Abstract

Abstract: We propose a kind of chiral metamaterial inspired from the fractal concept. The Hilbert fractal perturbation in the twisted split ring resonator element results in compact metamaterial and breaking mirror symmetry, which readily forms chirality over triple bands. The discrepancy between co-polarization conversion and cross-polarization conversion over multiple bands can be explored for multifunctional devices. A multiband circular polarizer is then numerically and experimentally studied in the X band based on the bilayered twisted Hilbert resonator with mutual 90° rotation. The ability of transforming linearly polarized incident waves to circularly polarized waves is unambiguously demonstrated with high conversion efficiency and large polarization extinction ratio of more than 20 dB across dual bands. Moreover, exceptionally strong optical activity and circular dichroism are also observed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Y. Chin, J. N. Gollub, J. J. Mock, R. Liu, C. Harrison, D. R. Smith, and T. J. Cui, “An efficient broadband metamaterial wave retarder,” Opt. Express17(9), 7640–7647 (2009).
    [CrossRef] [PubMed]
  2. Y. Ye and S. He, “90o polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
    [CrossRef]
  3. J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
    [CrossRef]
  4. Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
    [CrossRef]
  5. M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
    [CrossRef]
  6. Y. Cheng, Y. Nie, X. Wang, and R. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys., A Mater. Sci. Process.111(1), 209–215 (2013).
    [CrossRef]
  7. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  8. M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010).
    [CrossRef]
  9. Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett.99(3), 031111 (2011).
    [CrossRef]
  10. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
    [CrossRef] [PubMed]
  11. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett.36(9), 1653–1655 (2011).
    [CrossRef] [PubMed]
  12. X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express20(14), 16050–16058 (2012).
    [CrossRef] [PubMed]
  13. S. Yan and G. A. E. Vandenbosch, “Compact circular polarizer based on chiral twisted double split-ring resonator,” Appl. Phys. Lett.102(10), 103503 (2013).
    [CrossRef]
  14. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
    [CrossRef] [PubMed]
  15. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
    [CrossRef] [PubMed]
  16. M. Kang, J. Chen, H. X. Cui, Y. Li, and H. T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express19(9), 8347–8356 (2011).
    [CrossRef] [PubMed]
  17. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
    [CrossRef] [PubMed]
  18. C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
    [CrossRef]
  19. J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
    [CrossRef] [PubMed]
  20. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
    [CrossRef]
  21. Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010).
    [CrossRef]
  22. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express16(16), 11802–11807 (2008).
    [CrossRef] [PubMed]
  23. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
    [CrossRef] [PubMed]
  24. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
    [CrossRef] [PubMed]
  25. W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011).
    [CrossRef] [PubMed]
  26. D. Zari, H. Oraizi, and M. Soleimani, “Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers,” Prog. Electromagnetics Res.123, 337–354 (2012).
    [CrossRef]
  27. J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
    [CrossRef]
  28. H. X. Xu, G. M. Wang, C. X. Zhang, and Q. Peng, “Hilbert-shaped complementary single split ring resonator and low-pass filter with ultra-wide stopband, excellent selectivity and low insertion-loss,” AEU, Int. J. Electron. Commun.65(11), 901–905 (2011).
    [CrossRef]

2013 (2)

Y. Cheng, Y. Nie, X. Wang, and R. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys., A Mater. Sci. Process.111(1), 209–215 (2013).
[CrossRef]

S. Yan and G. A. E. Vandenbosch, “Compact circular polarizer based on chiral twisted double split-ring resonator,” Appl. Phys. Lett.102(10), 103503 (2013).
[CrossRef]

2012 (8)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
[CrossRef]

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
[CrossRef] [PubMed]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

D. Zari, H. Oraizi, and M. Soleimani, “Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers,” Prog. Electromagnetics Res.123, 337–354 (2012).
[CrossRef]

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express20(14), 16050–16058 (2012).
[CrossRef] [PubMed]

2011 (7)

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011).
[CrossRef] [PubMed]

M. Kang, J. Chen, H. X. Cui, Y. Li, and H. T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express19(9), 8347–8356 (2011).
[CrossRef] [PubMed]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett.36(9), 1653–1655 (2011).
[CrossRef] [PubMed]

H. X. Xu, G. M. Wang, C. X. Zhang, and Q. Peng, “Hilbert-shaped complementary single split ring resonator and low-pass filter with ultra-wide stopband, excellent selectivity and low insertion-loss,” AEU, Int. J. Electron. Commun.65(11), 901–905 (2011).
[CrossRef]

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett.99(3), 031111 (2011).
[CrossRef]

2010 (5)

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010).
[CrossRef]

Y. Ye and S. He, “90o polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010).
[CrossRef]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

2009 (3)

J. Y. Chin, J. N. Gollub, J. J. Mock, R. Liu, C. Harrison, D. R. Smith, and T. J. Cui, “An efficient broadband metamaterial wave retarder,” Opt. Express17(9), 7640–7647 (2009).
[CrossRef] [PubMed]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

2006 (1)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Akosman, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett.36(9), 1653–1655 (2011).
[CrossRef] [PubMed]

Alici, K. B.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010).
[CrossRef]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Caglayan, H.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010).
[CrossRef]

Cahill, R.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010).
[CrossRef]

Cao, Y.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Chan, C. T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Chang, S.-W.

Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett.99(3), 031111 (2011).
[CrossRef]

Chen, J.

Chen, Y.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Cheng, Y.

Y. Cheng, Y. Nie, X. Wang, and R. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys., A Mater. Sci. Process.111(1), 209–215 (2013).
[CrossRef]

Chin, J. Y.

Colak, E.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010).
[CrossRef]

Cui, H. X.

Cui, T. J.

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

J. Y. Chin, J. N. Gollub, J. J. Mock, R. Liu, C. Harrison, D. R. Smith, and T. J. Cui, “An efficient broadband metamaterial wave retarder,” Opt. Express17(9), 7640–7647 (2009).
[CrossRef] [PubMed]

Decker, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Dickie, R.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010).
[CrossRef]

Dong, J.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

Duan, X.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
[CrossRef] [PubMed]

Euler, M.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010).
[CrossRef]

Fan, Y.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Fedotov, V. A.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Feng, Q.

Feng, Y.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
[CrossRef]

Fusco, V.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Gollub, J. N.

Gong, R.

Y. Cheng, Y. Nie, X. Wang, and R. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys., A Mater. Sci. Process.111(1), 209–215 (2013).
[CrossRef]

Guo, P.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
[CrossRef] [PubMed]

Han, J.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Hao, J.

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011).
[CrossRef] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Harrison, C.

He, Q.

He, S.

Y. Ye and S. He, “90o polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Hu, C.

Hu, W.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
[CrossRef] [PubMed]

Huang, C.

X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, “Multi-band circular polarizer using planar spiral metamaterial structure,” Opt. Express20(14), 16050–16058 (2012).
[CrossRef] [PubMed]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
[CrossRef]

Huang, W.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
[CrossRef] [PubMed]

Jiang, T.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
[CrossRef]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Jiang, W. X.

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

Kafesaki, M.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

Kang, M.

Kley, E.-B.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Koschny, T.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

Kwon, D. H.

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Li, F.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Li, H.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Li, X.

Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett.99(3), 031111 (2011).
[CrossRef]

Li, Y.

Li, Z.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010).
[CrossRef]

Linden, S.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Liu, R.

Luo, X.

Ma, H. F.

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

Ma, X.

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Mock, J. J.

Mutlu, M.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett.36(9), 1653–1655 (2011).
[CrossRef] [PubMed]

Nie, Y.

Y. Cheng, Y. Nie, X. Wang, and R. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys., A Mater. Sci. Process.111(1), 209–215 (2013).
[CrossRef]

Oraizi, H.

D. Zari, H. Oraizi, and M. Soleimani, “Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers,” Prog. Electromagnetics Res.123, 337–354 (2012).
[CrossRef]

Ozbay, E.

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett.36(9), 1653–1655 (2011).
[CrossRef] [PubMed]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010).
[CrossRef]

Pan, A.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
[CrossRef] [PubMed]

Peng, Q.

H. X. Xu, G. M. Wang, C. X. Zhang, and Q. Peng, “Hilbert-shaped complementary single split ring resonator and low-pass filter with ultra-wide stopband, excellent selectivity and low insertion-loss,” AEU, Int. J. Electron. Commun.65(11), 901–905 (2011).
[CrossRef]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Pu, M.

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Serebryannikov, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators,” Opt. Lett.36(9), 1653–1655 (2011).
[CrossRef] [PubMed]

Shi, J. H.

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

Smith, D. R.

Soleimani, M.

D. Zari, H. Oraizi, and M. Soleimani, “Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers,” Prog. Electromagnetics Res.123, 337–354 (2012).
[CrossRef]

Soukoulis, C.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

Soukoulis, C. M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010).
[CrossRef]

Sun, W.

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Tong, L.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
[CrossRef] [PubMed]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Vandenbosch, G. A. E.

S. Yan and G. A. E. Vandenbosch, “Compact circular polarizer based on chiral twisted double split-ring resonator,” Appl. Phys. Lett.102(10), 103503 (2013).
[CrossRef]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Wan, Q.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
[CrossRef] [PubMed]

Wang, B.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

Wang, G. M.

H. X. Xu, G. M. Wang, C. X. Zhang, and Q. Peng, “Hilbert-shaped complementary single split ring resonator and low-pass filter with ultra-wide stopband, excellent selectivity and low insertion-loss,” AEU, Int. J. Electron. Commun.65(11), 901–905 (2011).
[CrossRef]

Wang, H. T.

Wang, X.

Y. Cheng, Y. Nie, X. Wang, and R. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys., A Mater. Sci. Process.111(1), 209–215 (2013).
[CrossRef]

Wang, Z.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
[CrossRef]

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Wegener, M.

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Wei, Z.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Werner, D. H.

Werner, P. L.

Wu, C.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Xu, H. X.

H. X. Xu, G. M. Wang, C. X. Zhang, and Q. Peng, “Hilbert-shaped complementary single split ring resonator and low-pass filter with ultra-wide stopband, excellent selectivity and low insertion-loss,” AEU, Int. J. Electron. Commun.65(11), 901–905 (2011).
[CrossRef]

Xu, J.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
[CrossRef] [PubMed]

Yan, S.

S. Yan and G. A. E. Vandenbosch, “Compact circular polarizer based on chiral twisted double split-ring resonator,” Appl. Phys. Lett.102(10), 103503 (2013).
[CrossRef]

Yang, Z.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
[CrossRef] [PubMed]

Ye, Y.

Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett.99(3), 031111 (2011).
[CrossRef]

Y. Ye and S. He, “90o polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

Yu, X.

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Zari, D.

D. Zari, H. Oraizi, and M. Soleimani, “Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers,” Prog. Electromagnetics Res.123, 337–354 (2012).
[CrossRef]

Zhang, C. X.

H. X. Xu, G. M. Wang, C. X. Zhang, and Q. Peng, “Hilbert-shaped complementary single split ring resonator and low-pass filter with ultra-wide stopband, excellent selectivity and low insertion-loss,” AEU, Int. J. Electron. Commun.65(11), 901–905 (2011).
[CrossRef]

Zhang, Q.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
[CrossRef] [PubMed]

Zhao, J.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
[CrossRef]

Zhao, R.

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010).
[CrossRef]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Zheludev, N. I.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Zhou, J.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

Zhou, L.

W. Sun, Q. He, J. Hao, and L. Zhou, “A transparent metamaterial to manipulate electromagnetic wave polarizations,” Opt. Lett.36(6), 927–929 (2011).
[CrossRef] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Zhu, X.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
[CrossRef] [PubMed]

Zhuang, F.

Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett.99(3), 031111 (2011).
[CrossRef]

Zhuang, X.

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
[CrossRef] [PubMed]

AEU, Int. J. Electron. Commun. (1)

H. X. Xu, G. M. Wang, C. X. Zhang, and Q. Peng, “Hilbert-shaped complementary single split ring resonator and low-pass filter with ultra-wide stopband, excellent selectivity and low insertion-loss,” AEU, Int. J. Electron. Commun.65(11), 901–905 (2011).
[CrossRef]

Appl. Phys. Lett. (7)

Y. Ye and S. He, “90o polarization rotator using a bilayered chiral metamaterial with giant optical activity,” Appl. Phys. Lett.96(20), 203501 (2010).
[CrossRef]

J. Han, H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, “An ultrathin twist-structure polarization transformer based on fish-scale metallic wires,” Appl. Phys. Lett.98(15), 151908 (2011).
[CrossRef]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett.99(22), 221907 (2011).
[CrossRef]

M. Mutlu and E. Ozbay, “A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling,” Appl. Phys. Lett.100(5), 051909 (2012).
[CrossRef]

S. Yan and G. A. E. Vandenbosch, “Compact circular polarizer based on chiral twisted double split-ring resonator,” Appl. Phys. Lett.102(10), 103503 (2013).
[CrossRef]

Y. Ye, X. Li, F. Zhuang, and S.-W. Chang, “Homogeneous circular polarizers using a bilayered chiral metamaterial,” Appl. Phys. Lett.99(3), 031111 (2011).
[CrossRef]

Z. Li, R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, “Chiral metamaterials with negative refractive index based on four “U” split ring resonators,” Appl. Phys. Lett.97(8), 081901 (2010).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Cheng, Y. Nie, X. Wang, and R. Gong, “An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator,” Appl. Phys., A Mater. Sci. Process.111(1), 209–215 (2013).
[CrossRef]

IEEE Trans. Antenn. Propag. (1)

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor,” IEEE Trans. Antenn. Propag.58(7), 2457–2459 (2010).
[CrossRef]

Nat Commun (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870 (2012).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Phys. Rev. B (3)

J. H. Shi, H. F. Ma, W. X. Jiang, and T. J. Cui, “Multiband stereometamaterial-based polarization spectral filter,” Phys. Rev. B86(3), 035103 (2012).
[CrossRef]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B85(19), 195131 (2012).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

Phys. Rev. Lett. (4)

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric Propagation of Electromagnetic Waves through a Planar Chiral Structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett.108(21), 213905 (2012).
[CrossRef] [PubMed]

Prog. Electromagnetics Res. (1)

D. Zari, H. Oraizi, and M. Soleimani, “Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers,” Prog. Electromagnetics Res.123, 337–354 (2012).
[CrossRef]

Sci Rep (1)

J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, X. Duan, and A. Pan, “Asymmetric light propagation in composition-graded semiconductor nanowires,” Sci Rep2, 820 (2012).
[CrossRef] [PubMed]

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic and (b) parameter illustration of the proposed CMM unit cell. (c) Photograph of the fabricated sample, and (d) its orientation with the incident wave. The geometrical parameters are designed as p = 6.6 mm, ax = 1.08 mm, ay = 0.78 mm, bx = 4.44 mm, by = 5.04 mm, h = 1 mm, and d = g = 0.24 mm.

Fig. 2
Fig. 2

Simulated transmission spectra of the four matrix components for (a) backward and (b) forward propagations.

Fig. 3
Fig. 3

Simulated and measured four linear transmission coefficients for the backward propagation. (a) x polarization; (b) y polarization. The top row is the magnitude while the bottom row is the phase.

Fig. 4
Fig. 4

Simulated and measured four linear-circular transmission coefficients for the backward propagation. (a) x polarization; (b) y polarization. The top row is the magnitude while the bottom row is the polarization extinct ratio.

Fig. 5
Fig. 5

Simulated and measured polarization azimuth rotation angle and ellipticity of the CMM for both (a) x polarization and (b) y polarization.

Fig. 6
Fig. 6

Axial component of the local magnetic field and surface current distribution of the Hilbert chiral structure in the case of x-polarized incident wave for the (a) right handed elliptical wave at 8.72 GHz, (b) LCP wave at 9.77GHz and (c) RCP wave at 11.84 GHz. Note that * denotes the position where the current direction changes. The top row is snapshot of the top pattern while the bottom row is that of the bottom pattern.

Fig. 7
Fig. 7

Control of the resonances and chiral characteristics through (a) the gap position and (b) element periodicity under the case of x-polarized illuminated EM wave.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( D B )=( ε 0 ε iκ/c -iκ/c μ 0 μ )( E H )
( E x t E y t )=[ t xx t xy t yx t yy ]( E x i E y i )
( E + t E - t )= 1 2 ( T +x T +y T -x T -y )( E x i E y i )= 1 2 [ t xx +i t yx t xy +i t yy t xx -i t yx t xy -i t yy ]( E x i E y i )
θ=[arg( E + )-arg( E - )]/2
η=arctan | E + |-| E - | | E + |+| E - |

Metrics