Abstract

A hybrid plasmonic structure comprising a silicon slot waveguide separated from an inverse metal ridge by a thin low-index insulator gap is proposed and investigated. Owing to its symmetric hybrid configuration containing closely spaced silicon rails near the metal ridge, the fundamental symmetric hybrid slot mode supported by the structure is demonstrated to be capable of simultaneously achieving low propagation loss and subwavelength field confinement within a wide range of physical dimensions at the telecom wavelength. Comprehensive numerical investigations regarding the effects of key geometric parameters on the guided modes' properties, including the slot sizes, the shape and dimension of the silicon rails, the width of the gap region as well as the height of metallic nanoridge, have been conducted. It is revealed that the propagation distance of the symmetric mode can be more than several millimeters (even up to the centimeter range), while simultaneously achieving a subwavelength mode size and tight field confinement inside the gap region. In addition to the studies on the modal characteristics, excitation strategies of the guided hybrid modes and the conversion between dielectric slot and hybrid slot modes are also numerically demonstrated. The studied platform potentially combines the advantages of silicon slot and plasmonic structures, which might lay important groundwork for future hybrid integrated photonic components and circuits.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lipson, “Guiding, modulating, and emitting light on silicon - Challenges and opportunities,” J. Lightwave Technol.23(12), 4222–4238 (2005).
    [CrossRef]
  2. V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004).
    [CrossRef] [PubMed]
  3. Q. F. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett.29(14), 1626–1628 (2004).
    [CrossRef] [PubMed]
  4. Y. Yue, L. Zhang, J. Y. Yang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett.35(9), 1364–1366 (2010).
    [CrossRef] [PubMed]
  5. R. Ding, T. Baehr-Jones, W. J. Kim, X. G. Xiong, R. Bojko, J. M. Fedeli, M. Fournier, and M. Hochberg, “Low-loss strip-loaded slot waveguides in Silicon-on-Insulator,” Opt. Express18(24), 25061–25067 (2010).
    [CrossRef] [PubMed]
  6. C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett.32(21), 3080–3082 (2007).
    [CrossRef] [PubMed]
  7. F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express15(8), 4977–4993 (2007).
    [CrossRef] [PubMed]
  8. C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
    [CrossRef]
  9. A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
    [CrossRef] [PubMed]
  10. Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys.76(1), 016402 (2013).
    [CrossRef] [PubMed]
  11. A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express18(11), 11791–11799 (2010).
    [CrossRef] [PubMed]
  12. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett.31(14), 2133–2135 (2006).
    [CrossRef] [PubMed]
  13. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
    [CrossRef]
  14. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A21(12), 2442–2446 (2004).
    [CrossRef] [PubMed]
  15. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  16. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
    [CrossRef] [PubMed]
  17. J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Opt. Lett.36(12), 2312–2314 (2011).
    [CrossRef] [PubMed]
  18. D. X. Dai, Y. C. Shi, S. L. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011).
    [CrossRef] [PubMed]
  19. L. F. Gao, L. X. Tang, F. F. Hu, R. M. Guo, X. J. Wang, and Z. P. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express20(10), 11487–11495 (2012).
    [CrossRef] [PubMed]
  20. X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
    [CrossRef] [PubMed]
  21. M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18(11), 11728–11736 (2010).
    [CrossRef] [PubMed]
  22. H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
    [CrossRef]
  23. X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides,” Opt. Express18(18), 18945–18959 (2010).
    [CrossRef] [PubMed]
  24. Y. Song, J. Wang, Q. A. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18(12), 13173–13179 (2010).
    [CrossRef] [PubMed]
  25. Q. Li, Y. Song, G. Zhou, Y. K. Su, and M. Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Opt. Lett.35(19), 3153–3155 (2010).
    [CrossRef] [PubMed]
  26. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011).
    [CrossRef]
  27. X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt.50(20), 3428–3434 (2011).
    [CrossRef] [PubMed]
  28. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett.37(1), 55–57 (2012).
    [CrossRef] [PubMed]
  29. V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012).
    [CrossRef]
  30. F. Lou, Z. C. Wang, D. X. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
    [CrossRef]
  31. X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011).
    [CrossRef] [PubMed]
  32. C. G. Huang and L. Zhu, “Enhanced optical forces in 2D hybrid and plasmonic waveguides,” Opt. Lett.35(10), 1563–1565 (2010).
    [CrossRef] [PubMed]
  33. H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express21(10), 11839–11851 (2013).
    [CrossRef] [PubMed]
  34. F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett.36(17), 3371–3373 (2011).
    [CrossRef] [PubMed]
  35. X. L. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express19(14), 12865–12872 (2011).
    [CrossRef] [PubMed]
  36. Y. Luo, M. Chamanzar, and A. Adibi, “Compact on-chip plasmonic light concentration based on a hybrid photonic-plasmonic structure,” Opt. Express21(2), 1898–1910 (2013).
    [CrossRef] [PubMed]
  37. M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett.21(6), 362–364 (2009).
    [CrossRef]
  38. Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
    [CrossRef]
  39. C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron.18(6), 1661–1668 (2012).
    [CrossRef]
  40. Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide,” Opt. Express17(22), 20327–20332 (2009).
    [CrossRef] [PubMed]
  41. H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys.108(6), 063108 (2010).
    [CrossRef]
  42. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low Index medium,” CLEO/QELS, paper JThD112 (2007).
  43. D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009).
    [CrossRef] [PubMed]
  44. I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97(14), 141106 (2010).
    [CrossRef]
  45. P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express18(20), 21013–21023 (2010).
    [CrossRef] [PubMed]
  46. D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt.49(36), 6868–6871 (2010).
    [CrossRef] [PubMed]
  47. D. X. Dai and S. L. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express18(17), 17958–17966 (2010).
    [CrossRef] [PubMed]
  48. Y. S. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011).
    [CrossRef] [PubMed]
  49. Y. Kou, F. Ye, and X. Chen, “Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,” Opt. Express19(12), 11746–11752 (2011).
    [CrossRef] [PubMed]
  50. S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
    [CrossRef] [PubMed]
  51. J. T. Kim, “CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration,” IEEE Photon. Technol. Lett.23(4), 206–208 (2011).
    [CrossRef]
  52. J. T. Kim, “CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits,” IEEE Photon. Technol. Lett.23(20), 1481–1483 (2011).
    [CrossRef]
  53. M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express19(9), 8379–8393 (2011).
    [CrossRef] [PubMed]
  54. X. L. Zuo and Z. J. Sun, “Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate,” Opt. Lett.36(15), 2946–2948 (2011).
    [CrossRef] [PubMed]
  55. R. Hao, E. P. Li, and X. C. Wei, “Two-dimensional light confinement in cross-index-modulation plasmonic waveguides,” Opt. Lett.37(14), 2934–2936 (2012).
    [CrossRef] [PubMed]
  56. Q. Huang, F. Bao, and S. He, “Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement,” Opt. Express21(2), 1430–1439 (2013).
    [CrossRef] [PubMed]
  57. V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
    [CrossRef]
  58. I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18(1), 348–363 (2010).
    [CrossRef] [PubMed]
  59. Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
    [CrossRef] [PubMed]
  60. B. F. Yun, G. H. Hu, Y. Ji, and Y. P. Cui, “Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity,” J. Opt. Soc. Am. B26(10), 1924–1929 (2009).
    [CrossRef]
  61. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
    [CrossRef]
  62. T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express18(22), 23009–23015 (2010).
    [CrossRef] [PubMed]
  63. L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol.30(1), 163–168 (2012).
    [CrossRef]
  64. G. X. Cai, M. Luo, Z. P. Cai, H. Y. Xu, and Q. H. Liu, “A slot-based surface plasmon-polariton waveguide with long-range propagation and superconfinement,” IEEE Photon. J.4(3), 844–855 (2012).
    [CrossRef]
  65. Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
    [CrossRef]
  66. L. Chen, T. Zhang, X. Li, and W. P. Huang, “Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film,” Opt. Express20(18), 20535–20544 (2012).
    [CrossRef] [PubMed]
  67. T. Mahmoud, M. Noghani, and S. H. Vadjed, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics8(2), 1155–1168 (2013).
    [CrossRef]
  68. L. Chen, X. Li, and D. S. Gao, “An efficient directional coupling from dielectric waveguide to hybrid long-range plasmonic waveguide on a silicon platform,” Appl. Phys. B111(1), 15–19 (2013).
    [CrossRef]
  69. J. Zhang, P. Zhao, E. Cassan, and X. Zhang, “Phase regeneration of phase-shift keying signals in highly nonlinear hybrid plasmonic waveguides,” Opt. Lett.38(6), 848–850 (2013).
    [CrossRef] [PubMed]
  70. Y. S. Bian, Z. Zheng, P. F. Yang, J. Xiao, G. J. Wang, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Silicon-slot-mediated guiding of plasmonic modes: The realization of subwavelength optical confinement with low propagation loss,” IEEE J. Sel. Top. Quantum Electron.In Press.
  71. R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
    [CrossRef]
  72. Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
    [CrossRef]
  73. Y. S. Bian, Z. Zheng, X. Zhao, J. Xiao, H. T. Liu, J. S. Liu, T. Zhou, and J. S. Zhu, “Gain-assisted light guiding at the subwavelength scale in a hybrid dielectric-loaded surface plasmon polariton waveguide based on a metal nanorod,” J. Phys. D Appl. Phys.46(33), 335102 (2013).
    [CrossRef]
  74. S. P. Zhang and H. X. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano6(9), 8128–8135 (2012).
    [CrossRef] [PubMed]
  75. Y. S. Zhao and L. Zhu, “Coaxial hybrid plasmonic nanowire waveguides,” J. Opt. Soc. Am. B27(6), 1260–1265 (2010).
    [CrossRef]

2013 (10)

Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys.76(1), 016402 (2013).
[CrossRef] [PubMed]

H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express21(10), 11839–11851 (2013).
[CrossRef] [PubMed]

Y. Luo, M. Chamanzar, and A. Adibi, “Compact on-chip plasmonic light concentration based on a hybrid photonic-plasmonic structure,” Opt. Express21(2), 1898–1910 (2013).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Q. Huang, F. Bao, and S. He, “Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement,” Opt. Express21(2), 1430–1439 (2013).
[CrossRef] [PubMed]

T. Mahmoud, M. Noghani, and S. H. Vadjed, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics8(2), 1155–1168 (2013).
[CrossRef]

L. Chen, X. Li, and D. S. Gao, “An efficient directional coupling from dielectric waveguide to hybrid long-range plasmonic waveguide on a silicon platform,” Appl. Phys. B111(1), 15–19 (2013).
[CrossRef]

J. Zhang, P. Zhao, E. Cassan, and X. Zhang, “Phase regeneration of phase-shift keying signals in highly nonlinear hybrid plasmonic waveguides,” Opt. Lett.38(6), 848–850 (2013).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. Xiao, H. T. Liu, J. S. Liu, T. Zhou, and J. S. Zhu, “Gain-assisted light guiding at the subwavelength scale in a hybrid dielectric-loaded surface plasmon polariton waveguide based on a metal nanorod,” J. Phys. D Appl. Phys.46(33), 335102 (2013).
[CrossRef]

2012 (11)

S. P. Zhang and H. X. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano6(9), 8128–8135 (2012).
[CrossRef] [PubMed]

L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol.30(1), 163–168 (2012).
[CrossRef]

G. X. Cai, M. Luo, Z. P. Cai, H. Y. Xu, and Q. H. Liu, “A slot-based surface plasmon-polariton waveguide with long-range propagation and superconfinement,” IEEE Photon. J.4(3), 844–855 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

L. Chen, T. Zhang, X. Li, and W. P. Huang, “Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film,” Opt. Express20(18), 20535–20544 (2012).
[CrossRef] [PubMed]

R. Hao, E. P. Li, and X. C. Wei, “Two-dimensional light confinement in cross-index-modulation plasmonic waveguides,” Opt. Lett.37(14), 2934–2936 (2012).
[CrossRef] [PubMed]

C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron.18(6), 1661–1668 (2012).
[CrossRef]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett.37(1), 55–57 (2012).
[CrossRef] [PubMed]

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012).
[CrossRef]

F. Lou, Z. C. Wang, D. X. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
[CrossRef]

L. F. Gao, L. X. Tang, F. F. Hu, R. M. Guo, X. J. Wang, and Z. P. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express20(10), 11487–11495 (2012).
[CrossRef] [PubMed]

2011 (16)

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
[CrossRef] [PubMed]

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Opt. Lett.36(12), 2312–2314 (2011).
[CrossRef] [PubMed]

D. X. Dai, Y. C. Shi, S. L. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011).
[CrossRef] [PubMed]

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011).
[CrossRef] [PubMed]

F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett.36(17), 3371–3373 (2011).
[CrossRef] [PubMed]

X. L. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express19(14), 12865–12872 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011).
[CrossRef]

X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt.50(20), 3428–3434 (2011).
[CrossRef] [PubMed]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011).
[CrossRef] [PubMed]

Y. Kou, F. Ye, and X. Chen, “Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,” Opt. Express19(12), 11746–11752 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

J. T. Kim, “CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration,” IEEE Photon. Technol. Lett.23(4), 206–208 (2011).
[CrossRef]

J. T. Kim, “CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits,” IEEE Photon. Technol. Lett.23(20), 1481–1483 (2011).
[CrossRef]

M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express19(9), 8379–8393 (2011).
[CrossRef] [PubMed]

X. L. Zuo and Z. J. Sun, “Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate,” Opt. Lett.36(15), 2946–2948 (2011).
[CrossRef] [PubMed]

2010 (17)

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97(14), 141106 (2010).
[CrossRef]

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express18(20), 21013–21023 (2010).
[CrossRef] [PubMed]

D. Chen, “Cylindrical hybrid plasmonic waveguide for subwavelength confinement of light,” Appl. Opt.49(36), 6868–6871 (2010).
[CrossRef] [PubMed]

D. X. Dai and S. L. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express18(17), 17958–17966 (2010).
[CrossRef] [PubMed]

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18(1), 348–363 (2010).
[CrossRef] [PubMed]

H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys.108(6), 063108 (2010).
[CrossRef]

Y. S. Zhao and L. Zhu, “Coaxial hybrid plasmonic nanowire waveguides,” J. Opt. Soc. Am. B27(6), 1260–1265 (2010).
[CrossRef]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express18(22), 23009–23015 (2010).
[CrossRef] [PubMed]

C. G. Huang and L. Zhu, “Enhanced optical forces in 2D hybrid and plasmonic waveguides,” Opt. Lett.35(10), 1563–1565 (2010).
[CrossRef] [PubMed]

M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18(11), 11728–11736 (2010).
[CrossRef] [PubMed]

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides,” Opt. Express18(18), 18945–18959 (2010).
[CrossRef] [PubMed]

Y. Song, J. Wang, Q. A. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

Q. Li, Y. Song, G. Zhou, Y. K. Su, and M. Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Opt. Lett.35(19), 3153–3155 (2010).
[CrossRef] [PubMed]

A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express18(11), 11791–11799 (2010).
[CrossRef] [PubMed]

Y. Yue, L. Zhang, J. Y. Yang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett.35(9), 1364–1366 (2010).
[CrossRef] [PubMed]

R. Ding, T. Baehr-Jones, W. J. Kim, X. G. Xiong, R. Bojko, J. M. Fedeli, M. Fournier, and M. Hochberg, “Low-loss strip-loaded slot waveguides in Silicon-on-Insulator,” Opt. Express18(24), 25061–25067 (2010).
[CrossRef] [PubMed]

2009 (9)

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide,” Opt. Express17(22), 20327–20332 (2009).
[CrossRef] [PubMed]

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett.21(6), 362–364 (2009).
[CrossRef]

D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
[CrossRef] [PubMed]

B. F. Yun, G. H. Hu, Y. Ji, and Y. P. Cui, “Characteristics analysis of a hybrid surface plasmonic waveguide with nanometric confinement and high optical intensity,” J. Opt. Soc. Am. B26(10), 1924–1929 (2009).
[CrossRef]

2008 (2)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

2007 (2)

2006 (1)

2005 (1)

2004 (3)

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

Adibi, A.

Aitchison, J. S.

Alam, M. Z.

Almeida, V. R.

Avrutsky, I.

Baehr-Jones, T.

Baets, R.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Bai, P.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

Bai, W.

Banks, J. M.

Bao, F.

Bao, J.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Barrios, C. A.

Bartal, G.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
[CrossRef] [PubMed]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Beausoleil, R. G.

Benisty, H.

H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys.108(6), 063108 (2010).
[CrossRef]

Berini, P.

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

Besbes, M.

H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys.108(6), 063108 (2010).
[CrossRef]

Biaggio, I.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Bian, Y. S.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. Xiao, H. T. Liu, J. S. Liu, T. Zhou, and J. S. Zhu, “Gain-assisted light guiding at the subwavelength scale in a hybrid dielectric-loaded surface plasmon polariton waveguide based on a metal nanorod,” J. Phys. D Appl. Phys.46(33), 335102 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, P. F. Yang, J. Xiao, G. J. Wang, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Silicon-slot-mediated guiding of plasmonic modes: The realization of subwavelength optical confinement with low propagation loss,” IEEE J. Sel. Top. Quantum Electron.In Press.

Bogaerts, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Bojko, R.

Bozhevolnyi, S. I.

Brongersma, M. L.

Buchwald, W.

Cai, G. X.

G. X. Cai, M. Luo, Z. P. Cai, H. Y. Xu, and Q. H. Liu, “A slot-based surface plasmon-polariton waveguide with long-range propagation and superconfinement,” IEEE Photon. J.4(3), 844–855 (2012).
[CrossRef]

Cai, L.

Cai, Z. P.

G. X. Cai, M. Luo, Z. P. Cai, H. Y. Xu, and Q. H. Liu, “A slot-based surface plasmon-polariton waveguide with long-range propagation and superconfinement,” IEEE Photon. J.4(3), 844–855 (2012).
[CrossRef]

Casquel, R.

Cassan, E.

Catrysse, P. B.

Chamanzar, M.

Chen, D.

Chen, J.

Chen, L.

Chen, S. H.

Chen, X.

Chen, Y.

Cheng, Q. Q.

Chu, H. S.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

Collins, R. T.

Cui, Y. P.

Dai, D. X.

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Dell’Olio, F.

Desiatov, B.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97(14), 141106 (2010).
[CrossRef]

Diederich, F.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Ding, R.

Duley, W. W.

Dumon, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Durfee, C. G.

Erickson, D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Esembeson, B.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Fang, Z. Y.

Fedeli, J. M.

Flammer, P. D.

Fournier, M.

Freude, W.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett.21(6), 362–364 (2009).
[CrossRef]

Fujii, M.

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett.21(6), 362–364 (2009).
[CrossRef]

Furtak, T. E.

Gao, D. S.

L. Chen, X. Li, and D. S. Gao, “An efficient directional coupling from dielectric waveguide to hybrid long-range plasmonic waveguide on a silicon platform,” Appl. Phys. B111(1), 15–19 (2013).
[CrossRef]

L. Chen, X. Li, G. P. Wang, W. Li, S. H. Chen, L. Xiao, and D. S. Gao, “A silicon-based 3-D hybrid long-range plasmonic waveguide for nanophotonic integration,” J. Lightwave Technol.30(1), 163–168 (2012).
[CrossRef]

Gao, L. F.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Gosciniak, J.

Goykhman, I.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97(14), 141106 (2010).
[CrossRef]

Griol, A.

Guo, R. M.

Guo, X.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Gylfason, K. B.

Han, Z. H.

Hao, R.

He, S.

He, S. L.

He, X. L.

Hegde, R.

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

Hochberg, M.

Holgado, M.

Hollingsworth, R. E.

Holmgaard, T.

Hong, Z.

Hu, A.

Hu, F. F.

Hu, G. H.

Hu, X. P.

Huang, C. C.

C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron.18(6), 1661–1668 (2012).
[CrossRef]

Huang, C. G.

Huang, Q.

Huang, S.

Huang, W. P.

Ji, Y.

Kim, J. T.

J. T. Kim, “CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration,” IEEE Photon. Technol. Lett.23(4), 206–208 (2011).
[CrossRef]

J. T. Kim, “CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits,” IEEE Photon. Technol. Lett.23(20), 1481–1483 (2011).
[CrossRef]

Kim, W. J.

Klug, M.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Koos, C.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Kou, Y.

Krasavin, A. V.

Kwon, M. S.

Kwong, D. L.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011).
[CrossRef]

Lanzillotti-Kimura, N. D.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012).
[CrossRef]

Leuthold, J.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett.21(6), 362–364 (2009).
[CrossRef]

Levy, U.

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97(14), 141106 (2010).
[CrossRef]

Li, E. P.

R. Hao, E. P. Li, and X. C. Wei, “Two-dimensional light confinement in cross-index-modulation plasmonic waveguides,” Opt. Lett.37(14), 2934–2936 (2012).
[CrossRef] [PubMed]

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

Li, H.

Li, M.

Li, Q.

Li, Q. A.

Li, T.

Li, W.

Li, X.

Lin, F.

Liow, T. Y.

Lipson, M.

Liu, H. T.

Y. S. Bian, Z. Zheng, X. Zhao, J. Xiao, H. T. Liu, J. S. Liu, T. Zhou, and J. S. Zhu, “Gain-assisted light guiding at the subwavelength scale in a hybrid dielectric-loaded surface plasmon polariton waveguide based on a metal nanorod,” J. Phys. D Appl. Phys.46(33), 335102 (2013).
[CrossRef]

Liu, J.

Liu, J. S.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. Xiao, H. T. Liu, J. S. Liu, T. Zhou, and J. S. Zhu, “Gain-assisted light guiding at the subwavelength scale in a hybrid dielectric-loaded surface plasmon polariton waveguide based on a metal nanorod,” J. Phys. D Appl. Phys.46(33), 335102 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, P. F. Yang, J. Xiao, G. J. Wang, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Silicon-slot-mediated guiding of plasmonic modes: The realization of subwavelength optical confinement with low propagation loss,” IEEE J. Sel. Top. Quantum Electron.In Press.

Liu, L.

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, P. F. Yang, J. Xiao, G. J. Wang, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Silicon-slot-mediated guiding of plasmonic modes: The realization of subwavelength optical confinement with low propagation loss,” IEEE J. Sel. Top. Quantum Electron.In Press.

Liu, Q. H.

G. X. Cai, M. Luo, Z. P. Cai, H. Y. Xu, and Q. H. Liu, “A slot-based surface plasmon-polariton waveguide with long-range propagation and superconfinement,” IEEE Photon. J.4(3), 844–855 (2012).
[CrossRef]

Liu, Y.

Liu, Y. M.

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011).
[CrossRef] [PubMed]

Lo, G. Q.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011).
[CrossRef]

Lou, F.

F. Lou, Z. C. Wang, D. X. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
[CrossRef]

Lu, F. F.

Luo, M.

G. X. Cai, M. Luo, Z. P. Cai, H. Y. Xu, and Q. H. Liu, “A slot-based surface plasmon-polariton waveguide with long-range propagation and superconfinement,” IEEE Photon. J.4(3), 844–855 (2012).
[CrossRef]

Luo, Y.

Ma, R. M.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Ma, R.-M.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012).
[CrossRef]

Ma, Y.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Mahmoud, T.

T. Mahmoud, M. Noghani, and S. H. Vadjed, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics8(2), 1155–1168 (2013).
[CrossRef]

Michinobu, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Mojahedi, M.

Moore, S. D.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Noghani, M.

T. Mahmoud, M. Noghani, and S. H. Vadjed, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics8(2), 1155–1168 (2013).
[CrossRef]

Noh, J. W.

Oulton, R. F.

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011).
[CrossRef] [PubMed]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Panepucci, R. R.

Passaro, V. M. N.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Qiu, M.

Sánchez, B.

Schmidt, B. S.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Selker, M. D.

Shakya, J.

Shi, Y. C.

Sohlström, H.

Song, G.

Song, Y.

Soref, R.

Sorger, V. J.

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012).
[CrossRef]

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
[CrossRef] [PubMed]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

Su, Y. K.

Su, Y. L.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Sun, X.

Sun, Z. J.

Tang, L. X.

Thylen, L.

F. Lou, Z. C. Wang, D. X. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
[CrossRef]

D. X. Dai, Y. C. Shi, S. L. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011).
[CrossRef] [PubMed]

Tong, L.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Vadjed, S. H.

T. Mahmoud, M. Noghani, and S. H. Vadjed, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics8(2), 1155–1168 (2013).
[CrossRef]

Vallaitis, T.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Van, V.

Vorreau, P.

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Wang, G. J.

Y. S. Bian, Z. Zheng, P. F. Yang, J. Xiao, G. J. Wang, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Silicon-slot-mediated guiding of plasmonic modes: The realization of subwavelength optical confinement with low propagation loss,” IEEE J. Sel. Top. Quantum Electron.In Press.

Wang, G. P.

Wang, J.

Wang, X. J.

Wang, Y.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

Wang, Z. C.

F. Lou, Z. C. Wang, D. X. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
[CrossRef]

Wei, X. C.

Wen, J. Z.

Wiley, B. J.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Willner, A. E.

Wosinski, L.

F. Lou, Z. C. Wang, D. X. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
[CrossRef]

D. X. Dai, Y. C. Shi, S. L. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011).
[CrossRef] [PubMed]

Wu, M.

Xiao, J.

Y. S. Bian, Z. Zheng, X. Zhao, J. Xiao, H. T. Liu, J. S. Liu, T. Zhou, and J. S. Zhu, “Gain-assisted light guiding at the subwavelength scale in a hybrid dielectric-loaded surface plasmon polariton waveguide based on a metal nanorod,” J. Phys. D Appl. Phys.46(33), 335102 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, P. F. Yang, J. Xiao, G. J. Wang, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Silicon-slot-mediated guiding of plasmonic modes: The realization of subwavelength optical confinement with low propagation loss,” IEEE J. Sel. Top. Quantum Electron.In Press.

Xiao, L.

Xiong, X. G.

Xu, H. X.

S. P. Zhang and H. X. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano6(9), 8128–8135 (2012).
[CrossRef] [PubMed]

Xu, H. Y.

G. X. Cai, M. Luo, Z. P. Cai, H. Y. Xu, and Q. H. Liu, “A slot-based surface plasmon-polariton waveguide with long-range propagation and superconfinement,” IEEE Photon. J.4(3), 844–855 (2012).
[CrossRef]

Xu, Q. F.

Xu, Y.

Xue, X. J.

Yan, M.

Yang, A. H. J.

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

Yang, J. Y.

Yang, L.

Yang, P. F.

Y. S. Bian, Z. Zheng, P. F. Yang, J. Xiao, G. J. Wang, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Silicon-slot-mediated guiding of plasmonic modes: The realization of subwavelength optical confinement with low propagation loss,” IEEE J. Sel. Top. Quantum Electron.In Press.

Yang, Q.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Yang, T.

Yang, X. D.

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011).
[CrossRef] [PubMed]

Ye, F.

Ye, Z.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

Yin, X.

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

Yin, X. B.

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011).
[CrossRef] [PubMed]

Yu, H.

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

Yue, Y.

Yun, B. F.

Zayats, A. V.

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, J.

Zhang, L.

Zhang, S. P.

S. P. Zhang and H. X. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano6(9), 8128–8135 (2012).
[CrossRef] [PubMed]

Zhang, T.

Zhang, X.

J. Zhang, P. Zhao, E. Cassan, and X. Zhang, “Phase regeneration of phase-shift keying signals in highly nonlinear hybrid plasmonic waveguides,” Opt. Lett.38(6), 848–850 (2013).
[CrossRef] [PubMed]

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012).
[CrossRef]

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Zhang, X. A.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
[CrossRef] [PubMed]

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011).
[CrossRef] [PubMed]

Zhang, X. Y.

Zhao, P.

Zhao, X.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. Xiao, H. T. Liu, J. S. Liu, T. Zhou, and J. S. Zhu, “Gain-assisted light guiding at the subwavelength scale in a hybrid dielectric-loaded surface plasmon polariton waveguide based on a metal nanorod,” J. Phys. D Appl. Phys.46(33), 335102 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
[CrossRef] [PubMed]

Zhao, Y. S.

Zheng, Z.

Y. S. Bian, Z. Zheng, X. Zhao, J. Xiao, H. T. Liu, J. S. Liu, T. Zhou, and J. S. Zhu, “Gain-assisted light guiding at the subwavelength scale in a hybrid dielectric-loaded surface plasmon polariton waveguide based on a metal nanorod,” J. Phys. D Appl. Phys.46(33), 335102 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, P. F. Yang, J. Xiao, G. J. Wang, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Silicon-slot-mediated guiding of plasmonic modes: The realization of subwavelength optical confinement with low propagation loss,” IEEE J. Sel. Top. Quantum Electron.In Press.

Zhou, G.

Zhou, L.

Zhou, T.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. Xiao, H. T. Liu, J. S. Liu, T. Zhou, and J. S. Zhu, “Gain-assisted light guiding at the subwavelength scale in a hybrid dielectric-loaded surface plasmon polariton waveguide based on a metal nanorod,” J. Phys. D Appl. Phys.46(33), 335102 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, P. F. Yang, J. Xiao, G. J. Wang, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Silicon-slot-mediated guiding of plasmonic modes: The realization of subwavelength optical confinement with low propagation loss,” IEEE J. Sel. Top. Quantum Electron.In Press.

Zhou, Y.

Zhou, Z. P.

Zhu, J.

Zhu, J. S.

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. Xiao, H. T. Liu, J. S. Liu, T. Zhou, and J. S. Zhu, “Gain-assisted light guiding at the subwavelength scale in a hybrid dielectric-loaded surface plasmon polariton waveguide based on a metal nanorod,” J. Phys. D Appl. Phys.46(33), 335102 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, L. Liu, Y. L. Su, J. S. Liu, J. S. Zhu, and T. Zhou, “Dielectrics covered metal nanowires and nanotubes for low-loss guiding of subwavelength plasmonic modes,” J. Lightwave Technol.31(12), 1973–1979 (2013).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, P. F. Yang, J. Xiao, G. J. Wang, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Silicon-slot-mediated guiding of plasmonic modes: The realization of subwavelength optical confinement with low propagation loss,” IEEE J. Sel. Top. Quantum Electron.In Press.

Zhu, L.

Zhu, S. N.

Zhu, S. Y.

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011).
[CrossRef]

Zhu, X.

Zhu, Y. Y.

Zia, R.

Zuo, X. L.

ACS Nano (1)

S. P. Zhang and H. X. Xu, “Optimizing substrate-mediated plasmon coupling toward high-performance plasmonic nanowire waveguides,” ACS Nano6(9), 8128–8135 (2012).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

L. Chen, X. Li, and D. S. Gao, “An efficient directional coupling from dielectric waveguide to hybrid long-range plasmonic waveguide on a silicon platform,” Appl. Phys. B111(1), 15–19 (2013).
[CrossRef]

Appl. Phys. Lett. (4)

I. Goykhman, B. Desiatov, and U. Levy, “Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide,” Appl. Phys. Lett.97(14), 141106 (2010).
[CrossRef]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Nanoplasmonic power splitters based on the horizontal nanoplasmonic slot waveguide,” Appl. Phys. Lett.99(3), 031112 (2011).
[CrossRef]

F. Lou, Z. C. Wang, D. X. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett.100(24), 241105 (2012).
[CrossRef]

H. S. Chu, E. P. Li, P. Bai, and R. Hegde, “Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components,” Appl. Phys. Lett.96(22), 221103 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Highly confined hybrid plasmonic modes guided by nanowire-embedded-metal grooves for low-loss propagation at 1550nm,” IEEE J. Sel. Top. Quantum Electron.19(3), 4800106 (2013).
[CrossRef]

C. C. Huang, “Hybrid plasmonic waveguide comprising a semiconductor nanowire and metal ridge for low-loss propagation and nanoscale confinement,” IEEE J. Sel. Top. Quantum Electron.18(6), 1661–1668 (2012).
[CrossRef]

IEEE Photon. J. (1)

G. X. Cai, M. Luo, Z. P. Cai, H. Y. Xu, and Q. H. Liu, “A slot-based surface plasmon-polariton waveguide with long-range propagation and superconfinement,” IEEE Photon. J.4(3), 844–855 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

Y. S. Bian, Z. Zheng, X. Zhao, Y. L. Su, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett.24(15), 1279–1281 (2012).
[CrossRef]

M. Fujii, J. Leuthold, and W. Freude, “Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides,” IEEE Photon. Technol. Lett.21(6), 362–364 (2009).
[CrossRef]

J. T. Kim, “CMOS-compatible hybrid plasmonic waveguide for subwavelength light confinement and on-chip integration,” IEEE Photon. Technol. Lett.23(4), 206–208 (2011).
[CrossRef]

J. T. Kim, “CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits,” IEEE Photon. Technol. Lett.23(20), 1481–1483 (2011).
[CrossRef]

J. Appl. Phys. (1)

H. Benisty and M. Besbes, “Plasmonic inverse rib waveguiding for tight confinement and smooth interface definition,” J. Appl. Phys.108(6), 063108 (2010).
[CrossRef]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys. D Appl. Phys. (1)

Y. S. Bian, Z. Zheng, X. Zhao, J. Xiao, H. T. Liu, J. S. Liu, T. Zhou, and J. S. Zhu, “Gain-assisted light guiding at the subwavelength scale in a hybrid dielectric-loaded surface plasmon polariton waveguide based on a metal nanorod,” J. Phys. D Appl. Phys.46(33), 335102 (2013).
[CrossRef]

Nano Lett. (2)

X. Guo, M. Qiu, J. Bao, B. J. Wiley, Q. Yang, X. Zhang, Y. Ma, H. Yu, and L. Tong, “Direct coupling of plasmonic and photonic nanowires for hybrid nanophotonic components and circuits,” Nano Lett.9(12), 4515–4519 (2009).
[CrossRef] [PubMed]

X. D. Yang, Y. M. Liu, R. F. Oulton, X. B. Yin, and X. A. Zhang, “Optical forces in hybrid plasmonic waveguides,” Nano Lett.11(2), 321–328 (2011).
[CrossRef] [PubMed]

Nanophotonics (1)

V. J. Sorger, N. D. Lanzillotti-Kimura, R.-M. Ma, and X. Zhang, “Ultra-compact silicon nanophotonic modulator with broadband response,” Nanophotonics1(1), 17–22 (2012).
[CrossRef]

Nat. Commun. (1)

V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin, and X. Zhang, “Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales,” Nat. Commun.2, 331 (2011).
[CrossRef]

Nat. Mater. (1)

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics2(8), 496–500 (2008).
[CrossRef]

C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, and J. Leuthold, “All-optical high-speed signal processing with silicon-organic hybrid slot waveguidesx,” Nat. Photonics3(4), 216–219 (2009).
[CrossRef]

Nature (2)

A. H. J. Yang, S. D. Moore, B. S. Schmidt, M. Klug, M. Lipson, and D. Erickson, “Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides,” Nature457(7225), 71–75 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

New J. Phys. (1)

R. F. Oulton, G. Bartal, D. F. P. Pile, and X. Zhang, “Confinement and propagation characteristics of subwavelength plasmonic modes,” New J. Phys.10(10), 105018 (2008).
[CrossRef]

Opt. Express (24)

L. Chen, T. Zhang, X. Li, and W. P. Huang, “Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film,” Opt. Express20(18), 20535–20544 (2012).
[CrossRef] [PubMed]

I. Avrutsky, R. Soref, and W. Buchwald, “Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap,” Opt. Express18(1), 348–363 (2010).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, X. Zhao, J. S. Zhu, and T. Zhou, “Symmetric hybrid surface plasmon polariton waveguides for 3D photonic integration,” Opt. Express17(23), 21320–21325 (2009).
[CrossRef] [PubMed]

P. D. Flammer, J. M. Banks, T. E. Furtak, C. G. Durfee, R. E. Hollingsworth, and R. T. Collins, “Hybrid plasmon/dielectric waveguide for integrated silicon-on-insulator optical elements,” Opt. Express18(20), 21013–21023 (2010).
[CrossRef] [PubMed]

Q. Huang, F. Bao, and S. He, “Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement,” Opt. Express21(2), 1430–1439 (2013).
[CrossRef] [PubMed]

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, “Long-range dielectric-loaded surface plasmon-polariton waveguides,” Opt. Express18(22), 23009–23015 (2010).
[CrossRef] [PubMed]

D. X. Dai and S. L. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express17(19), 16646–16653 (2009).
[CrossRef] [PubMed]

Z. Y. Fang, S. Huang, F. Lin, and X. Zhu, “Color-tuning and switching optical transport through CdS hybrid plasmonic waveguide,” Opt. Express17(22), 20327–20332 (2009).
[CrossRef] [PubMed]

X. L. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express19(14), 12865–12872 (2011).
[CrossRef] [PubMed]

Y. Luo, M. Chamanzar, and A. Adibi, “Compact on-chip plasmonic light concentration based on a hybrid photonic-plasmonic structure,” Opt. Express21(2), 1898–1910 (2013).
[CrossRef] [PubMed]

M. S. Kwon, “Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology,” Opt. Express19(9), 8379–8393 (2011).
[CrossRef] [PubMed]

D. X. Dai and S. L. He, “Low-loss hybrid plasmonic waveguide with double low-index nano-slots,” Opt. Express18(17), 17958–17966 (2010).
[CrossRef] [PubMed]

Y. S. Bian, Z. Zheng, Y. Liu, J. Liu, J. Zhu, and T. Zhou, “Hybrid wedge plasmon polariton waveguide with good fabrication-error-tolerance for ultra-deep-subwavelength mode confinement,” Opt. Express19(23), 22417–22422 (2011).
[CrossRef] [PubMed]

Y. Kou, F. Ye, and X. Chen, “Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration,” Opt. Express19(12), 11746–11752 (2011).
[CrossRef] [PubMed]

S. Y. Zhu, T. Y. Liow, G. Q. Lo, and D. L. Kwong, “Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration,” Opt. Express19(9), 8888–8902 (2011).
[CrossRef] [PubMed]

F. Dell’Olio and V. M. N. Passaro, “Optical sensing by optimized silicon slot waveguides,” Opt. Express15(8), 4977–4993 (2007).
[CrossRef] [PubMed]

A. V. Krasavin and A. V. Zayats, “Silicon-based plasmonic waveguides,” Opt. Express18(11), 11791–11799 (2010).
[CrossRef] [PubMed]

R. Ding, T. Baehr-Jones, W. J. Kim, X. G. Xiong, R. Bojko, J. M. Fedeli, M. Fournier, and M. Hochberg, “Low-loss strip-loaded slot waveguides in Silicon-on-Insulator,” Opt. Express18(24), 25061–25067 (2010).
[CrossRef] [PubMed]

H. Li, J. W. Noh, Y. Chen, and M. Li, “Enhanced optical forces in integrated hybrid plasmonic waveguides,” Opt. Express21(10), 11839–11851 (2013).
[CrossRef] [PubMed]

M. Wu, Z. H. Han, and V. Van, “Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale,” Opt. Express18(11), 11728–11736 (2010).
[CrossRef] [PubMed]

D. X. Dai, Y. C. Shi, S. L. He, L. Wosinski, and L. Thylen, “Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium,” Opt. Express19(14), 12925–12936 (2011).
[CrossRef] [PubMed]

L. F. Gao, L. X. Tang, F. F. Hu, R. M. Guo, X. J. Wang, and Z. P. Zhou, “Active metal strip hybrid plasmonic waveguide with low critical material gain,” Opt. Express20(10), 11487–11495 (2012).
[CrossRef] [PubMed]

X. Y. Zhang, A. Hu, J. Z. Wen, T. Zhang, X. J. Xue, Y. Zhou, and W. W. Duley, “Numerical analysis of deep sub-wavelength integrated plasmonic devices based on Semiconductor-Insulator-Metal strip waveguides,” Opt. Express18(18), 18945–18959 (2010).
[CrossRef] [PubMed]

Y. Song, J. Wang, Q. A. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express18(12), 13173–13179 (2010).
[CrossRef] [PubMed]

Opt. Lett. (13)

Q. Li, Y. Song, G. Zhou, Y. K. Su, and M. Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Opt. Lett.35(19), 3153–3155 (2010).
[CrossRef] [PubMed]

F. F. Lu, T. Li, X. P. Hu, Q. Q. Cheng, S. N. Zhu, and Y. Y. Zhu, “Efficient second-harmonic generation in nonlinear plasmonic waveguide,” Opt. Lett.36(17), 3371–3373 (2011).
[CrossRef] [PubMed]

C. G. Huang and L. Zhu, “Enhanced optical forces in 2D hybrid and plasmonic waveguides,” Opt. Lett.35(10), 1563–1565 (2010).
[CrossRef] [PubMed]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett.37(1), 55–57 (2012).
[CrossRef] [PubMed]

C. A. Barrios, K. B. Gylfason, B. Sánchez, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Slot-waveguide biochemical sensor,” Opt. Lett.32(21), 3080–3082 (2007).
[CrossRef] [PubMed]

V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett.29(11), 1209–1211 (2004).
[CrossRef] [PubMed]

Q. F. Xu, V. R. Almeida, R. R. Panepucci, and M. Lipson, “Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material,” Opt. Lett.29(14), 1626–1628 (2004).
[CrossRef] [PubMed]

Y. Yue, L. Zhang, J. Y. Yang, R. G. Beausoleil, and A. E. Willner, “Silicon-on-insulator polarization splitter using two horizontally slotted waveguides,” Opt. Lett.35(9), 1364–1366 (2010).
[CrossRef] [PubMed]

L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett.31(14), 2133–2135 (2006).
[CrossRef] [PubMed]

J. Zhang, L. Cai, W. Bai, Y. Xu, and G. Song, “Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement,” Opt. Lett.36(12), 2312–2314 (2011).
[CrossRef] [PubMed]

X. L. Zuo and Z. J. Sun, “Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate,” Opt. Lett.36(15), 2946–2948 (2011).
[CrossRef] [PubMed]

R. Hao, E. P. Li, and X. C. Wei, “Two-dimensional light confinement in cross-index-modulation plasmonic waveguides,” Opt. Lett.37(14), 2934–2936 (2012).
[CrossRef] [PubMed]

J. Zhang, P. Zhao, E. Cassan, and X. Zhang, “Phase regeneration of phase-shift keying signals in highly nonlinear hybrid plasmonic waveguides,” Opt. Lett.38(6), 848–850 (2013).
[CrossRef] [PubMed]

Phys. Rev. B (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

Plasmonics (1)

T. Mahmoud, M. Noghani, and S. H. Vadjed, “Analysis and optimum design of hybrid plasmonic slab waveguides,” Plasmonics8(2), 1155–1168 (2013).
[CrossRef]

Rep. Prog. Phys. (1)

Z. H. Han and S. I. Bozhevolnyi, “Radiation guiding with surface plasmon polaritons,” Rep. Prog. Phys.76(1), 016402 (2013).
[CrossRef] [PubMed]

Other (2)

Y. S. Bian, Z. Zheng, P. F. Yang, J. Xiao, G. J. Wang, L. Liu, J. S. Liu, J. S. Zhu, and T. Zhou, “Silicon-slot-mediated guiding of plasmonic modes: The realization of subwavelength optical confinement with low propagation loss,” IEEE J. Sel. Top. Quantum Electron.In Press.

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low Index medium,” CLEO/QELS, paper JThD112 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) 3D layout of the hybrid plasmonic waveguide. (b) Cross-sectional view of the geometry. The top and bottom widths of the metallic ridge are wmt and wmb respectively, while the bottom width of the slot is wsb. The height of the metal ridge is denoted as hm. The silicon rail has a top width of wrt, a bottom width of wrb and a total height of h. The sidewall angle of the silicon rail is denoted as θ, whereas t and g are the thicknesses of the silicon planar layer and the gap between the metal ridge and the silicon rail.

Fig. 2
Fig. 2

(a)-(b) 2D Ex field distributions of the symmetric and asymmetric hybrid slot modes. The arrows in the 2D panels represent the orientations of the electric fields. (c)-(d) 1D Ex profiles of the hybrid modes along the violet dash-dotted lines shown in the 2D field plots.

Fig. 3
Fig. 3

Properties of the symmetric hybrid mode for various wsb. (a) Modal effective index (neff). (b) Propagation length (L). (c) Normalized mode area (Aeff/A0). (d) Confinement factor (Γ). The inset in (a) shows the |E| distribution for a typical waveguide with wsb = 50 nm and g = 40 nm, where the metal ridge has turned into an inverted triangular wedge due to the relatively large gap size and small slot width. The considered gap region for the calculation of the confinement factor is highlighted in the inset of (b). The inset in (d) depicts the dependence of Γ on the gap thickness for a fixed slot width, where the red, blue and green lines correspond to wsb = 50 nm, 100 nm and 150 nm, respectively.

Fig. 4
Fig. 4

Dependence of the modal properties on the sidewall angle (wsb = 100 nm). (a) Modal effective index (neff). (b) Propagation length (L). (c) Normalized mode area (Aeff/A0). (d) Confinement factor (Γ). The insets in (a) and (b) show the field distributions for typical configurations (θ = 0 deg, g = 40 nm for (a) and θ = 30 deg, g = 20 nm for (b)), while the inset in (d) depicts the dependence of Γ on g for a fixed θ, where red, blue and green lines correspond to θ = 0 deg, 15 deg and 30 deg, respectively.

Fig. 5
Fig. 5

The effect of partial metallic filling on the modal properties (wsb = 100 nm, θ = 0 deg). (a) Modal effective index (neff). (b) Propagation length (L). (c) Normalized mode area (Aeff/A0). (d) Confinement factor (Γ). The insets in (c) shows the electric field distribution for a typical configuration (hm = 100 nm), while the inset in (d) provides the 2D cross-sectional view of the geometry and also highlights the considered gap region for the calculation of Γ.

Fig. 6
Fig. 6

Performance comparisons between the proposed HSWs and the conventional HPPWs, where HPPW I and HPPW II represent two configurations incorporating circular-shaped and square-shaped nanowires, respectively. (a) Comparison between the HSWs in the first set of simulations (Fig. 3) and the corresponding HPPWs with the same gap sizes. (b) Comparison between the HSWs in the second set of simulations (Fig. 4) and the corresponding HPPWs. (c) Comparison between the HSWs in the third set of simulations (Fig. 5) and the corresponding HPPWs. (d) Legends of the conventional HPPWs for (a)-(c). The insets demonstrate the electric field distributions of the fundamental plasmonic modes guided by typical HPPW structures. Left inset: HPPW I (d = 200 nm, g = 30 nm). Right Inset: HPPW II (w = 200 nm, g = 30 nm).

Fig. 7
Fig. 7

Excitation of the plasmonic mode guided by the hybrid slot configuration. (a)-(b) Two different excitation setups for the symmetric hybrid slot mode. (c)-(d) 2D electric field plot along the metallic surface (X-Z plane) for different launching methods. The insets in (c) depicts the Ex distributions of the cross-sections at the dashed-lines (1-3), whereas the insets in (d) offer detailed looks of the transmitted fields inside the hybrid waveguide and the mode conversion regions.

Fig. 8
Fig. 8

Schematics of different symmetric hybrid guiding schemes. (a)-(b) Symmetric hybrid structures with horizontal gaps. (c)-(d) Symmetric hybrid waveguides based on vertical slots. (e)-(h) Dielectrics covered metal nanowires. (i)-(l) Metallic nanowires surrounded by dielectrics.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

A eff =( W(r)dA ) 2 /( W (r) 2 dA ).
W(r)= 1 2 Re{ d[ωε(r)] dω } | E(r) | 2 + 1 2 μ 0 | H(r) | 2 .

Metrics