Abstract

Guided-mode resonances enhanced excitation and extraction of two-photon photoluminescence (TPP) is demonstrated with a one-dimensional resonant waveguide grating (RWG) with a layer of fluorescent polymer (polyfluorene, PFO) on top. In this work, we design and fabricate a PFO RWG, in which two dispersive resonant modes in TE-polarization were measured. By aligning the red-shifting resonant mode with excitation wavelength in the infrared range, and the blue-shifting resonant mode with TPP spectrum in the visible range, the intensity of TPP can be enhanced up to 300-fold compared with that from a flat film with the same thickness coated on a glass slide. Such high enhancement results from firstly the strong evanescent local field in the waveguide layer due to the resonance between the incident light and the waveguide structure according to the results of rigorous coupled-wave analysis calculation, and secondly the enhanced extraction of the emission light which also resonates with the waveguide structure.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bar, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem.38 (1-3), 88–95 (1997).
    [CrossRef]
  3. G. L. Duveneck, M. A. Bopp, M. Ehrat, L. P. Balet, M. Haiml, U. Keller, G. Marowsky, and S. Soria, “Two-photon fluorescence excitation of macroscopic areas on planar waveguides,” Biosens. Bioelectron.18(5-6), 503–510 (2003).
    [CrossRef] [PubMed]
  4. P. S. Dittrich and P. Schwille, “Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation,” Appl. Phys. B73(8), 829–837 (2001).
    [CrossRef]
  5. S. Soria, A. K. N. Thayil, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
    [CrossRef]
  6. S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt.32(14), 2606–2613 (1993).
    [CrossRef] [PubMed]
  7. W. Budach, D. Neuschäfer, C. Wanke, and S.-D. Chibout, “Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling,” Anal. Chem.75(11), 2571–2577 (2003).
    [CrossRef] [PubMed]
  8. N. Ganesh and B. T. Cunningham, “Photonic-crystal near ultraviolet reflectance filters fabricated by nanorelica molding,” Appl. Phys. Lett.88(7), 071110 (2006).
    [CrossRef]
  9. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
    [CrossRef] [PubMed]
  10. T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Two photon fluorescence sensors based on resonant grating waveguide structures,” Sens. Actuators B Chem.107(1), 121–125 (2005).
    [CrossRef]
  11. A. Muriano, K. N. A. Thayil, J.-P. Salvador, P. Loza-Alvarez, S. Soria, R. Galve, and M.-P. Marco, “Two-photon fluorescent immunosensor for androgenic hormones using resonant grating waveguide structures,” Sens. Actuators B Chem.174, 394–401 (2012).
    [CrossRef]
  12. P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances to improve fluorescence enhancement,” Appl. Phys. Lett.95(2), 021111 (2009).
    [CrossRef] [PubMed]
  13. M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett.91(11), 111109 (2007).
    [CrossRef]
  14. A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express18(12), 12298–12303 (2010).
    [CrossRef] [PubMed]
  15. A. Pokhriyal, M. Lu, V. Chaudhery, C.-S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express18(24), 24793–24808 (2010).
    [CrossRef] [PubMed]
  16. N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express13(14), 5331–5337 (2005).
    [CrossRef] [PubMed]
  17. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express13(23), 9605–9611 (2005).
    [CrossRef] [PubMed]
  18. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am.71(7), 811–818 (1981).
    [CrossRef]
  19. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of metallic surface-relief gratings,” J. Opt. Soc. Am. A3(11), 1780–1787 (1986).
    [CrossRef]
  20. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: enhanced transmittance matrix approach,” J. Opt. Soc. Am. A12(5), 1077–1086 (1995).
    [CrossRef]
  21. D. L. Brundrett, E. N. Glytsis, and T. K. Gaylord, “Homogeneous layer models for high-spatial-frequency dielectric surface-relief gratings: conical diffraction and antireflection designs,” Appl. Opt.33(13), 2695–2706 (1994).
    [CrossRef] [PubMed]

2012 (1)

A. Muriano, K. N. A. Thayil, J.-P. Salvador, P. Loza-Alvarez, S. Soria, R. Galve, and M.-P. Marco, “Two-photon fluorescent immunosensor for androgenic hormones using resonant grating waveguide structures,” Sens. Actuators B Chem.174, 394–401 (2012).
[CrossRef]

2010 (2)

2009 (1)

P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances to improve fluorescence enhancement,” Appl. Phys. Lett.95(2), 021111 (2009).
[CrossRef] [PubMed]

2007 (2)

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett.91(11), 111109 (2007).
[CrossRef]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

2006 (1)

N. Ganesh and B. T. Cunningham, “Photonic-crystal near ultraviolet reflectance filters fabricated by nanorelica molding,” Appl. Phys. Lett.88(7), 071110 (2006).
[CrossRef]

2005 (4)

T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Two photon fluorescence sensors based on resonant grating waveguide structures,” Sens. Actuators B Chem.107(1), 121–125 (2005).
[CrossRef]

S. Soria, A. K. N. Thayil, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

N. D. Lai, W. P. Liang, J. H. Lin, and C. C. Hsu, “Rapid fabrication of large-area periodic structures containing well-defined defects by combining holography and mask techniques,” Opt. Express13(14), 5331–5337 (2005).
[CrossRef] [PubMed]

N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express13(23), 9605–9611 (2005).
[CrossRef] [PubMed]

2003 (2)

G. L. Duveneck, M. A. Bopp, M. Ehrat, L. P. Balet, M. Haiml, U. Keller, G. Marowsky, and S. Soria, “Two-photon fluorescence excitation of macroscopic areas on planar waveguides,” Biosens. Bioelectron.18(5-6), 503–510 (2003).
[CrossRef] [PubMed]

W. Budach, D. Neuschäfer, C. Wanke, and S.-D. Chibout, “Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling,” Anal. Chem.75(11), 2571–2577 (2003).
[CrossRef] [PubMed]

2001 (1)

P. S. Dittrich and P. Schwille, “Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation,” Appl. Phys. B73(8), 829–837 (2001).
[CrossRef]

1997 (1)

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bar, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem.38 (1-3), 88–95 (1997).
[CrossRef]

1995 (1)

1994 (1)

1993 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1986 (1)

1981 (1)

Badenes, G.

S. Soria, A. K. N. Thayil, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

Bader, M. A.

S. Soria, A. K. N. Thayil, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

Balet, L. P.

G. L. Duveneck, M. A. Bopp, M. Ehrat, L. P. Balet, M. Haiml, U. Keller, G. Marowsky, and S. Soria, “Two-photon fluorescence excitation of macroscopic areas on planar waveguides,” Biosens. Bioelectron.18(5-6), 503–510 (2003).
[CrossRef] [PubMed]

Bar, E.

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bar, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem.38 (1-3), 88–95 (1997).
[CrossRef]

Bopp, M. A.

G. L. Duveneck, M. A. Bopp, M. Ehrat, L. P. Balet, M. Haiml, U. Keller, G. Marowsky, and S. Soria, “Two-photon fluorescence excitation of macroscopic areas on planar waveguides,” Biosens. Bioelectron.18(5-6), 503–510 (2003).
[CrossRef] [PubMed]

Brundrett, D. L.

Budach, W.

W. Budach, D. Neuschäfer, C. Wanke, and S.-D. Chibout, “Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling,” Anal. Chem.75(11), 2571–2577 (2003).
[CrossRef] [PubMed]

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bar, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem.38 (1-3), 88–95 (1997).
[CrossRef]

Chaudhery, V.

Chibout, S.-D.

W. Budach, D. Neuschäfer, C. Wanke, and S.-D. Chibout, “Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling,” Anal. Chem.75(11), 2571–2577 (2003).
[CrossRef] [PubMed]

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Cunningham, B. T.

A. Pokhriyal, M. Lu, V. Chaudhery, C.-S. Huang, S. Schulz, and B. T. Cunningham, “Photonic crystal enhanced fluorescence using a quartz substrate to reduce limits of detection,” Opt. Express18(24), 24793–24808 (2010).
[CrossRef] [PubMed]

P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances to improve fluorescence enhancement,” Appl. Phys. Lett.95(2), 021111 (2009).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near ultraviolet reflectance filters fabricated by nanorelica molding,” Appl. Phys. Lett.88(7), 071110 (2006).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Dittrich, P. S.

P. S. Dittrich and P. Schwille, “Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation,” Appl. Phys. B73(8), 829–837 (2001).
[CrossRef]

Duveneck, G. L.

G. L. Duveneck, M. A. Bopp, M. Ehrat, L. P. Balet, M. Haiml, U. Keller, G. Marowsky, and S. Soria, “Two-photon fluorescence excitation of macroscopic areas on planar waveguides,” Biosens. Bioelectron.18(5-6), 503–510 (2003).
[CrossRef] [PubMed]

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bar, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem.38 (1-3), 88–95 (1997).
[CrossRef]

Ehrat, M.

G. L. Duveneck, M. A. Bopp, M. Ehrat, L. P. Balet, M. Haiml, U. Keller, G. Marowsky, and S. Soria, “Two-photon fluorescence excitation of macroscopic areas on planar waveguides,” Biosens. Bioelectron.18(5-6), 503–510 (2003).
[CrossRef] [PubMed]

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bar, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem.38 (1-3), 88–95 (1997).
[CrossRef]

Friesem, A. A.

T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Two photon fluorescence sensors based on resonant grating waveguide structures,” Sens. Actuators B Chem.107(1), 121–125 (2005).
[CrossRef]

Galve, R.

A. Muriano, K. N. A. Thayil, J.-P. Salvador, P. Loza-Alvarez, S. Soria, R. Galve, and M.-P. Marco, “Two-photon fluorescent immunosensor for androgenic hormones using resonant grating waveguide structures,” Sens. Actuators B Chem.174, 394–401 (2012).
[CrossRef]

Ganesh, N.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near ultraviolet reflectance filters fabricated by nanorelica molding,” Appl. Phys. Lett.88(7), 071110 (2006).
[CrossRef]

Gaylord, T. K.

Genty, G.

Glytsis, E. N.

Grann, E. B.

Haiml, M.

G. L. Duveneck, M. A. Bopp, M. Ehrat, L. P. Balet, M. Haiml, U. Keller, G. Marowsky, and S. Soria, “Two-photon fluorescence excitation of macroscopic areas on planar waveguides,” Biosens. Bioelectron.18(5-6), 503–510 (2003).
[CrossRef] [PubMed]

Hsu, C. C.

Huang, C.-S.

Karvinen, P.

A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express18(12), 12298–12303 (2010).
[CrossRef] [PubMed]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett.91(11), 111109 (2007).
[CrossRef]

Katchalski, T.

T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Two photon fluorescence sensors based on resonant grating waveguide structures,” Sens. Actuators B Chem.107(1), 121–125 (2005).
[CrossRef]

Kauranen, M.

A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express18(12), 12298–12303 (2010).
[CrossRef] [PubMed]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett.91(11), 111109 (2007).
[CrossRef]

Keller, U.

G. L. Duveneck, M. A. Bopp, M. Ehrat, L. P. Balet, M. Haiml, U. Keller, G. Marowsky, and S. Soria, “Two-photon fluorescence excitation of macroscopic areas on planar waveguides,” Biosens. Bioelectron.18(5-6), 503–510 (2003).
[CrossRef] [PubMed]

Kuittinen, M.

A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express18(12), 12298–12303 (2010).
[CrossRef] [PubMed]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett.91(11), 111109 (2007).
[CrossRef]

Lai, N. D.

Leivo, S.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett.91(11), 111109 (2007).
[CrossRef]

Liang, W. P.

Lin, C. H.

Lin, J. H.

Loza-Alvarez, P.

A. Muriano, K. N. A. Thayil, J.-P. Salvador, P. Loza-Alvarez, S. Soria, R. Galve, and M.-P. Marco, “Two-photon fluorescent immunosensor for androgenic hormones using resonant grating waveguide structures,” Sens. Actuators B Chem.174, 394–401 (2012).
[CrossRef]

Lu, M.

Magnusson, R.

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Marco, M.-P.

A. Muriano, K. N. A. Thayil, J.-P. Salvador, P. Loza-Alvarez, S. Soria, R. Galve, and M.-P. Marco, “Two-photon fluorescent immunosensor for androgenic hormones using resonant grating waveguide structures,” Sens. Actuators B Chem.174, 394–401 (2012).
[CrossRef]

Marowsky, G.

S. Soria, A. K. N. Thayil, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Two photon fluorescence sensors based on resonant grating waveguide structures,” Sens. Actuators B Chem.107(1), 121–125 (2005).
[CrossRef]

G. L. Duveneck, M. A. Bopp, M. Ehrat, L. P. Balet, M. Haiml, U. Keller, G. Marowsky, and S. Soria, “Two-photon fluorescence excitation of macroscopic areas on planar waveguides,” Biosens. Bioelectron.18(5-6), 503–510 (2003).
[CrossRef] [PubMed]

Mathias, P. C.

P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances to improve fluorescence enhancement,” Appl. Phys. Lett.95(2), 021111 (2009).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Moharam, M. G.

Muriano, A.

A. Muriano, K. N. A. Thayil, J.-P. Salvador, P. Loza-Alvarez, S. Soria, R. Galve, and M.-P. Marco, “Two-photon fluorescent immunosensor for androgenic hormones using resonant grating waveguide structures,” Sens. Actuators B Chem.174, 394–401 (2012).
[CrossRef]

Neuschäfer, D.

W. Budach, D. Neuschäfer, C. Wanke, and S.-D. Chibout, “Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling,” Anal. Chem.75(11), 2571–2577 (2003).
[CrossRef] [PubMed]

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bar, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem.38 (1-3), 88–95 (1997).
[CrossRef]

Pawlak, M.

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bar, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem.38 (1-3), 88–95 (1997).
[CrossRef]

Pieles, U.

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bar, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem.38 (1-3), 88–95 (1997).
[CrossRef]

Pokhriyal, A.

Pommet, D. A.

Saari, A.

Salvador, J.-P.

A. Muriano, K. N. A. Thayil, J.-P. Salvador, P. Loza-Alvarez, S. Soria, R. Galve, and M.-P. Marco, “Two-photon fluorescent immunosensor for androgenic hormones using resonant grating waveguide structures,” Sens. Actuators B Chem.174, 394–401 (2012).
[CrossRef]

Schulz, S.

Schwille, P.

P. S. Dittrich and P. Schwille, “Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation,” Appl. Phys. B73(8), 829–837 (2001).
[CrossRef]

Selle, A.

S. Soria, A. K. N. Thayil, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

Siltanen, M.

A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express18(12), 12298–12303 (2010).
[CrossRef] [PubMed]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett.91(11), 111109 (2007).
[CrossRef]

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Soares, J. A. N. T.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Soria, S.

A. Muriano, K. N. A. Thayil, J.-P. Salvador, P. Loza-Alvarez, S. Soria, R. Galve, and M.-P. Marco, “Two-photon fluorescent immunosensor for androgenic hormones using resonant grating waveguide structures,” Sens. Actuators B Chem.174, 394–401 (2012).
[CrossRef]

S. Soria, A. K. N. Thayil, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Two photon fluorescence sensors based on resonant grating waveguide structures,” Sens. Actuators B Chem.107(1), 121–125 (2005).
[CrossRef]

G. L. Duveneck, M. A. Bopp, M. Ehrat, L. P. Balet, M. Haiml, U. Keller, G. Marowsky, and S. Soria, “Two-photon fluorescence excitation of macroscopic areas on planar waveguides,” Biosens. Bioelectron.18(5-6), 503–510 (2003).
[CrossRef] [PubMed]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Teitelbaum, E.

T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Two photon fluorescence sensors based on resonant grating waveguide structures,” Sens. Actuators B Chem.107(1), 121–125 (2005).
[CrossRef]

Thayil, A. K. N.

S. Soria, A. K. N. Thayil, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

Thayil, K. N. A.

A. Muriano, K. N. A. Thayil, J.-P. Salvador, P. Loza-Alvarez, S. Soria, R. Galve, and M.-P. Marco, “Two-photon fluorescent immunosensor for androgenic hormones using resonant grating waveguide structures,” Sens. Actuators B Chem.174, 394–401 (2012).
[CrossRef]

Vahimaa, P.

A. Saari, G. Genty, M. Siltanen, P. Karvinen, P. Vahimaa, M. Kuittinen, and M. Kauranen, “Giant enhancement of second-harmonic generation in multiple diffraction orders from sub-wavelength resonant waveguide grating,” Opt. Express18(12), 12298–12303 (2010).
[CrossRef] [PubMed]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett.91(11), 111109 (2007).
[CrossRef]

Voima, P.

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett.91(11), 111109 (2007).
[CrossRef]

Wang, S. S.

Wanke, C.

W. Budach, D. Neuschäfer, C. Wanke, and S.-D. Chibout, “Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling,” Anal. Chem.75(11), 2571–2577 (2003).
[CrossRef] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wu, H.-Y.

P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances to improve fluorescence enhancement,” Appl. Phys. Lett.95(2), 021111 (2009).
[CrossRef] [PubMed]

Zhang, W.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Anal. Chem. (1)

W. Budach, D. Neuschäfer, C. Wanke, and S.-D. Chibout, “Generation of transducers for fluorescence-based microarrays with enhanced sensitivity and their application for gene expression profiling,” Anal. Chem.75(11), 2571–2577 (2003).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

P. S. Dittrich and P. Schwille, “Photobleaching and stabilization of fluorophores used for single-molecule analysis with one- and two-photon excitation,” Appl. Phys. B73(8), 829–837 (2001).
[CrossRef]

Appl. Phys. Lett. (4)

S. Soria, A. K. N. Thayil, G. Badenes, M. A. Bader, A. Selle, and G. Marowsky, “Resonant double grating waveguide structures as enhancement platforms for two-photon fluorescence excitation,” Appl. Phys. Lett.87(8), 081109 (2005).
[CrossRef]

N. Ganesh and B. T. Cunningham, “Photonic-crystal near ultraviolet reflectance filters fabricated by nanorelica molding,” Appl. Phys. Lett.88(7), 071110 (2006).
[CrossRef]

P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, “Employing two distinct photonic crystal resonances to improve fluorescence enhancement,” Appl. Phys. Lett.95(2), 021111 (2009).
[CrossRef] [PubMed]

M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett.91(11), 111109 (2007).
[CrossRef]

Biosens. Bioelectron. (1)

G. L. Duveneck, M. A. Bopp, M. Ehrat, L. P. Balet, M. Haiml, U. Keller, G. Marowsky, and S. Soria, “Two-photon fluorescence excitation of macroscopic areas on planar waveguides,” Biosens. Bioelectron.18(5-6), 503–510 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (2)

Nat. Nanotechnol. (1)

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Opt. Express (4)

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Sens. Actuators B Chem. (3)

G. L. Duveneck, M. Pawlak, D. Neuschäfer, E. Bar, W. Budach, U. Pieles, and M. Ehrat, “Novel bioaffinity sensors for trace analysis based on luminescence excitation by planar waveguides,” Sens. Actuators B Chem.38 (1-3), 88–95 (1997).
[CrossRef]

T. Katchalski, S. Soria, E. Teitelbaum, A. A. Friesem, and G. Marowsky, “Two photon fluorescence sensors based on resonant grating waveguide structures,” Sens. Actuators B Chem.107(1), 121–125 (2005).
[CrossRef]

A. Muriano, K. N. A. Thayil, J.-P. Salvador, P. Loza-Alvarez, S. Soria, R. Galve, and M.-P. Marco, “Two-photon fluorescent immunosensor for androgenic hormones using resonant grating waveguide structures,” Sens. Actuators B Chem.174, 394–401 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of a 1D PFO RWG. (b) SEM image of PFO RWG. From top to bottom are: PFO polymer layer, 1D sinusoidal-wave waveguide-grating layer (TiO2), SU8 polymer layer and glass substrate. The lattice constant (Λ) and the groove depth (d) of grating are 390 nm and 90 nm ± 5 nm, respectively. (c) Absorption and TPP spectra of PFO thin film.

Fig. 2
Fig. 2

TPP measurement setup. λ/2: half-wave plate, P: polarizer, L1-L3: lenses, θi: incident angle of excitation beam, θc: collected angle of TPP signal, and Filters: three IR filters and one 550 nm interference filter.

Fig. 3
Fig. 3

(a) Calculated and measured transmission spectra of the PFO RWG for TE mode at normal incident. (b) Calculated transmittance in TE mode of the PFO RWG as a function of incident angle and wavelength (color map) and measured angular-resolved GMR modes (open circle) of the fabricated PFO RWG for TE mode. The horizontal and vertical dashed lines highlight one GMR mode at 810 nm wavelength with incident angle θi~32°, and another GMR mode at 550 nm, i.e. the emission peak of TPP signal of PFO polymer, with the collected angle θc sets at 15°. (c) Calculated electric-field intensities (E2) in the PFO RWG for the resonance modes of λ = 813 nm at θi = 30°. The parameters used in the calculation are Λ = 385 nm, d = 85 nm, TTiO2 = 55 nm, TPFO = 280 nm, and TSU8 = 950 nm. The refractive index of glass is fixed at 1.48 for all wavelengths, but the dispersion properties of TiO2, PFO and SU8 are used in calculations.

Fig. 4
Fig. 4

(a) TPP intensity at 550 nm versus the two-photon excitation wavelength with an excitation beam incident angle set at 32°. (b) Normalized TPP intensity versus two-photon excitation wavelength under different incident angles: θi = 30°, 32°, 34°, and 36°. For these measurements, the collected angle (θc) was fixed at 0ο.

Fig. 5
Fig. 5

TPP intensity at 550 nm versus the collected angle under resonant two-photon excitation at λ = 810 nm with an excitation beam incident angle (θi) set at 32°. Inset shows the comparison of TPP intensity versus the two-photon excitation wavelength at two collected angles: θc = 0° and 14°.

Metrics