Abstract

We demonstrate an optically controlled polarizer at ~1323 nm using a ladder transition in a Rb vapor cell. The lower leg of the 5S1/2,F = 1->5P1/2,F = 1,2->6S1/2,F = 1,2 transitions is excited by a Ti:Sapphire laser locked to a saturated absorption signal, representing the control beam. A tunable fiber laser at ~1323 nm is used to excite the upper leg of the transitions, representing the signal beam. When the control beam is linearly polarized, it produces an excitation of the intermediate level with a particular orientation of the angular momentum. Under ideal conditions, this orientation is transparent to the signal beam if it has the same polarization as the control beam and is absorbed when it is polarized orthogonally. We also present numerical simulations of the system using a comprehensive model which incorporates all the relevant Zeeman sub-levels in the system, and identify means to improve the performance of the polarizer. A novel algorithm to compute the evolution of large scale quantum system enabled us to perform this computation, which may have been considered too cumbersome to carry out previously. We describe how such a polarizer may serve as a key component for high-speed Stokesmetric imaging. We also show how such a polarizer, combined with an optically controlled waveplate, recently demonstrated by us, can be used to realize a high speed optical logic gate by making use of the Quantum Zeno Effect. Finally, we describe how such a logic gate can be realized at an ultra-low power level using a tapered nanofiber embedded in a vapor cell.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
    [CrossRef]
  2. R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
    [CrossRef]
  3. A. M. C. Dawes, L. Illing, S. M. Clark, D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
    [CrossRef] [PubMed]
  4. M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
    [CrossRef] [PubMed]
  5. V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett. 35(13), 2287–2289 (2010).
    [CrossRef] [PubMed]
  6. K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
    [CrossRef] [PubMed]
  7. S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, M. S. Shahriar, “High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms,” Opt. Express 20(13), 13798–13809 (2012).
    [CrossRef] [PubMed]
  8. S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng1, and M. S. Shahriar, “Optically controlled waveplate at a telecom wavelength for all-optical switching,” Preprint, http://lapt.ece.northwestern.edu/preprints/waveplate.pdf
  9. S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
    [CrossRef] [PubMed]
  10. G. Brambilla, V. Finazzi, D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [CrossRef] [PubMed]
  11. S. M. Hendrickson, M. M. Lai, T. B. Pittman, J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
    [CrossRef] [PubMed]
  12. T. Nee, S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231–241 (1995).
    [CrossRef]
  13. S. Y. Lu, R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [CrossRef]
  14. X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
    [CrossRef]
  15. X. Liu, A. Heifetz, S. C. Tseng, M. S. Shahriar, “High-speed inline holographic Stokesmeter imaging,” Appl. Opt. 48(19), 3803–3808 (2009).
    [CrossRef] [PubMed]
  16. B. Misra, E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys. 18(4), 756–763 (1977).
    [CrossRef]
  17. W. M. Itano, D. J. Heinzen, J. J. Bollinger, D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41(5), 2295–2300 (1990).
    [CrossRef] [PubMed]
  18. Y. Huang, J. B. Altepeter, P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A 82(6), 063826 (2010).
    [CrossRef]
  19. S. Weilandy, L. Alexander, L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81(16), 3359–3362 (1998).
  20. M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
    [CrossRef] [PubMed]
  21. P. J. Curran, “Polarized visible light as an aid to vegetation classification,” Remote Sens. Environ. 12(6), 491–499 (1982).
    [CrossRef]
  22. M. J. Duggin, “Imaging polarimetry in scene element discrimination,” Proc. SPIE 3754, 108–117 (1999).
    [CrossRef]
  23. B. J. DeBoo, J. M. Sasian, R. A. Chipman, “Depolarization of diffusely reflecting man-made objects,” Appl. Opt. 44(26), 5434–5445 (2005).
    [CrossRef] [PubMed]
  24. J. F. de Boer, T. E. Milner, J. S. Nelson, “Determination of the depth-resolved Stokes parameters of light backscattered from turbid media by use of polarization-sensitive optical coherence tomography,” Opt. Lett. 24(5), 300–302 (1999).
    [CrossRef] [PubMed]
  25. D. A. Steck, “Alkali D line data,” http://steck.us/alkalidata/rubidium87numbers.pdf
  26. M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” Prepint, http://arxiv.org/abs/1309.1130
  27. D. Stokes, Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (John Wiley & Sons, 2008), Chap. 8.

2012

2011

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[CrossRef] [PubMed]

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[CrossRef]

2010

Y. Huang, J. B. Altepeter, P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A 82(6), 063826 (2010).
[CrossRef]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

V. Venkataraman, P. Londero, A. R. Bhagwat, A. D. Slepkov, A. L. Gaeta, “All-optical modulation of four-wave mixing in an Rb-filled photonic bandgap fiber,” Opt. Lett. 35(13), 2287–2289 (2010).
[CrossRef] [PubMed]

2009

X. Liu, A. Heifetz, S. C. Tseng, M. S. Shahriar, “High-speed inline holographic Stokesmeter imaging,” Appl. Opt. 48(19), 3803–3808 (2009).
[CrossRef] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

2008

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

2005

A. M. C. Dawes, L. Illing, S. M. Clark, D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

B. J. DeBoo, J. M. Sasian, R. A. Chipman, “Depolarization of diffusely reflecting man-made objects,” Appl. Opt. 44(26), 5434–5445 (2005).
[CrossRef] [PubMed]

2004

G. Brambilla, V. Finazzi, D. J. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
[CrossRef] [PubMed]

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[CrossRef]

1999

1998

S. Weilandy, L. Alexander, L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81(16), 3359–3362 (1998).

S. E. Harris, Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

1996

1995

M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

T. Nee, S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231–241 (1995).
[CrossRef]

1990

W. M. Itano, D. J. Heinzen, J. J. Bollinger, D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41(5), 2295–2300 (1990).
[CrossRef] [PubMed]

1982

P. J. Curran, “Polarized visible light as an aid to vegetation classification,” Remote Sens. Environ. 12(6), 491–499 (1982).
[CrossRef]

1977

B. Misra, E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys. 18(4), 756–763 (1977).
[CrossRef]

Alexander, L.

S. Weilandy, L. Alexander, L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81(16), 3359–3362 (1998).

Altepeter, J. B.

Y. Huang, J. B. Altepeter, P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A 82(6), 063826 (2010).
[CrossRef]

Bajcsy, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Balic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Beausoleil, R. G.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[CrossRef]

Bhagwat, A. R.

Bollinger, J. J.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41(5), 2295–2300 (1990).
[CrossRef] [PubMed]

Brambilla, G.

Chipman, R. A.

Clark, S. M.

A. M. C. Dawes, L. Illing, S. M. Clark, D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Curran, P. J.

P. J. Curran, “Polarized visible light as an aid to vegetation classification,” Remote Sens. Environ. 12(6), 491–499 (1982).
[CrossRef]

Dawes, A. M. C.

A. M. C. Dawes, L. Illing, S. M. Clark, D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

de Boer, J. F.

DeBoo, B. J.

Duggin, M. J.

M. J. Duggin, “Imaging polarimetry in scene element discrimination,” Proc. SPIE 3754, 108–117 (1999).
[CrossRef]

Finazzi, V.

Franson, J. D.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

Gaeta, A. L.

Gaeta, L.

S. Weilandy, L. Alexander, L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81(16), 3359–3362 (1998).

Gauthier, D. J.

A. M. C. Dawes, L. Illing, S. M. Clark, D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Hafezi, M.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Hall, M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

Harris, S. E.

S. E. Harris, Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

Heifetz, A.

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[CrossRef]

X. Liu, A. Heifetz, S. C. Tseng, M. S. Shahriar, “High-speed inline holographic Stokesmeter imaging,” Appl. Opt. 48(19), 3803–3808 (2009).
[CrossRef] [PubMed]

Heinzen, D. J.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41(5), 2295–2300 (1990).
[CrossRef] [PubMed]

Hendrickson, S. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

Hofferberth, S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Huang, Y.

Y. Huang, J. B. Altepeter, P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A 82(6), 063826 (2010).
[CrossRef]

Illing, L.

A. M. C. Dawes, L. Illing, S. M. Clark, D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Itano, W. M.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41(5), 2295–2300 (1990).
[CrossRef] [PubMed]

Jin, S.

M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Krishnamurthy, S.

S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, M. S. Shahriar, “High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms,” Opt. Express 20(13), 13798–13809 (2012).
[CrossRef] [PubMed]

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[CrossRef]

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[CrossRef] [PubMed]

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” Prepint, http://arxiv.org/abs/1309.1130

Kumar, P.

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[CrossRef] [PubMed]

Y. Huang, J. B. Altepeter, P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A 82(6), 063826 (2010).
[CrossRef]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

Lai, M. M.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

Li, Y.

M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Liu, X.

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[CrossRef]

X. Liu, A. Heifetz, S. C. Tseng, M. S. Shahriar, “High-speed inline holographic Stokesmeter imaging,” Appl. Opt. 48(19), 3803–3808 (2009).
[CrossRef] [PubMed]

Londero, P.

Lu, S. Y.

Lukin, M. D.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Milner, T. E.

Misra, B.

B. Misra, E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys. 18(4), 756–763 (1977).
[CrossRef]

Munro, W. J.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[CrossRef]

Nee, S. F.

T. Nee, S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231–241 (1995).
[CrossRef]

Nee, T.

T. Nee, S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231–241 (1995).
[CrossRef]

Nelson, J. S.

Pati, G. S.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” Prepint, http://arxiv.org/abs/1309.1130

Peyronel, T.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Pittman, T. B.

S. M. Hendrickson, M. M. Lai, T. B. Pittman, J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

Richardson, D. J.

Rodrigues, D. A.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[CrossRef]

Salit, K.

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[CrossRef] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

Salit, M.

Sasian, J. M.

Shahriar, M. S.

S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, M. S. Shahriar, “High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms,” Opt. Express 20(13), 13798–13809 (2012).
[CrossRef] [PubMed]

K. Salit, M. Salit, S. Krishnamurthy, Y. Wang, P. Kumar, M. S. Shahriar, “Ultra-low power, Zeno effect based optical modulation in a degenerate V-system with a tapered nano fiber in atomic vapor,” Opt. Express 19(23), 22874–22881 (2011).
[CrossRef] [PubMed]

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[CrossRef]

X. Liu, A. Heifetz, S. C. Tseng, M. S. Shahriar, “High-speed inline holographic Stokesmeter imaging,” Appl. Opt. 48(19), 3803–3808 (2009).
[CrossRef] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” Prepint, http://arxiv.org/abs/1309.1130

Slepkov, A. D.

Spillane, S. M.

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

Spiller, T. P.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[CrossRef]

Sudarshan, E. C. G.

B. Misra, E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys. 18(4), 756–763 (1977).
[CrossRef]

Tripathi, R.

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[CrossRef]

Tseng, S.

S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, M. S. Shahriar, “High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms,” Opt. Express 20(13), 13798–13809 (2012).
[CrossRef] [PubMed]

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” Prepint, http://arxiv.org/abs/1309.1130

Tseng, S. C.

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[CrossRef]

X. Liu, A. Heifetz, S. C. Tseng, M. S. Shahriar, “High-speed inline holographic Stokesmeter imaging,” Appl. Opt. 48(19), 3803–3808 (2009).
[CrossRef] [PubMed]

Tu, Y.

S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng, M. S. Shahriar, “High efficiency optical modulation at a telecom wavelength using the quantum Zeno effect in a ladder transition in Rb atoms,” Opt. Express 20(13), 13798–13809 (2012).
[CrossRef] [PubMed]

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” Prepint, http://arxiv.org/abs/1309.1130

Venkataraman, V.

Vuletic, V.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Wang, Y.

Weilandy, S.

S. Weilandy, L. Alexander, L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81(16), 3359–3362 (1998).

Wineland, D. J.

W. M. Itano, D. J. Heinzen, J. J. Bollinger, D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41(5), 2295–2300 (1990).
[CrossRef] [PubMed]

Xiao, M.

M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

Yamamoto, Y.

S. E. Harris, Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

Zibrov, A. S.

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

Appl. Opt.

J. Math. Phys.

B. Misra, E. C. G. Sudarshan, “The Zeno’s paradox in quantum theory,” J. Math. Phys. 18(4), 756–763 (1977).
[CrossRef]

J. Mod. Opt.

R. G. Beausoleil, W. J. Munro, D. A. Rodrigues, T. P. Spiller, “Applications of electromagnetically induced transparency to quantum information processing,” J. Mod. Opt. 51(16-18), 2441–2448 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

X. Liu, S. C. Tseng, R. Tripathi, A. Heifetz, S. Krishnamurthy, M. S. Shahriar, “White light interferometric detection of unpolarized light for complete Stokesmetric optical coherence tomography,” Opt. Commun. 284(14), 3497–3503 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

W. M. Itano, D. J. Heinzen, J. J. Bollinger, D. J. Wineland, “Quantum Zeno Effect,” Phys. Rev. A 41(5), 2295–2300 (1990).
[CrossRef] [PubMed]

Y. Huang, J. B. Altepeter, P. Kumar, “Interaction-free all-optical switching via the quantum Zeno effect,” Phys. Rev. A 82(6), 063826 (2010).
[CrossRef]

Phys. Rev. Lett.

S. Weilandy, L. Alexander, L. Gaeta, “Coherent control of the polarization of an optical field,” Phys. Rev. Lett. 81(16), 3359–3362 (1998).

M. Xiao, Y. Li, S. Jin, J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency of Rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[CrossRef] [PubMed]

M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, M. D. Lukin, “Efficient All-optical switching using slow light within a hollow Fiber,” Phys. Rev. Lett. 102(20), 203902 (2009).
[CrossRef] [PubMed]

S. M. Spillane, G. S. Pati, K. Salit, M. Hall, P. Kumar, R. G. Beausoleil, M. S. Shahriar, “Observation of nonlinear optical interactions of ultralow levels of light in a tapered optical nanofiber embedded in a hot Rubidium vapor,” Phys. Rev. Lett. 100(23), 233602 (2008).
[CrossRef] [PubMed]

S. M. Hendrickson, M. M. Lai, T. B. Pittman, J. D. Franson, “Observation of two-photon absorption at low power levels using tapered optical fibers in Rubidium vapor,” Phys. Rev. Lett. 105(17), 173602 (2010).
[CrossRef] [PubMed]

S. E. Harris, Y. Yamamoto, “Photon switching by quantum interference,” Phys. Rev. Lett. 81(17), 3611–3614 (1998).
[CrossRef]

Proc. SPIE

M. J. Duggin, “Imaging polarimetry in scene element discrimination,” Proc. SPIE 3754, 108–117 (1999).
[CrossRef]

T. Nee, S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231–241 (1995).
[CrossRef]

Remote Sens. Environ.

P. J. Curran, “Polarized visible light as an aid to vegetation classification,” Remote Sens. Environ. 12(6), 491–499 (1982).
[CrossRef]

Science

A. M. C. Dawes, L. Illing, S. M. Clark, D. J. Gauthier, “All-optical switching in Rubidium vapor,” Science 308(5722), 672–674 (2005).
[CrossRef] [PubMed]

Other

S. Krishnamurthy, Y. Wang, Y. Tu, S. Tseng1, and M. S. Shahriar, “Optically controlled waveplate at a telecom wavelength for all-optical switching,” Preprint, http://lapt.ece.northwestern.edu/preprints/waveplate.pdf

D. A. Steck, “Alkali D line data,” http://steck.us/alkalidata/rubidium87numbers.pdf

M. S. Shahriar, Y. Wang, S. Krishnamurthy, Y. Tu, G. S. Pati, S. Tseng, “Evolution of an N-level system via automated vectorization of the Liouville equations and application to optically controlled polarization rotation,” Prepint, http://arxiv.org/abs/1309.1130

D. Stokes, Principles and Practice of Variable Pressure/Environmental Scanning Electron Microscopy (John Wiley & Sons, 2008), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

[A] Quantum Zeno Efffect in an atomic V-system. [B] Evolution of the quantum state of a photon via passage through a series of waveplates. [C] In the presence of interleaved polarizers acting as measurement devices, the evolution to the horizontally polarized state is inhibited.

Fig. 2
Fig. 2

Schematic illustration of an optically controlled polarizer using a ladder transition in 87Rb atoms.

Fig. 3
Fig. 3

Schematic illustration of an optical logic gate using a ladder-transition based polarizer and optical activity in Rb atoms.

Fig. 4
Fig. 4

Experimental setup used to realize the ladder-sysetm polarizer.

Fig. 5
Fig. 5

Model used for numerical computation. See text for more details.

Fig. 6
Fig. 6

Polarizer effect for co-propagating geometry for pump power ~5mW a) Experiment b) Theory.

Fig. 7
Fig. 7

Polarizer effect for counter-propagating geometry for 2 different powers of the pump. a.1) Experiment a.2) Theory and b.1) Experiment b.2) Theory.

Fig. 8
Fig. 8

Typical absorption profile for co- and counter-propagating geometries. Here, Ωp = 5.

Fig. 9
Fig. 9

Decay rates and branching ratios between various levels in our model.

Fig. 10
Fig. 10

Effect of closed-loop architecture resulting from multiple excitation pathways between two levels.

Fig. 11
Fig. 11

Modified model after addition of optical pumping beams and buffer gas.

Fig. 12
Fig. 12

Numerical simulation of polarizer effect in the presence of two optical pumping beams and using a buffer gas loaded cell.

Fig. 13
Fig. 13

Dressed state picture of 3-level cascade system for different velocity groups

Fig. 14
Fig. 14

Contribution to absorption from 3 sample velocity groups (-vzero,0, + vzero) for a 3-level cascade system when the control beam and signal beam are a) Co-propagating b) Counter-propagating

Fig. 15
Fig. 15

Contribution to absorption of F” = 1 line from 3 sample velocity groups (-u/10,0, + u/10 where u is the mean velocity of Rb atoms) for our original cascade system (see Fig. 5) when the control beam and signal beam are a) Co-propagating b) Counter-propagating

Tables (1)

Tables Icon

Table 1 Truth table for QZE based logic gate

Metrics