Abstract

We demonstrated phase-locking in a laser-diode-array-pumped Nd:YVO4 laser array (15 emitters) using a Talbot cavity. The Nd:YVO4 slab crystal was coated by dielectric material for claddings and formed a planar waveguide for the vertical mode. To stabilize the horizontal array mode, periodical thermal lenses were generated by controlling the heat flow. The phase-locked waveguide array generated 1.65-W output power, while 2.02 W was available in a standard cavity. Two-peak supermode was demonstrated with the Talbot cavity and was converted to a single peak with a spatial light modulator. We also experimentally and numerically analyzed the characteristics of Talbot phase-locking.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag.9, 401–407 (1836).
  2. J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett.52, 1771–1773 (1988).
    [CrossRef]
  3. J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett.55, 334–336 (1989).
    [CrossRef]
  4. F. X. D’Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett.55, 816–818 (1989).
    [CrossRef]
  5. R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction-limited, GaAlAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett.58, 2586–2588 (1991).
    [CrossRef]
  6. A. M. Hornby, H. J. Baker, A. D. Colley, and D. R. Hall, “Phase locking of linear arrays of CO2waveguide lasers by the waveguide-confined Talbot effect,” Appl. Phys. Lett.63, 2591–2593 (1993).
    [CrossRef]
  7. H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, and E. F. Yelden, “Propagation characteristics of coherent array beams from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron.32, 400–407 (1996).
    [CrossRef]
  8. M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky, and A. P. Napartovich, “Phase locking in a multicore fiber laser by means of a Talbot resonator,” Opt. Lett.25, 1436–1438 (2000).
    [CrossRef]
  9. M. Wrage, P. Glas, and M. Leitner, “Combined phase locking and beam shaping of a multicore fiber laser by structured mirrors,” Opt. Lett.26, 980–982 (2001).
    [CrossRef]
  10. L. Li, A. Schülzgen, S. Chen, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Phase locking and in-phase supermode selection in monolithic multicore fiber lasers,” Opt. Lett.31, 2577–2579 (2006).
    [CrossRef] [PubMed]
  11. L. Li, A. Schülzgen, H. Li, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Phase-locked multicore all-fiber lasers: modeling and experimental investigation,” J. Opt. Soc. Am. B24, 1721–1728 (2007).
    [CrossRef]
  12. R. Zhou, Q. Zhan, P. E. Powers, B. Ibarra-Escamilla, and J. W. Haus, “An all fiber based Talbot self-imaging mirror device for phase-locking of a multi-fiber laser,” J. Europ. Opt. Soc. Rap. Public.7, 12012 (2012).
    [CrossRef]
  13. J. Nelsson and D. N. Payne, “High-power fiber lasers,” Science332, 921–922 (2011).
    [CrossRef]
  14. K. V. Chellappan, E. Erden, and H. Urey, “Laser-based display: a review,” Appl. Opt.49, F79–F98 (2010).
    [CrossRef] [PubMed]
  15. Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron.36, 607–614 (2000).
    [CrossRef]
  16. W. Koechner, Solid-State Laser Engineering (Springer, 2006).
  17. Y. Hirano, S. Yamamoto, Y. Akino, A. Nakamura, T. Yagi, H. Sugiura, and T. Yanagisawa, “High performance micro green laser for laser TV,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WE1.
    [CrossRef]
  18. T. Yanagisawa, Y. Hirano, S. Yamamoto, M. Imaki, K. Sakai, and Y. Koyata, “Mode control waveguide laser device,” U.S. Patent 7839908 B2, November23, 2010.
  19. J. I. Mackenzie, “Dielectric solid-state planar waveguide laser: a review,” IEEE J. Sel. Top. Quantum Electron.13, 626–637 (2007).
    [CrossRef]
  20. K. Sueda, H. Takahashi, S. Kawato, and T. Kobayashi, “High-efficiency laser-diode-pumped microthickness Yb:Y3Al5O12slab laser,” Appl. Phys. Lett.87, 151110 (2005).
    [CrossRef]
  21. P. Latimer and R. F. Crouse, “Talbot effect reinterpreted,” Appl. Opt.31, 80–89 (1992).
    [CrossRef] [PubMed]
  22. D. Lu, J. Chen, H. Yang, H. Chen, X. Lin, and S. Gao, “Theoretical analysis on phase-locking properties of a laser diode array facing an external cavity,” Opt. Laser Technol.38, 516–522 (2006).
    [CrossRef]
  23. D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett.16, 823–825 (1991).
    [CrossRef] [PubMed]

2012 (1)

R. Zhou, Q. Zhan, P. E. Powers, B. Ibarra-Escamilla, and J. W. Haus, “An all fiber based Talbot self-imaging mirror device for phase-locking of a multi-fiber laser,” J. Europ. Opt. Soc. Rap. Public.7, 12012 (2012).
[CrossRef]

2011 (1)

J. Nelsson and D. N. Payne, “High-power fiber lasers,” Science332, 921–922 (2011).
[CrossRef]

2010 (2)

T. Yanagisawa, Y. Hirano, S. Yamamoto, M. Imaki, K. Sakai, and Y. Koyata, “Mode control waveguide laser device,” U.S. Patent 7839908 B2, November23, 2010.

K. V. Chellappan, E. Erden, and H. Urey, “Laser-based display: a review,” Appl. Opt.49, F79–F98 (2010).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

D. Lu, J. Chen, H. Yang, H. Chen, X. Lin, and S. Gao, “Theoretical analysis on phase-locking properties of a laser diode array facing an external cavity,” Opt. Laser Technol.38, 516–522 (2006).
[CrossRef]

L. Li, A. Schülzgen, S. Chen, V. L. Temyanko, J. V. Moloney, and N. Peyghambarian, “Phase locking and in-phase supermode selection in monolithic multicore fiber lasers,” Opt. Lett.31, 2577–2579 (2006).
[CrossRef] [PubMed]

2005 (1)

K. Sueda, H. Takahashi, S. Kawato, and T. Kobayashi, “High-efficiency laser-diode-pumped microthickness Yb:Y3Al5O12slab laser,” Appl. Phys. Lett.87, 151110 (2005).
[CrossRef]

2001 (1)

2000 (2)

M. Wrage, P. Glas, D. Fischer, M. Leitner, D. V. Vysotsky, and A. P. Napartovich, “Phase locking in a multicore fiber laser by means of a Talbot resonator,” Opt. Lett.25, 1436–1438 (2000).
[CrossRef]

Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron.36, 607–614 (2000).
[CrossRef]

1996 (1)

H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, and E. F. Yelden, “Propagation characteristics of coherent array beams from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron.32, 400–407 (1996).
[CrossRef]

1993 (1)

A. M. Hornby, H. J. Baker, A. D. Colley, and D. R. Hall, “Phase locking of linear arrays of CO2waveguide lasers by the waveguide-confined Talbot effect,” Appl. Phys. Lett.63, 2591–2593 (1993).
[CrossRef]

1992 (1)

1991 (2)

D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett.16, 823–825 (1991).
[CrossRef] [PubMed]

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction-limited, GaAlAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett.58, 2586–2588 (1991).
[CrossRef]

1989 (2)

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett.55, 334–336 (1989).
[CrossRef]

F. X. D’Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett.55, 816–818 (1989).
[CrossRef]

1988 (1)

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett.52, 1771–1773 (1988).
[CrossRef]

1836 (1)

H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag.9, 401–407 (1836).

Akino, Y.

Y. Hirano, S. Yamamoto, Y. Akino, A. Nakamura, T. Yagi, H. Sugiura, and T. Yanagisawa, “High performance micro green laser for laser TV,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WE1.
[CrossRef]

Baker, H. J.

H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, and E. F. Yelden, “Propagation characteristics of coherent array beams from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron.32, 400–407 (1996).
[CrossRef]

A. M. Hornby, H. J. Baker, A. D. Colley, and D. R. Hall, “Phase locking of linear arrays of CO2waveguide lasers by the waveguide-confined Talbot effect,” Appl. Phys. Lett.63, 2591–2593 (1993).
[CrossRef]

Chellappan, K. V.

Chen, H.

D. Lu, J. Chen, H. Yang, H. Chen, X. Lin, and S. Gao, “Theoretical analysis on phase-locking properties of a laser diode array facing an external cavity,” Opt. Laser Technol.38, 516–522 (2006).
[CrossRef]

Chen, J.

D. Lu, J. Chen, H. Yang, H. Chen, X. Lin, and S. Gao, “Theoretical analysis on phase-locking properties of a laser diode array facing an external cavity,” Opt. Laser Technol.38, 516–522 (2006).
[CrossRef]

Chen, S.

Colley, A. D.

A. M. Hornby, H. J. Baker, A. D. Colley, and D. R. Hall, “Phase locking of linear arrays of CO2waveguide lasers by the waveguide-confined Talbot effect,” Appl. Phys. Lett.63, 2591–2593 (1993).
[CrossRef]

Crouse, R. F.

D’Amato, F. X.

F. X. D’Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett.55, 816–818 (1989).
[CrossRef]

Erden, E.

Fischer, D.

Gao, S.

D. Lu, J. Chen, H. Yang, H. Chen, X. Lin, and S. Gao, “Theoretical analysis on phase-locking properties of a laser diode array facing an external cavity,” Opt. Laser Technol.38, 516–522 (2006).
[CrossRef]

Glas, P.

Hall, D. R.

H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, and E. F. Yelden, “Propagation characteristics of coherent array beams from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron.32, 400–407 (1996).
[CrossRef]

A. M. Hornby, H. J. Baker, A. D. Colley, and D. R. Hall, “Phase locking of linear arrays of CO2waveguide lasers by the waveguide-confined Talbot effect,” Appl. Phys. Lett.63, 2591–2593 (1993).
[CrossRef]

Haus, J. W.

R. Zhou, Q. Zhan, P. E. Powers, B. Ibarra-Escamilla, and J. W. Haus, “An all fiber based Talbot self-imaging mirror device for phase-locking of a multi-fiber laser,” J. Europ. Opt. Soc. Rap. Public.7, 12012 (2012).
[CrossRef]

Hirano, Y.

T. Yanagisawa, Y. Hirano, S. Yamamoto, M. Imaki, K. Sakai, and Y. Koyata, “Mode control waveguide laser device,” U.S. Patent 7839908 B2, November23, 2010.

Y. Hirano, S. Yamamoto, Y. Akino, A. Nakamura, T. Yagi, H. Sugiura, and T. Yanagisawa, “High performance micro green laser for laser TV,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WE1.
[CrossRef]

Hornby, A. M.

H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, and E. F. Yelden, “Propagation characteristics of coherent array beams from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron.32, 400–407 (1996).
[CrossRef]

A. M. Hornby, H. J. Baker, A. D. Colley, and D. R. Hall, “Phase locking of linear arrays of CO2waveguide lasers by the waveguide-confined Talbot effect,” Appl. Phys. Lett.63, 2591–2593 (1993).
[CrossRef]

Ibarra-Escamilla, B.

R. Zhou, Q. Zhan, P. E. Powers, B. Ibarra-Escamilla, and J. W. Haus, “An all fiber based Talbot self-imaging mirror device for phase-locking of a multi-fiber laser,” J. Europ. Opt. Soc. Rap. Public.7, 12012 (2012).
[CrossRef]

Imaki, M.

T. Yanagisawa, Y. Hirano, S. Yamamoto, M. Imaki, K. Sakai, and Y. Koyata, “Mode control waveguide laser device,” U.S. Patent 7839908 B2, November23, 2010.

Kannari, F.

Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron.36, 607–614 (2000).
[CrossRef]

Kawato, S.

K. Sueda, H. Takahashi, S. Kawato, and T. Kobayashi, “High-efficiency laser-diode-pumped microthickness Yb:Y3Al5O12slab laser,” Appl. Phys. Lett.87, 151110 (2005).
[CrossRef]

Kobayashi, T.

K. Sueda, H. Takahashi, S. Kawato, and T. Kobayashi, “High-efficiency laser-diode-pumped microthickness Yb:Y3Al5O12slab laser,” Appl. Phys. Lett.87, 151110 (2005).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Kono, Y.

Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron.36, 607–614 (2000).
[CrossRef]

Koyata, Y.

T. Yanagisawa, Y. Hirano, S. Yamamoto, M. Imaki, K. Sakai, and Y. Koyata, “Mode control waveguide laser device,” U.S. Patent 7839908 B2, November23, 2010.

Latimer, P.

Leger, J. R.

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett.55, 334–336 (1989).
[CrossRef]

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett.52, 1771–1773 (1988).
[CrossRef]

Leitner, M.

Li, H.

Li, L.

Lin, X.

D. Lu, J. Chen, H. Yang, H. Chen, X. Lin, and S. Gao, “Theoretical analysis on phase-locking properties of a laser diode array facing an external cavity,” Opt. Laser Technol.38, 516–522 (2006).
[CrossRef]

Lu, D.

D. Lu, J. Chen, H. Yang, H. Chen, X. Lin, and S. Gao, “Theoretical analysis on phase-locking properties of a laser diode array facing an external cavity,” Opt. Laser Technol.38, 516–522 (2006).
[CrossRef]

Mackenzie, J. I.

J. I. Mackenzie, “Dielectric solid-state planar waveguide laser: a review,” IEEE J. Sel. Top. Quantum Electron.13, 626–637 (2007).
[CrossRef]

Mehuys, D.

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction-limited, GaAlAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett.58, 2586–2588 (1991).
[CrossRef]

D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett.16, 823–825 (1991).
[CrossRef] [PubMed]

Moloney, J. V.

Morley, R. J.

H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, and E. F. Yelden, “Propagation characteristics of coherent array beams from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron.32, 400–407 (1996).
[CrossRef]

Nakamura, A.

Y. Hirano, S. Yamamoto, Y. Akino, A. Nakamura, T. Yagi, H. Sugiura, and T. Yanagisawa, “High performance micro green laser for laser TV,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WE1.
[CrossRef]

Nam, D.

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction-limited, GaAlAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett.58, 2586–2588 (1991).
[CrossRef]

Napartovich, A. P.

Nelsson, J.

J. Nelsson and D. N. Payne, “High-power fiber lasers,” Science332, 921–922 (2011).
[CrossRef]

Payne, D. N.

J. Nelsson and D. N. Payne, “High-power fiber lasers,” Science332, 921–922 (2011).
[CrossRef]

Peyghambarian, N.

Powers, P. E.

R. Zhou, Q. Zhan, P. E. Powers, B. Ibarra-Escamilla, and J. W. Haus, “An all fiber based Talbot self-imaging mirror device for phase-locking of a multi-fiber laser,” J. Europ. Opt. Soc. Rap. Public.7, 12012 (2012).
[CrossRef]

Roychoudhuri, C.

F. X. D’Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett.55, 816–818 (1989).
[CrossRef]

Sakai, K.

T. Yanagisawa, Y. Hirano, S. Yamamoto, M. Imaki, K. Sakai, and Y. Koyata, “Mode control waveguide laser device,” U.S. Patent 7839908 B2, November23, 2010.

Schülzgen, A.

Scifres, D.

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction-limited, GaAlAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett.58, 2586–2588 (1991).
[CrossRef]

Scott, M. L.

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett.52, 1771–1773 (1988).
[CrossRef]

Siebert, E. T.

F. X. D’Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett.55, 816–818 (1989).
[CrossRef]

Streifer, W.

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction-limited, GaAlAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett.58, 2586–2588 (1991).
[CrossRef]

D. Mehuys, W. Streifer, R. G. Waarts, and D. F. Welch, “Modal analysis of linear Talbot-cavity semiconductor lasers,” Opt. Lett.16, 823–825 (1991).
[CrossRef] [PubMed]

Sueda, K.

K. Sueda, H. Takahashi, S. Kawato, and T. Kobayashi, “High-efficiency laser-diode-pumped microthickness Yb:Y3Al5O12slab laser,” Appl. Phys. Lett.87, 151110 (2005).
[CrossRef]

Sugiura, H.

Y. Hirano, S. Yamamoto, Y. Akino, A. Nakamura, T. Yagi, H. Sugiura, and T. Yanagisawa, “High performance micro green laser for laser TV,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WE1.
[CrossRef]

Taghizadeh, M. R.

H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, and E. F. Yelden, “Propagation characteristics of coherent array beams from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron.32, 400–407 (1996).
[CrossRef]

Takahashi, H.

K. Sueda, H. Takahashi, S. Kawato, and T. Kobayashi, “High-efficiency laser-diode-pumped microthickness Yb:Y3Al5O12slab laser,” Appl. Phys. Lett.87, 151110 (2005).
[CrossRef]

Takeoka, M.

Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron.36, 607–614 (2000).
[CrossRef]

Talbot, H. F.

H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag.9, 401–407 (1836).

Temyanko, V. L.

Uchida, A.

Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron.36, 607–614 (2000).
[CrossRef]

Urey, H.

Uto, K.

Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron.36, 607–614 (2000).
[CrossRef]

Veldkamp, W. B.

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett.52, 1771–1773 (1988).
[CrossRef]

Vysotsky, D. V.

Waarts, R.

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction-limited, GaAlAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett.58, 2586–2588 (1991).
[CrossRef]

Waarts, R. G.

Welch, D.

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction-limited, GaAlAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett.58, 2586–2588 (1991).
[CrossRef]

Welch, D. F.

Wrage, M.

Yagi, T.

Y. Hirano, S. Yamamoto, Y. Akino, A. Nakamura, T. Yagi, H. Sugiura, and T. Yanagisawa, “High performance micro green laser for laser TV,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WE1.
[CrossRef]

Yamamoto, S.

T. Yanagisawa, Y. Hirano, S. Yamamoto, M. Imaki, K. Sakai, and Y. Koyata, “Mode control waveguide laser device,” U.S. Patent 7839908 B2, November23, 2010.

Y. Hirano, S. Yamamoto, Y. Akino, A. Nakamura, T. Yagi, H. Sugiura, and T. Yanagisawa, “High performance micro green laser for laser TV,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WE1.
[CrossRef]

Yanagisawa, T.

T. Yanagisawa, Y. Hirano, S. Yamamoto, M. Imaki, K. Sakai, and Y. Koyata, “Mode control waveguide laser device,” U.S. Patent 7839908 B2, November23, 2010.

Y. Hirano, S. Yamamoto, Y. Akino, A. Nakamura, T. Yagi, H. Sugiura, and T. Yanagisawa, “High performance micro green laser for laser TV,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WE1.
[CrossRef]

Yang, H.

D. Lu, J. Chen, H. Yang, H. Chen, X. Lin, and S. Gao, “Theoretical analysis on phase-locking properties of a laser diode array facing an external cavity,” Opt. Laser Technol.38, 516–522 (2006).
[CrossRef]

Yelden, E. F.

H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, and E. F. Yelden, “Propagation characteristics of coherent array beams from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron.32, 400–407 (1996).
[CrossRef]

Zhan, Q.

R. Zhou, Q. Zhan, P. E. Powers, B. Ibarra-Escamilla, and J. W. Haus, “An all fiber based Talbot self-imaging mirror device for phase-locking of a multi-fiber laser,” J. Europ. Opt. Soc. Rap. Public.7, 12012 (2012).
[CrossRef]

Zhou, R.

R. Zhou, Q. Zhan, P. E. Powers, B. Ibarra-Escamilla, and J. W. Haus, “An all fiber based Talbot self-imaging mirror device for phase-locking of a multi-fiber laser,” J. Europ. Opt. Soc. Rap. Public.7, 12012 (2012).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (6)

K. Sueda, H. Takahashi, S. Kawato, and T. Kobayashi, “High-efficiency laser-diode-pumped microthickness Yb:Y3Al5O12slab laser,” Appl. Phys. Lett.87, 151110 (2005).
[CrossRef]

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett.52, 1771–1773 (1988).
[CrossRef]

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett.55, 334–336 (1989).
[CrossRef]

F. X. D’Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett.55, 816–818 (1989).
[CrossRef]

R. Waarts, D. Mehuys, D. Nam, D. Welch, W. Streifer, and D. Scifres, “High-power, cw, diffraction-limited, GaAlAs laser diode array in an external Talbot cavity,” Appl. Phys. Lett.58, 2586–2588 (1991).
[CrossRef]

A. M. Hornby, H. J. Baker, A. D. Colley, and D. R. Hall, “Phase locking of linear arrays of CO2waveguide lasers by the waveguide-confined Talbot effect,” Appl. Phys. Lett.63, 2591–2593 (1993).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. J. Baker, D. R. Hall, A. M. Hornby, R. J. Morley, M. R. Taghizadeh, and E. F. Yelden, “Propagation characteristics of coherent array beams from carbon dioxide waveguide lasers,” IEEE J. Quantum Electron.32, 400–407 (1996).
[CrossRef]

Y. Kono, M. Takeoka, K. Uto, A. Uchida, and F. Kannari, “A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity,” IEEE J. Quantum Electron.36, 607–614 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. I. Mackenzie, “Dielectric solid-state planar waveguide laser: a review,” IEEE J. Sel. Top. Quantum Electron.13, 626–637 (2007).
[CrossRef]

J. Europ. Opt. Soc. Rap. Public. (1)

R. Zhou, Q. Zhan, P. E. Powers, B. Ibarra-Escamilla, and J. W. Haus, “An all fiber based Talbot self-imaging mirror device for phase-locking of a multi-fiber laser,” J. Europ. Opt. Soc. Rap. Public.7, 12012 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Laser Technol. (1)

D. Lu, J. Chen, H. Yang, H. Chen, X. Lin, and S. Gao, “Theoretical analysis on phase-locking properties of a laser diode array facing an external cavity,” Opt. Laser Technol.38, 516–522 (2006).
[CrossRef]

Opt. Lett. (4)

Philos. Mag. (1)

H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag.9, 401–407 (1836).

Science (1)

J. Nelsson and D. N. Payne, “High-power fiber lasers,” Science332, 921–922 (2011).
[CrossRef]

Other (3)

W. Koechner, Solid-State Laser Engineering (Springer, 2006).

Y. Hirano, S. Yamamoto, Y. Akino, A. Nakamura, T. Yagi, H. Sugiura, and T. Yanagisawa, “High performance micro green laser for laser TV,” in Advanced Solid-State Photonics, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper WE1.
[CrossRef]

T. Yanagisawa, Y. Hirano, S. Yamamoto, M. Imaki, K. Sakai, and Y. Koyata, “Mode control waveguide laser device,” U.S. Patent 7839908 B2, November23, 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematics of an LD-array-pumped Nd:YVO4 module: (a) top view and (b) front view. The glass substrate mechanically supports the thin waveguide.

Fig. 2
Fig. 2

Top view of LD-array-pumped Nd:YVO4 module with a Talbot cavity: (a) Experiments 1 and 2 and (b) Experiment 3. Here, Rb, Rf, and Rex corresponds to reflectivity of rear surface of Nd:YVO4 crystal, output surface of Nd:YVO4 crystal, and output coupler, respectively, at 1064 nm. F refers to focal length, d corresponds to center-to-center distance of waveguides, l corresponds to length of the Nd:YVO4 crystal, and xd corresponds to the external cavity length.

Fig. 3
Fig. 3

Output power dependence on absorbed pump power. Experiment 1 uses an R = 70% OC, Experiment 2 uses an R = 30% OC, Experiment 3 uses an R = 40% PR mirror and an R = 30% OC, and non-Talbot corresponds to output power from Module-A with an R = 70% OC placed closely to an Nd:YVO4 output surface.

Fig. 4
Fig. 4

Far-field profile of Talbot cavity: (a) Module-A and R = 70% OC (Experiment 1), (b) Module-B and R = 30% OC, (Experiment 2), (c) Module-A, R = 40% PR coating mirror, and R = 20% OC (Experiment 3),, (d) Module-B and R = 60% OC (Experiment 2) and (e) Module-A and R = 70% OC (non-Talbot condition).

Fig. 5
Fig. 5

Output power from Talbot cavity as a function of external cavity length with Module-A and R = 70% OC (Experiment 1), Module-B and R = 30% OC (Experiment 2), and Module-B and R = 60% OC (Experiment 2).

Fig. 6
Fig. 6

(a) Experimental setup to obtain far-field image of in-phase array converted by SLM; (b) far-field profile of in-phase array converted by an SLM; and (c) transverse profiles of (b) and theoretical values.

Fig. 7
Fig. 7

(a) Threshold gain with rf = 0 and rex = 0.84. (b) Threshold gain with rf = 0.63 and rex = 0.55. gn in key means threshold of nth supermode.

Fig. 8
Fig. 8

Threshold gain with rf = 0, rex = 0.84, (a) ω0 = 25 μm and (b) ω0 = 75 μm. gn in key means threshold of nth supermode.

Metrics