankson, J. A.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Basché, Th.

Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature 373(6510), 132–134 (1995).
[Crossref]

Bawendi, M. G.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383(6603), 802–804 (1996).
[Crossref]

Birke, R. L.

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys. 84(8), 4174–4180 (1986).
[Crossref]

Bosnick, K. A.

K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B 106(33), 8096–8099 (2002).
[Crossref]

Brandl, D. W.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Bräuchle, C.

Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature 373(6510), 132–134 (1995).
[Crossref]

Brown, R. J. C.

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys. 120(24), 11746–11753 (2004).
[Crossref] [PubMed]

Brus, L.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

Brus, L. E.

K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B 106(33), 8096–8099 (2002).
[Crossref]

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121(43), 9932–9939 (1999).
[Crossref]

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383(6603), 802–804 (1996).
[Crossref]

Carlson, M. T.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

Chang, F. C.

S. W. Kuo and F. C. Chang, “Studies of miscibility behavior and hydrogen bonding in blends of poly(vinylphenol) and poly(vinylpyrrolidone),” Macromolecules 34(15), 5224–5228 (2001).
[Crossref]

Chen, L.

Cohen, L. F.

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys. 120(24), 11746–11753 (2004).
[Crossref] [PubMed]

Coombs, R. R. H.

M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med. 29(1), 33–37 (2001).
[Crossref] [PubMed]

Cotton, T. M.

V. L. Schlegel and T. M. Cotton, “Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity,” Anal. Chem. 63(3), 241–247 (1991).
[Crossref] [PubMed]

Dabbousi, B. O.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383(6603), 802–804 (1996).
[Crossref]

Dasari, R. R.

Drezek, R. A.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Duval, M. L.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Efros, A. L.

A. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78(6), 1110–1113 (1997).

Emory, S. R.

S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss. 132, 249–259, discussion 309–319 (2006).
[Crossref] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Etchegoin, P.

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys. 120(24), 11746–11753 (2004).
[Crossref] [PubMed]

Fang, Y.

L. Xu and Y. Fang, “Temperature-induced effect on surface-enhanced Raman scattering of p, m-hydroxybenzoic acid on silver nanoparticles,” Spectroscopy 18, 26–31 (2003).

Feld, M. S.

Fleischmann, M.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Franz, R.

R. Franz and G. Wiedemann, “Ueber die wärme-leitungsfähigkeit der metalle,” Annalen der Physik 165(8), 497–531 (1853).
[Crossref]

Futamata, M.

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B 108(2), 673–678 (2004).
[Crossref]

García de Abajo, F. J.

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Girard, C.

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Gobin, A. M.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Gordon, R.

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[Crossref]

Govorov, A. O.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

Hafez, M. I.

M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med. 29(1), 33–37 (2001).
[Crossref] [PubMed]

Halas, N. J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Han, M.

S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss. 132, 249–259, discussion 309–319 (2006).
[Crossref] [PubMed]

Hanlon, E. B.

Harris, T. D.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383(6603), 802–804 (1996).
[Crossref]

Hartigan, H. J. N.

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys. 120(24), 11746–11753 (2004).
[Crossref] [PubMed]

Hazle, J. D.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Hendra, P. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Hernandez, P.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

Hider, M. H.

P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B Condens. Matter 53(19), 12659–12662 (1996).
[Crossref] [PubMed]

Hildebrandt, P.

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

Hirsch, L. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Hossain, M. K.

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6(10), 2173–2176 (2006).
[Crossref] [PubMed]

Hynynen, K.

K. Linko and K. Hynynen, “Erythrocyte damage caused by the Haemotherm microwave blood warmer,” Acta Anaesthesiol. Scand. 23(4), 320–328 (1979).
[Crossref] [PubMed]

Imura, K.

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6(10), 2173–2176 (2006).
[Crossref] [PubMed]

Ishikawa, M.

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B 108(2), 673–678 (2004).
[Crossref]

Itzkan, I.

James, W. D.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Jensen, R. A.

S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss. 132, 249–259, discussion 309–319 (2006).
[Crossref] [PubMed]

Jensen, T. R.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

Jiang, J.

K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B 106(33), 8096–8099 (2002).
[Crossref]

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

Johnson, D. E.

D. E. Johnson, “Pyrolysis of benzenethiol,” Fuel 66(2), 255–260 (1987).
[Crossref]

Kelly, K. L.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

Kitajima, M.

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6(10), 2173–2176 (2006).
[Crossref] [PubMed]

Kneipp, H.

Kneipp, K.

Kummer, S.

Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature 373(6510), 132–134 (1995).
[Crossref]

Kundu, J.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Kuo, S. W.

S. W. Kuo and F. C. Chang, “Studies of miscibility behavior and hydrogen bonding in blends of poly(vinylphenol) and poly(vinylpyrrolidone),” Macromolecules 34(15), 5224–5228 (2001).
[Crossref]

Lazarides, A. A.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

Le, F.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Lee, M. H.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

Leung, P. T.

P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B Condens. Matter 53(19), 12659–12662 (1996).
[Crossref] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Linko, K.

K. Linko and K. Hynynen, “Erythrocyte damage caused by the Haemotherm microwave blood warmer,” Acta Anaesthesiol. Scand. 23(4), 320–328 (1979).
[Crossref] [PubMed]

Lombardi, J. R.

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys. 84(8), 4174–4180 (1986).
[Crossref]

Lu, T.

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys. 84(8), 4174–4180 (1986).
[Crossref]

Macklin, J. J.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383(6603), 802–804 (1996).
[Crossref]

Maher, R. C.

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys. 120(24), 11746–11753 (2004).
[Crossref] [PubMed]

Manoharan, R.

Maruyama, Y.

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B 108(2), 673–678 (2004).
[Crossref]

McCall, S. L.

S. L. McCall and P. M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B 22(4), 1660–1662 (1980).
[Crossref]

McCarthy, I. D.

M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med. 29(1), 33–37 (2001).
[Crossref] [PubMed]

McQuillan, A. J.

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Michaels, A. M.

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121(43), 9932–9939 (1999).
[Crossref]

Milton, M. J. T.

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys. 120(24), 11746–11753 (2004).
[Crossref] [PubMed]

Nie, S.

S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss. 132, 249–259, discussion 309–319 (2006).
[Crossref] [PubMed]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nirmal, M.

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121(43), 9932–9939 (1999).
[Crossref]

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383(6603), 802–804 (1996).
[Crossref]

Nordlander, P.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Okamoto, H.

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6(10), 2173–2176 (2006).
[Crossref] [PubMed]

Platzman, P. M.

S. L. McCall and P. M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B 22(4), 1660–1662 (1980).
[Crossref]

Price, R. E.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Qiu, D.

Quidant, R.

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

Richardson, H. H.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

Rivera, B.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Rosen, M.

A. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78(6), 1110–1113 (1997).

Rothberg, L. J.

Z. Wang and L. J. Rothberg, “Origins of blinking in single-molecule Raman spectroscopy,” J. Phys. Chem. B 109(8), 3387–3391 (2005).
[Crossref] [PubMed]

Sanchez, E. J.

P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B Condens. Matter 53(19), 12659–12662 (1996).
[Crossref] [PubMed]

Schatz, G. C.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

Schlegel, V. L.

V. L. Schlegel and T. M. Cotton, “Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity,” Anal. Chem. 63(3), 241–247 (1991).
[Crossref] [PubMed]

Sershen, S. R.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Stafford, R. J.

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Stockburger, M.

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

Tandler, P. J.

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Trautman, J. K.

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383(6603), 802–804 (1996).
[Crossref]

Urzhumov, Y. A.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Van Duyne, R. P.

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

Wang, H.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

Wang, R.

Wang, Z.

Z. Wang and L. J. Rothberg, “Origins of blinking in single-molecule Raman spectroscopy,” J. Phys. Chem. B 109(8), 3387–3391 (2005).
[Crossref] [PubMed]

Wenda, T.

S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss. 132, 249–259, discussion 309–319 (2006).
[Crossref] [PubMed]

West, J. L.

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Wiedemann, G.

R. Franz and G. Wiedemann, “Ueber die wärme-leitungsfähigkeit der metalle,” Annalen der Physik 165(8), 497–531 (1853).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wünsch, J. R.

J. R. Wünsch, “Polystyrene-synthesis, production and applications,” Rapra Review Reports 10, 15 (2000).

Xu, J.

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys. 84(8), 4174–4180 (1986).
[Crossref]

Xu, L.

L. Xu and Y. Fang, “Temperature-induced effect on surface-enhanced Raman scattering of p, m-hydroxybenzoic acid on silver nanoparticles,” Spectroscopy 18, 26–31 (2003).

Yan, F.

Zhou, S.

M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med. 29(1), 33–37 (2001).
[Crossref] [PubMed]

ACS Nano (2)

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008).
[Crossref] [PubMed]

G. Baffou, R. Quidant, and F. J. García de Abajo, “Nanoscale control of optical heating in complex plasmonic systems,” ACS Nano 4(2), 709–716 (2010).
[Crossref] [PubMed]

Acta Anaesthesiol. Scand. (1)

K. Linko and K. Hynynen, “Erythrocyte damage caused by the Haemotherm microwave blood warmer,” Acta Anaesthesiol. Scand. 23(4), 320–328 (1979).
[Crossref] [PubMed]

Anal. Chem. (1)

V. L. Schlegel and T. M. Cotton, “Silver-island films as substrates for enhanced Raman scattering: effect of deposition rate on intensity,” Anal. Chem. 63(3), 241–247 (1991).
[Crossref] [PubMed]

Annalen der Physik (1)

R. Franz and G. Wiedemann, “Ueber die wärme-leitungsfähigkeit der metalle,” Annalen der Physik 165(8), 497–531 (1853).
[Crossref]

Appl. Spectrosc. (2)

Chem. Phys. Lett. (1)

M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at a silver electrode,” Chem. Phys. Lett. 26(2), 163–166 (1974).
[Crossref]

Faraday Discuss. (1)

S. R. Emory, R. A. Jensen, T. Wenda, M. Han, and S. Nie, “Re-examining the origins of spectral blinking in single-molecule and single-nanoparticle SERS,” Faraday Discuss. 132, 249–259, discussion 309–319 (2006).
[Crossref] [PubMed]

Fuel (1)

D. E. Johnson, “Pyrolysis of benzenethiol,” Fuel 66(2), 255–260 (1987).
[Crossref]

J. Am. Chem. Soc. (1)

A. M. Michaels, M. Nirmal, and L. E. Brus, “Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals,” J. Am. Chem. Soc. 121(43), 9932–9939 (1999).
[Crossref]

J. Chem. Phys. (2)

J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced Raman spectroscopy: Herzberg–Teller contributions,” J. Chem. Phys. 84(8), 4174–4180 (1986).
[Crossref]

R. C. Maher, L. F. Cohen, P. Etchegoin, H. J. N. Hartigan, R. J. C. Brown, and M. J. T. Milton, “Stokes/anti-Stokes anomalies under surface enhanced Raman scattering conditions,” J. Chem. Phys. 120(24), 11746–11753 (2004).
[Crossref] [PubMed]

J. Phys. Chem. (1)

P. Hildebrandt and M. Stockburger, “Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver,” J. Phys. Chem. 88(24), 5935–5944 (1984).
[Crossref]

J. Phys. Chem. B (5)

T. R. Jensen, M. L. Duval, K. L. Kelly, A. A. Lazarides, G. C. Schatz, and R. P. Van Duyne, “Nanosphere lithography: effect of the external dielectric medium on the surface plasmon resonance spectrum of a periodic array of silver nanoparticles,” J. Phys. Chem. B 103(45), 9846–9853 (1999).
[Crossref]

K. A. Bosnick, J. Jiang, and L. E. Brus, “Fluctuations and local symmetry in single-molecule rhodamine 6G Raman scattering on silver nanocrystal aggregates,” J. Phys. Chem. B 106(33), 8096–8099 (2002).
[Crossref]

Z. Wang and L. J. Rothberg, “Origins of blinking in single-molecule Raman spectroscopy,” J. Phys. Chem. B 109(8), 3387–3391 (2005).
[Crossref] [PubMed]

Y. Maruyama, M. Ishikawa, and M. Futamata, “Thermal activation of blinking in SERS signal,” J. Phys. Chem. B 108(2), 673–678 (2004).
[Crossref]

A. M. Michaels, J. Jiang, and L. Brus, “Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules,” J. Phys. Chem. B 104(50), 11965–11971 (2000).
[Crossref]

Lasers Surg. Med. (1)

M. I. Hafez, S. Zhou, R. R. H. Coombs, and I. D. McCarthy, “The effect of irrigation on peak temperatures in nerve root, dura, and intervertebral disc during laser-assisted foraminoplasty,” Lasers Surg. Med. 29(1), 33–37 (2001).
[Crossref] [PubMed]

Macromolecules (1)

S. W. Kuo and F. C. Chang, “Studies of miscibility behavior and hydrogen bonding in blends of poly(vinylphenol) and poly(vinylpyrrolidone),” Macromolecules 34(15), 5224–5228 (2001).
[Crossref]

Nano Lett. (3)

H. H. Richardson, M. T. Carlson, P. J. Tandler, P. Hernandez, and A. O. Govorov, “Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions,” Nano Lett. 9(3), 1139–1146 (2009).
[Crossref] [PubMed]

A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, “Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,” Nano Lett. 7(7), 1929–1934 (2007).
[Crossref] [PubMed]

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett. 6(10), 2173–2176 (2006).
[Crossref] [PubMed]

Nature (3)

M. Nirmal, B. O. Dabbousi, M. G. Bawendi, J. J. Macklin, J. K. Trautman, T. D. Harris, and L. E. Brus, “Fluorescence intermittency in single cadmium selenide nanocrystals,” Nature 383(6603), 802–804 (1996).
[Crossref]

Th. Basché, S. Kummer, and C. Bräuchle, “Direct spectroscopic observation of quantum jumps of a single molecule,” Nature 373(6510), 132–134 (1995).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Phys. Rev. B (2)

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[Crossref]

S. L. McCall and P. M. Platzman, “Raman scattering from chemisorbed molecules at surfaces,” Phys. Rev. B 22(4), 1660–1662 (1980).
[Crossref]

Phys. Rev. B Condens. Matter (1)

P. T. Leung, M. H. Hider, and E. J. Sanchez, “Surface-enhanced Raman scattering at elevated temperatures,” Phys. Rev. B Condens. Matter 53(19), 12659–12662 (1996).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

A. L. Efros and M. Rosen, “Random telegraph signal in the photoluminescence intensity of a single quantum dot,” Phys. Rev. Lett. 78(6), 1110–1113 (1997).

G. Baffou, C. Girard, and R. Quidant, “Mapping heat origin in plasmonic structures,” Phys. Rev. Lett. 104(13), 136805 (2010).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas, and J. L. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549–13554 (2003).
[Crossref] [PubMed]

Rapra Review Reports (1)

J. R. Wünsch, “Polystyrene-synthesis, production and applications,” Rapra Review Reports 10, 15 (2000).

Science (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Spectroscopy (1)

L. Xu and Y. Fang, “Temperature-induced effect on surface-enhanced Raman scattering of p, m-hydroxybenzoic acid on silver nanoparticles,” Spectroscopy 18, 26–31 (2003).

Other (1)

N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Harcourt Brace College Publishers, 1976), Chap. 1.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The flow chart of the computational procedure.

Fig. 2
Fig. 2

The near and far-field characteristics of isolated gold nanosphere with/without electro-opto-thermal interactions. (a) The absorption cross section as functions of the incident wavelength and illumination intensity I. (b) The enhanced EM field and the temperature field as a function of the illumination intensity at the near-field region.

Fig. 3
Fig. 3

The surface temperature and spatially averaged interaction enhancement factor as a function of the illumination intensity. The bottom level of each bar gives the degradation temperature for the noted molecules. The values on top axis give the degradation intensities.

Fig. 4
Fig. 4

Near and far-field characteristics of isolated gold nanodimer. (a) The absorption cross section as functions of the incident wavelength and illumination intensity. (b) The enhanced electromagnetic field and the temperature field as a function of the illumination intensity in the near-field region. (c) The nonlinear relationship of the gap temperature and the GIEF as a function of the illumination intensity.

Tables (1)

Tables Icon

Table 1 Fitting Functions of GIEF(I), GIEF(T), and T(I) near LSPR for Gold Nanosphere and Gold Nanodimer.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

[κ( r )T( r )]=ρ( r )
ρ( r )= ω 0 ε''( r )<E ( r ,t) 2 >
κ( r )/σ( r )T( r )=L
× H ( r ,t)=σ E ( r ,t)+jωε' E ( r ,t)
G IEF ( r )= | E int ( r ) | 4 | E nonint ( r ) | 4

Metrics