Abstract

We propose a novel method to obtain non-lens holographic images of micro-objects in white light with diffraction limit quality, based on fourier-spectroscopy principles. We developed a simple method for numerical acquisition of digital holograms of micro-objects at any spectral component from the set of two-dimensional interferograms, registered by fourier-spectrometer. In our experiments we used spectrally-spatial holographic fourier-spectrometer (SSHFS), equipped with supercontinuum light source and CCD camera for registration. Holographic images of several test objects acquired experimentally at different spectral components are presented. Visualization of local spatially-spectral inhomogeneities of micro-objects is discussed through the example of silver berry scaly hair sample.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
    [CrossRef]
  2. U. Schnars and W. Juptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (SpringerBerlin Heidelberg, 2005).
  3. M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1(1), 1–50 (2010).
  4. N. G. Vlasov, S. G. Kalenkov, and A. V. Sazhin, “Solution of the phase problem by means of the modified method of phase steps,” Laser Phys.6(2), 401–403 (1996).
  5. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett.22(16), 1268–1270 (1997).
    [CrossRef] [PubMed]
  6. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt.40(34), 6177–6186 (2001).
    [CrossRef]
  7. N. G. Vlasov, S. G. Kalenkov, D. V. Krilov, and A. E. Shtanko, “Non-lens digital microscopy,” Proc. SPIE5821158, (2005).
    [CrossRef]
  8. S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Fourier spectrometer as a holographic imaging system of microobjects in IR range,” 22nd International Conference on Photoelectronics and Night Vision Devices, (2012).
  9. S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “The fourier-spectrometer as a holographic micro-object imaging system in low-coherence light,” Meas. Tech.55(11), 21–25 (2012).
  10. R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic Pr., 1972, New York).

2012

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “The fourier-spectrometer as a holographic micro-object imaging system in low-coherence light,” Meas. Tech.55(11), 21–25 (2012).

2010

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1(1), 1–50 (2010).

2005

N. G. Vlasov, S. G. Kalenkov, D. V. Krilov, and A. E. Shtanko, “Non-lens digital microscopy,” Proc. SPIE5821158, (2005).
[CrossRef]

2002

U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
[CrossRef]

2001

1997

1996

N. G. Vlasov, S. G. Kalenkov, and A. V. Sazhin, “Solution of the phase problem by means of the modified method of phase steps,” Laser Phys.6(2), 401–403 (1996).

Bell, R. J.

R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic Pr., 1972, New York).

Juptner, W.

U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
[CrossRef]

U. Schnars and W. Juptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (SpringerBerlin Heidelberg, 2005).

Kalenkov, G. S.

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “The fourier-spectrometer as a holographic micro-object imaging system in low-coherence light,” Meas. Tech.55(11), 21–25 (2012).

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Fourier spectrometer as a holographic imaging system of microobjects in IR range,” 22nd International Conference on Photoelectronics and Night Vision Devices, (2012).

Kalenkov, S. G.

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “The fourier-spectrometer as a holographic micro-object imaging system in low-coherence light,” Meas. Tech.55(11), 21–25 (2012).

N. G. Vlasov, S. G. Kalenkov, D. V. Krilov, and A. E. Shtanko, “Non-lens digital microscopy,” Proc. SPIE5821158, (2005).
[CrossRef]

N. G. Vlasov, S. G. Kalenkov, and A. V. Sazhin, “Solution of the phase problem by means of the modified method of phase steps,” Laser Phys.6(2), 401–403 (1996).

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Fourier spectrometer as a holographic imaging system of microobjects in IR range,” 22nd International Conference on Photoelectronics and Night Vision Devices, (2012).

Kato, J.

Kim, M. K.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1(1), 1–50 (2010).

Krilov, D. V.

N. G. Vlasov, S. G. Kalenkov, D. V. Krilov, and A. E. Shtanko, “Non-lens digital microscopy,” Proc. SPIE5821158, (2005).
[CrossRef]

Mizuno, J.

Ohta, S.

Sazhin, A. V.

N. G. Vlasov, S. G. Kalenkov, and A. V. Sazhin, “Solution of the phase problem by means of the modified method of phase steps,” Laser Phys.6(2), 401–403 (1996).

Schnars, U.

U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
[CrossRef]

U. Schnars and W. Juptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (SpringerBerlin Heidelberg, 2005).

Shtanko, A. E.

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “The fourier-spectrometer as a holographic micro-object imaging system in low-coherence light,” Meas. Tech.55(11), 21–25 (2012).

N. G. Vlasov, S. G. Kalenkov, D. V. Krilov, and A. E. Shtanko, “Non-lens digital microscopy,” Proc. SPIE5821158, (2005).
[CrossRef]

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Fourier spectrometer as a holographic imaging system of microobjects in IR range,” 22nd International Conference on Photoelectronics and Night Vision Devices, (2012).

Vlasov, N. G.

N. G. Vlasov, S. G. Kalenkov, D. V. Krilov, and A. E. Shtanko, “Non-lens digital microscopy,” Proc. SPIE5821158, (2005).
[CrossRef]

N. G. Vlasov, S. G. Kalenkov, and A. V. Sazhin, “Solution of the phase problem by means of the modified method of phase steps,” Laser Phys.6(2), 401–403 (1996).

Yamaguchi, I.

Zhang, T.

Appl. Opt.

Laser Phys.

N. G. Vlasov, S. G. Kalenkov, and A. V. Sazhin, “Solution of the phase problem by means of the modified method of phase steps,” Laser Phys.6(2), 401–403 (1996).

Meas. Sci. Technol.

U. Schnars and W. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol.13(9), R85–R101 (2002).
[CrossRef]

Meas. Tech.

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “The fourier-spectrometer as a holographic micro-object imaging system in low-coherence light,” Meas. Tech.55(11), 21–25 (2012).

Opt. Lett.

Proc. SPIE

N. G. Vlasov, S. G. Kalenkov, D. V. Krilov, and A. E. Shtanko, “Non-lens digital microscopy,” Proc. SPIE5821158, (2005).
[CrossRef]

SPIE Rev.

M. K. Kim, “Principles and techniques of digital holographic microscopy,” SPIE Rev.1(1), 1–50 (2010).

Other

S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Fourier spectrometer as a holographic imaging system of microobjects in IR range,” 22nd International Conference on Photoelectronics and Night Vision Devices, (2012).

R. J. Bell, Introductory Fourier Transform Spectroscopy(Academic Pr., 1972, New York).

U. Schnars and W. Juptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (SpringerBerlin Heidelberg, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Implementation of two-beam interferometer. 1 - supercontinuum (Fianium), 2,5 - BS cubes (for unpolarized light), 3,6 - dove-prisms, 4 - miro-object, 7 - PZT (PI, P-611.1S), 8-BW CCD camera

Fig. 2
Fig. 2

Image reconstruction computation procedure. One of the reconstructed images of the test-object with micro-text is presented on the right. The heights of the text lines are 60μ, 30μ, 20μ correspondingly.

Fig. 3
Fig. 3

Reconstructed image of standard line target #1 at λ = 1μ on the left and the fragment of the reconstructed target image at λ = 0.45μ on the right.

Fig. 4
Fig. 4

The spectrum of supercontinuum source used in our experiments. Optical filters are applied to select the bandwidth.

Fig. 5
Fig. 5

Images of silver berry scaly hair sample obtained with microscope at 20x magnification on the left and pseudo-colored image synthesized from 3 spatial intensities distributions, which were gained at λr,g,b = 650nm, 550nm, 450nm, on the right.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I ( σ , θ , δ ) = | E ( σ ) exp ( 2 π i σ z ) D a ( x ) exp ( 2 π i σ θ x ) d x + exp ( 2 π i σ δ ) | 2
I ( σ , θ , δ ) = | A ( σ θ ) + exp ( 2 π i σ δ ) | 2 = S ( σ ) [ 1 + | A ( σ θ ) | 2 + 2 Re { A ( σ θ ) exp ( 2 π i σ δ ) } ] ,
G ( θ , δ ) = Δ σ I ( σ , θ ) d σ = Δ σ [ 1 + | A ( σ θ ) | 2 ] S ( σ ) d σ + 2 Re Δ σ S ( σ ) A ( σ θ ) exp ( 2 π i σ δ ) d σ
G ( θ , δ ) = Δ σ S ( σ ) { A ( σ θ ) exp [ 2 π i σ δ ] + A * ( σ θ ) exp [ 2 π i σ δ ] } d σ
A ( σ θ ) = G ( θ , δ ) exp [ 2 π i σ δ ] d δ S ( σ )
Δ σ γ > Δ ξ
l c γ d = L z d ,

Metrics