Abstract

When optical transceivers employing in-phase and quadrature (IQ) modulators and demodulator are used in real transmission systems, it is very important to search optimum bias points and to prevent bias drift from their optimal points due to of temperature variation, stress, or device aging. We demonstrate a simple and cost-effective automatic bias control scheme for optical IQ modulator and demodulator based on RF power and peak voltage detection. The principle of control scheme and effects of bias voltage on monitoring parameters are presented. The dynamic performance of the control scheme, effects of optical signal-to-noise ratio (OSNR) of signal, and effects of temperature variation are also evaluated. For the evaluation of bias control scheme at real-environment, we implement the automatic bias control scheme in 112 Gb/s dual carrier-differential QPSK (DC-DQPSK) transceiver, and investigate its long-term stability performances in a field transmission experiment over 797-km of installed fiber and ROADM.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. S. Chung, S. H. Chang, J. C. Lee, and K. J. Kim., “Dual-Carrier DQPSK based 112 Gb/s signal transmission over 480 km of SMF link carrying 10 Gb/s NRZ channels,” in OFC/NFOEC2012, JW2A.3.
  2. H. S. Chung, S. H. Chang, and K. J. Kim, “Effect of IQ mismatch compensation in an optical coherent OFDM receiver,” IEEE Photon. Technol. Lett.22(5), 308–310 (2010).
    [CrossRef]
  3. K. Sekine, C. Hasegawa, N. Kikuchi, and S. Sasaki, “A novel bias control technique for MZ modulator with monitoring power of backward light for advanced modulation formats,” in OFC2007, OTuH5.
  4. H. G. Choi, Y. Takushima, H. Y. Choi, J. H. Chang, and Y. C. Chang, “Modulation format free bias control technique for MZ modulator based on differential phase monitor,” in OFC/NFOEC2011, JWA33.
  5. H. Kawakami, E. Yoshida, and Y. Miyamoto, “Auto bias control technique based on asymmetric bias dithering for optical QPSK modulation,” J. Lightwave Technol.30(7), 962–968 (2012).
    [CrossRef]
  6. H. Kawakami, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Auto bias control technique for optical 16-QAM transmitter with asymmetric bias dithering,” Opt. Express21, B308–B312 (2013).
    [CrossRef] [PubMed]
  7. T. Gui, C. Li, Q. Yang, X. Xiao, L. Meng, C. Li, X. Yi, C. Jin, and Z. Li, “Auto bias control technique for optical OFDM transmitter with bias dithering,” Opt. Express21(5), 5833–5841 (2013).
    [CrossRef] [PubMed]
  8. P. S. Cho and M. Nazarathy, “Bias control for OFDM transmitters,” IEEE Photon. Technol. Lett.22(14), 1030–1032 (2010).
    [CrossRef]
  9. H. S. Chung, S. H. Chang, J. H. Lee, and K. J. Kim, “Transmission performance comparison of direction -detection based 100 Gb/s modulation formats for metro area optical networks,” ETRI Journal34(6), 800–806 (2012).
    [CrossRef]
  10. H. Yoon, D. Lee, and N. Park, “Performance Comparison of Optical 8-ary Differential Phase-Shift Keying Systems with Different Electrical Decision Schemes,” Opt. Express13(2), 371–376 (2005).
    [CrossRef] [PubMed]
  11. Y. Sakamaki, H. Hattri, Y. Nasu, T. Hashimoto, Y. Hashizume, T. Mizuno, T. Goh, and H. Takahashi, “One-chip integrated polarization multiplexed DQPSK demodulator using silica-based planner lighwave circuit technology,” Electron. Lett.46, 1152–1154 (2010).
  12. H. C. Ji, K. J. Park, H. Kim, J. H. Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK system,” IEEE Photon. Technol. Lett.18(8), 950–952 (2006).
    [CrossRef]

2013

H. Kawakami, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Auto bias control technique for optical 16-QAM transmitter with asymmetric bias dithering,” Opt. Express21, B308–B312 (2013).
[CrossRef] [PubMed]

T. Gui, C. Li, Q. Yang, X. Xiao, L. Meng, C. Li, X. Yi, C. Jin, and Z. Li, “Auto bias control technique for optical OFDM transmitter with bias dithering,” Opt. Express21(5), 5833–5841 (2013).
[CrossRef] [PubMed]

2012

H. Kawakami, E. Yoshida, and Y. Miyamoto, “Auto bias control technique based on asymmetric bias dithering for optical QPSK modulation,” J. Lightwave Technol.30(7), 962–968 (2012).
[CrossRef]

H. S. Chung, S. H. Chang, J. H. Lee, and K. J. Kim, “Transmission performance comparison of direction -detection based 100 Gb/s modulation formats for metro area optical networks,” ETRI Journal34(6), 800–806 (2012).
[CrossRef]

2010

Y. Sakamaki, H. Hattri, Y. Nasu, T. Hashimoto, Y. Hashizume, T. Mizuno, T. Goh, and H. Takahashi, “One-chip integrated polarization multiplexed DQPSK demodulator using silica-based planner lighwave circuit technology,” Electron. Lett.46, 1152–1154 (2010).

H. S. Chung, S. H. Chang, and K. J. Kim, “Effect of IQ mismatch compensation in an optical coherent OFDM receiver,” IEEE Photon. Technol. Lett.22(5), 308–310 (2010).
[CrossRef]

P. S. Cho and M. Nazarathy, “Bias control for OFDM transmitters,” IEEE Photon. Technol. Lett.22(14), 1030–1032 (2010).
[CrossRef]

2006

H. C. Ji, K. J. Park, H. Kim, J. H. Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK system,” IEEE Photon. Technol. Lett.18(8), 950–952 (2006).
[CrossRef]

2005

Chang, S. H.

H. S. Chung, S. H. Chang, J. H. Lee, and K. J. Kim, “Transmission performance comparison of direction -detection based 100 Gb/s modulation formats for metro area optical networks,” ETRI Journal34(6), 800–806 (2012).
[CrossRef]

H. S. Chung, S. H. Chang, and K. J. Kim, “Effect of IQ mismatch compensation in an optical coherent OFDM receiver,” IEEE Photon. Technol. Lett.22(5), 308–310 (2010).
[CrossRef]

Cho, P. S.

P. S. Cho and M. Nazarathy, “Bias control for OFDM transmitters,” IEEE Photon. Technol. Lett.22(14), 1030–1032 (2010).
[CrossRef]

Chung, H. S.

H. S. Chung, S. H. Chang, J. H. Lee, and K. J. Kim, “Transmission performance comparison of direction -detection based 100 Gb/s modulation formats for metro area optical networks,” ETRI Journal34(6), 800–806 (2012).
[CrossRef]

H. S. Chung, S. H. Chang, and K. J. Kim, “Effect of IQ mismatch compensation in an optical coherent OFDM receiver,” IEEE Photon. Technol. Lett.22(5), 308–310 (2010).
[CrossRef]

Chung, Y. C.

H. C. Ji, K. J. Park, H. Kim, J. H. Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK system,” IEEE Photon. Technol. Lett.18(8), 950–952 (2006).
[CrossRef]

Goh, T.

Y. Sakamaki, H. Hattri, Y. Nasu, T. Hashimoto, Y. Hashizume, T. Mizuno, T. Goh, and H. Takahashi, “One-chip integrated polarization multiplexed DQPSK demodulator using silica-based planner lighwave circuit technology,” Electron. Lett.46, 1152–1154 (2010).

Gui, T.

Hashimoto, T.

Y. Sakamaki, H. Hattri, Y. Nasu, T. Hashimoto, Y. Hashizume, T. Mizuno, T. Goh, and H. Takahashi, “One-chip integrated polarization multiplexed DQPSK demodulator using silica-based planner lighwave circuit technology,” Electron. Lett.46, 1152–1154 (2010).

Hashizume, Y.

Y. Sakamaki, H. Hattri, Y. Nasu, T. Hashimoto, Y. Hashizume, T. Mizuno, T. Goh, and H. Takahashi, “One-chip integrated polarization multiplexed DQPSK demodulator using silica-based planner lighwave circuit technology,” Electron. Lett.46, 1152–1154 (2010).

Hattri, H.

Y. Sakamaki, H. Hattri, Y. Nasu, T. Hashimoto, Y. Hashizume, T. Mizuno, T. Goh, and H. Takahashi, “One-chip integrated polarization multiplexed DQPSK demodulator using silica-based planner lighwave circuit technology,” Electron. Lett.46, 1152–1154 (2010).

Ji, H. C.

H. C. Ji, K. J. Park, H. Kim, J. H. Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK system,” IEEE Photon. Technol. Lett.18(8), 950–952 (2006).
[CrossRef]

Jin, C.

Kawakami, H.

H. Kawakami, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Auto bias control technique for optical 16-QAM transmitter with asymmetric bias dithering,” Opt. Express21, B308–B312 (2013).
[CrossRef] [PubMed]

H. Kawakami, E. Yoshida, and Y. Miyamoto, “Auto bias control technique based on asymmetric bias dithering for optical QPSK modulation,” J. Lightwave Technol.30(7), 962–968 (2012).
[CrossRef]

Kim, H.

H. C. Ji, K. J. Park, H. Kim, J. H. Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK system,” IEEE Photon. Technol. Lett.18(8), 950–952 (2006).
[CrossRef]

Kim, K. J.

H. S. Chung, S. H. Chang, J. H. Lee, and K. J. Kim, “Transmission performance comparison of direction -detection based 100 Gb/s modulation formats for metro area optical networks,” ETRI Journal34(6), 800–806 (2012).
[CrossRef]

H. S. Chung, S. H. Chang, and K. J. Kim, “Effect of IQ mismatch compensation in an optical coherent OFDM receiver,” IEEE Photon. Technol. Lett.22(5), 308–310 (2010).
[CrossRef]

Kobayashi, T.

H. Kawakami, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Auto bias control technique for optical 16-QAM transmitter with asymmetric bias dithering,” Opt. Express21, B308–B312 (2013).
[CrossRef] [PubMed]

Lee, D.

Lee, J. H.

H. S. Chung, S. H. Chang, J. H. Lee, and K. J. Kim, “Transmission performance comparison of direction -detection based 100 Gb/s modulation formats for metro area optical networks,” ETRI Journal34(6), 800–806 (2012).
[CrossRef]

H. C. Ji, K. J. Park, H. Kim, J. H. Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK system,” IEEE Photon. Technol. Lett.18(8), 950–952 (2006).
[CrossRef]

Li, C.

Li, Z.

Meng, L.

Miyamoto, Y.

H. Kawakami, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Auto bias control technique for optical 16-QAM transmitter with asymmetric bias dithering,” Opt. Express21, B308–B312 (2013).
[CrossRef] [PubMed]

H. Kawakami, E. Yoshida, and Y. Miyamoto, “Auto bias control technique based on asymmetric bias dithering for optical QPSK modulation,” J. Lightwave Technol.30(7), 962–968 (2012).
[CrossRef]

Mizuno, T.

Y. Sakamaki, H. Hattri, Y. Nasu, T. Hashimoto, Y. Hashizume, T. Mizuno, T. Goh, and H. Takahashi, “One-chip integrated polarization multiplexed DQPSK demodulator using silica-based planner lighwave circuit technology,” Electron. Lett.46, 1152–1154 (2010).

Nasu, Y.

Y. Sakamaki, H. Hattri, Y. Nasu, T. Hashimoto, Y. Hashizume, T. Mizuno, T. Goh, and H. Takahashi, “One-chip integrated polarization multiplexed DQPSK demodulator using silica-based planner lighwave circuit technology,” Electron. Lett.46, 1152–1154 (2010).

Nazarathy, M.

P. S. Cho and M. Nazarathy, “Bias control for OFDM transmitters,” IEEE Photon. Technol. Lett.22(14), 1030–1032 (2010).
[CrossRef]

Park, K. J.

H. C. Ji, K. J. Park, H. Kim, J. H. Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK system,” IEEE Photon. Technol. Lett.18(8), 950–952 (2006).
[CrossRef]

Park, N.

Sakamaki, Y.

Y. Sakamaki, H. Hattri, Y. Nasu, T. Hashimoto, Y. Hashizume, T. Mizuno, T. Goh, and H. Takahashi, “One-chip integrated polarization multiplexed DQPSK demodulator using silica-based planner lighwave circuit technology,” Electron. Lett.46, 1152–1154 (2010).

Takahashi, H.

Y. Sakamaki, H. Hattri, Y. Nasu, T. Hashimoto, Y. Hashizume, T. Mizuno, T. Goh, and H. Takahashi, “One-chip integrated polarization multiplexed DQPSK demodulator using silica-based planner lighwave circuit technology,” Electron. Lett.46, 1152–1154 (2010).

Xiao, X.

Yang, Q.

Yi, X.

Yoon, H.

Yoshida, E.

H. Kawakami, T. Kobayashi, E. Yoshida, and Y. Miyamoto, “Auto bias control technique for optical 16-QAM transmitter with asymmetric bias dithering,” Opt. Express21, B308–B312 (2013).
[CrossRef] [PubMed]

H. Kawakami, E. Yoshida, and Y. Miyamoto, “Auto bias control technique based on asymmetric bias dithering for optical QPSK modulation,” J. Lightwave Technol.30(7), 962–968 (2012).
[CrossRef]

Electron. Lett.

Y. Sakamaki, H. Hattri, Y. Nasu, T. Hashimoto, Y. Hashizume, T. Mizuno, T. Goh, and H. Takahashi, “One-chip integrated polarization multiplexed DQPSK demodulator using silica-based planner lighwave circuit technology,” Electron. Lett.46, 1152–1154 (2010).

ETRI Journal

H. S. Chung, S. H. Chang, J. H. Lee, and K. J. Kim, “Transmission performance comparison of direction -detection based 100 Gb/s modulation formats for metro area optical networks,” ETRI Journal34(6), 800–806 (2012).
[CrossRef]

IEEE Photon. Technol. Lett.

P. S. Cho and M. Nazarathy, “Bias control for OFDM transmitters,” IEEE Photon. Technol. Lett.22(14), 1030–1032 (2010).
[CrossRef]

H. C. Ji, K. J. Park, H. Kim, J. H. Lee, and Y. C. Chung, “A novel frequency-offset monitoring technique for direct-detection DPSK system,” IEEE Photon. Technol. Lett.18(8), 950–952 (2006).
[CrossRef]

H. S. Chung, S. H. Chang, and K. J. Kim, “Effect of IQ mismatch compensation in an optical coherent OFDM receiver,” IEEE Photon. Technol. Lett.22(5), 308–310 (2010).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

H. S. Chung, S. H. Chang, J. C. Lee, and K. J. Kim., “Dual-Carrier DQPSK based 112 Gb/s signal transmission over 480 km of SMF link carrying 10 Gb/s NRZ channels,” in OFC/NFOEC2012, JW2A.3.

K. Sekine, C. Hasegawa, N. Kikuchi, and S. Sasaki, “A novel bias control technique for MZ modulator with monitoring power of backward light for advanced modulation formats,” in OFC2007, OTuH5.

H. G. Choi, Y. Takushima, H. Y. Choi, J. H. Chang, and Y. C. Chang, “Modulation format free bias control technique for MZ modulator based on differential phase monitor,” in OFC/NFOEC2011, JWA33.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Automatic bias control scheme of optical IQ modulator and demodulator in DQPSK format (a) bias control of optical IQ modulator based on square wave and RF power detection (b) bias control of optical IQ demodulator based on peak voltage detection of demodulated signal.

Fig. 2
Fig. 2

Bias control optical IQ modulator. Simulated results for (a) RF power of 10 kHz square-wave versus bias of MZM and (b) RF power of 56 Gb/s QPSK signal with various RF filter bandwidth versus bias of MZI.

Fig. 3
Fig. 3

Bias control optical IQ demodulator, in-phase channel (a) simulated data pattern after balanced detector (b) measured voltage of peak detector as a function of applied voltage.

Fig. 4
Fig. 4

Measured performances of the automatic bias control scheme; (a) Monitoring voltage for MZMs and MZI and (b) Monitoring voltage for delay interferometer

Fig. 5
Fig. 5

(a) BER curves of 56 Gb/s DQPSK signal measured by automatic bias control and manually optimizing bias voltages (b) automatic bias tracking measured with different OSNR of signal (c) bias control against temperature variation. We intentionally turned off cooling fan for transceiver to increase inside temperature of DQPSK transceiver

Fig. 6
Fig. 6

Field transmission experiment of 112 Gb/s DC-DQPSK signal with automatic bias control (a) experimental setup (b) launching power and loss of each span.

Fig. 7
Fig. 7

Transmission performance of 112 Gb/s DC-DQPSK signal after 797 km transmission (a) measured pre-FEC BER of 112 Gb/s signal over 18.5 hours (b) comparison of simulated performance of 112 Gb/s DC-DQPSK signal after 797 km transmission

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P rfsquare ( 1+cos[ π V bI,bQ V π ] ) 2
P opticalQPSK 1+cos(Δ I IQ )

Metrics