Abstract

Conventional two-dimensional (2D) plasmonic arrays provide electric field intensity enhancement in the plane, typically with a surface coverage around 50% in the plan-view. Here, we show nanoplasmonic three-dimensional (3D) surfaces with 100% surface coverage enabling strong surface-normal field enhancement. Experimental measurements are found to agree well with the full electromagnetic solution. Along with the surface-normal localization when using the plasmonic 3D-surface, observed maximum field enhancement is 7.2-fold stronger in the 3D-surface than that of the 2D counterpart structure. 3D-plasmonic nonplanar surfaces provide the ability to generate volumetric field enhancement, possibly useful for enhanced plasmonic coupling and interactions.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Randomization of gold nano-brick arrays: a tool for SERS enhancement

Yoshiaki Nishijima, Jacob B. Khurgin, Lorenzo Rosa, Hideki Fujiwara, and Saulius Juodkazis
Opt. Express 21(11) 13502-13514 (2013)

Extreme ultraviolet proximity lithography for fast, flexible and parallel fabrication of infrared antennas

Georg Kunkemöller, Tobias W. W. Maß, Ann-Katrin U. Michel, Hyun-Su Kim, Sascha Brose, Serhiy Danylyuk, Thomas Taubner, and Larissa Juschkin
Opt. Express 23(20) 25487-25495 (2015)

Design and fabrication of nano-sinusoid LSPR devices

Daryoush Mortazavi, Abbas Kouzani, and Mahshid Kalani
Opt. Express 22(16) 18889-18903 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  2. R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
    [Crossref]
  3. S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology 24(15), 155201 (2013).
    [Crossref] [PubMed]
  4. T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
    [Crossref] [PubMed]
  5. I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, “Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity,” Opt. Express 15(22), 14289–14298 (2007).
    [Crossref] [PubMed]
  6. K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
    [Crossref]
  7. C. Bauer and H. Giessen, “Light harvesting enhancement in solar cells with quasicrystalline plasmonic structures,” Opt. Express 21(S3), A363–A371 (2013).
    [Crossref]
  8. J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1(1), 5–33 (2006).
    [Crossref] [PubMed]
  9. H. Shen, N. Guillot, J. Rouxel, M. Lamy de la Chapelle, and T. Toury, “Optimized plasmonic nanostructures for improved sensing activities,” Opt. Express 20(19), 21278–21290 (2012).
    [Crossref] [PubMed]
  10. B. Sharma, R. R. Frontiera, A. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
    [Crossref]
  11. C.-Y. Tsai, K.-H. Chang, C.-Y. Wu, and P.-T. Lee, “The aspect ratio effect on plasmonic properties and biosensing of bonding mode in gold elliptical nanoring arrays,” Opt. Express 21(12), 14090–14096 (2013).
    [Crossref] [PubMed]
  12. N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
    [Crossref] [PubMed]
  13. J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
    [Crossref]
  14. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
    [Crossref] [PubMed]
  15. K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
    [Crossref]
  16. S. A. Ramakrishna, P. Mandal, K. Jeyadheepan, N. Shukla, S. Chakrabarti, M. Kadic, S. Enoch, and S. Guenneau, “Plasmonic interaction of visible light with gold nanoscale checkerboards,” Phys. Rev. B 84(24), 245424 (2011).
    [Crossref]
  17. A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8(11), 4033–4038 (2008).
    [Crossref] [PubMed]
  18. Y. Lu, Y. Yin, Z. Li, and Y. Xia, “Synthesis and self-assembly of Au@SiO2 core-shell colloids,” Nano Lett. 2(7), 785–788 (2002).
    [Crossref]
  19. H. W. Deckman, “Natural lithography,” Appl. Phys. Lett. 41(4), 377 (1982).
    [Crossref]
  20. C. Haynes and R. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
    [Crossref]
  21. E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography,” J. Phys. Chem. B 109(47), 22351–22358 (2005).
    [Crossref] [PubMed]
  22. T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H.-N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C 114(16), 7480–7488 (2010).
    [Crossref]
  23. P. A. Mistark, S. Park, S. E. Yalcin, D. H. Lee, O. Yavuzcetin, M. T. Tuominen, T. P. Russell, and M. Achermann, “Block-copolymer-based plasmonic nanostructures,” ACS Nano 3(12), 3987–3992 (2009).
    [Crossref] [PubMed]
  24. J. Y. Cheng, A. M. Mayes, and C. A. Ross, “Nanostructure engineering by templated self-assembly of block copolymers,” Nat. Mater. 3(11), 823–828 (2004).
    [Crossref] [PubMed]
  25. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
    [Crossref] [PubMed]
  26. E. Dujardin, C. Peet, G. Stubbs, J. N. Culver, and S. Mann, “Organization of metallic nanoparticles using tobacco mosaic virus templates,” Nano Lett. 3(3), 413–417 (2003).
    [Crossref]
  27. X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures,” J. Am. Chem. Soc. 134(1), 146–149 (2012).
    [Crossref] [PubMed]
  28. S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
    [Crossref] [PubMed]
  29. Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol. Chem. 207(1), 126–134 (2009).
    [Crossref]
  30. Q. Hang, D. A. Hill, and G. H. Bernstein, “Efficient removers for poly(methylmethacrylate),” JVST B 21, 91 (2003).
  31. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

2013 (3)

2012 (4)

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

H. Shen, N. Guillot, J. Rouxel, M. Lamy de la Chapelle, and T. Toury, “Optimized plasmonic nanostructures for improved sensing activities,” Opt. Express 20(19), 21278–21290 (2012).
[Crossref] [PubMed]

B. Sharma, R. R. Frontiera, A. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures,” J. Am. Chem. Soc. 134(1), 146–149 (2012).
[Crossref] [PubMed]

2011 (4)

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref] [PubMed]

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[Crossref] [PubMed]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[Crossref] [PubMed]

S. A. Ramakrishna, P. Mandal, K. Jeyadheepan, N. Shukla, S. Chakrabarti, M. Kadic, S. Enoch, and S. Guenneau, “Plasmonic interaction of visible light with gold nanoscale checkerboards,” Phys. Rev. B 84(24), 245424 (2011).
[Crossref]

2010 (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H.-N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C 114(16), 7480–7488 (2010).
[Crossref]

2009 (3)

P. A. Mistark, S. Park, S. E. Yalcin, D. H. Lee, O. Yavuzcetin, M. T. Tuominen, T. P. Russell, and M. Achermann, “Block-copolymer-based plasmonic nanostructures,” ACS Nano 3(12), 3987–3992 (2009).
[Crossref] [PubMed]

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol. Chem. 207(1), 126–134 (2009).
[Crossref]

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

2008 (4)

A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8(11), 4033–4038 (2008).
[Crossref] [PubMed]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
[Crossref]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

2007 (1)

2006 (1)

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1(1), 5–33 (2006).
[Crossref] [PubMed]

2005 (1)

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography,” J. Phys. Chem. B 109(47), 22351–22358 (2005).
[Crossref] [PubMed]

2004 (2)

J. Y. Cheng, A. M. Mayes, and C. A. Ross, “Nanostructure engineering by templated self-assembly of block copolymers,” Nat. Mater. 3(11), 823–828 (2004).
[Crossref] [PubMed]

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

2003 (2)

E. Dujardin, C. Peet, G. Stubbs, J. N. Culver, and S. Mann, “Organization of metallic nanoparticles using tobacco mosaic virus templates,” Nano Lett. 3(3), 413–417 (2003).
[Crossref]

Q. Hang, D. A. Hill, and G. H. Bernstein, “Efficient removers for poly(methylmethacrylate),” JVST B 21, 91 (2003).

2002 (1)

Y. Lu, Y. Yin, Z. Li, and Y. Xia, “Synthesis and self-assembly of Au@SiO2 core-shell colloids,” Nano Lett. 2(7), 785–788 (2002).
[Crossref]

2001 (1)

C. Haynes and R. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

1982 (1)

H. W. Deckman, “Natural lithography,” Appl. Phys. Lett. 41(4), 377 (1982).
[Crossref]

Achermann, M.

P. A. Mistark, S. Park, S. E. Yalcin, D. H. Lee, O. Yavuzcetin, M. T. Tuominen, T. P. Russell, and M. Achermann, “Block-copolymer-based plasmonic nanostructures,” ACS Nano 3(12), 3987–3992 (2009).
[Crossref] [PubMed]

Akhavan, S.

S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology 24(15), 155201 (2013).
[Crossref] [PubMed]

Akin, O.

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[Crossref] [PubMed]

Barnard, E.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Bauer, C.

Bernstein, G. H.

Q. Hang, D. A. Hill, and G. H. Bernstein, “Efficient removers for poly(methylmethacrylate),” JVST B 21, 91 (2003).

Braun, P. V.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Campolongo, M. J.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref] [PubMed]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

Ceperley, D. P.

A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8(11), 4033–4038 (2008).
[Crossref] [PubMed]

Chakrabarti, S.

S. A. Ramakrishna, P. Mandal, K. Jeyadheepan, N. Shukla, S. Chakrabarti, M. Kadic, S. Enoch, and S. Guenneau, “Plasmonic interaction of visible light with gold nanoscale checkerboards,” Phys. Rev. B 84(24), 245424 (2011).
[Crossref]

Chang, K.-H.

Cheng, J. Y.

J. Y. Cheng, A. M. Mayes, and C. A. Ross, “Nanostructure engineering by templated self-assembly of block copolymers,” Nat. Mater. 3(11), 823–828 (2004).
[Crossref] [PubMed]

Cheng, W.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref] [PubMed]

Cirelli, R.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Culver, J. N.

E. Dujardin, C. Peet, G. Stubbs, J. N. Culver, and S. Mann, “Organization of metallic nanoparticles using tobacco mosaic virus templates,” Nano Lett. 3(3), 413–417 (2003).
[Crossref]

Deckman, H. W.

H. W. Deckman, “Natural lithography,” Appl. Phys. Lett. 41(4), 377 (1982).
[Crossref]

Demir, H. V.

S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology 24(15), 155201 (2013).
[Crossref] [PubMed]

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[Crossref] [PubMed]

I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, “Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity,” Opt. Express 15(22), 14289–14298 (2007).
[Crossref] [PubMed]

Dhawan, A.

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H.-N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C 114(16), 7480–7488 (2010).
[Crossref]

Ding, B.

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures,” J. Am. Chem. Soc. 134(1), 146–149 (2012).
[Crossref] [PubMed]

Dujardin, E.

E. Dujardin, C. Peet, G. Stubbs, J. N. Culver, and S. Mann, “Organization of metallic nanoparticles using tobacco mosaic virus templates,” Nano Lett. 3(3), 413–417 (2003).
[Crossref]

Enoch, S.

S. A. Ramakrishna, P. Mandal, K. Jeyadheepan, N. Shukla, S. Chakrabarti, M. Kadic, S. Enoch, and S. Guenneau, “Plasmonic interaction of visible light with gold nanoscale checkerboards,” Phys. Rev. B 84(24), 245424 (2011).
[Crossref]

Eychmuller, A.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[Crossref] [PubMed]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[Crossref] [PubMed]

Frontiera, R. R.

B. Sharma, R. R. Frontiera, A. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Gaponenko, S. V.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[Crossref] [PubMed]

Gaponik, N.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[Crossref] [PubMed]

Gerhold, M. D.

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H.-N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C 114(16), 7480–7488 (2010).
[Crossref]

Giessen, H.

Guenneau, S.

S. A. Ramakrishna, P. Mandal, K. Jeyadheepan, N. Shukla, S. Chakrabarti, M. Kadic, S. Enoch, and S. Guenneau, “Plasmonic interaction of visible light with gold nanoscale checkerboards,” Phys. Rev. B 84(24), 245424 (2011).
[Crossref]

Guillot, N.

Gungor, K.

S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology 24(15), 155201 (2013).
[Crossref] [PubMed]

Hang, Q.

Q. Hang, D. A. Hill, and G. H. Bernstein, “Efficient removers for poly(methylmethacrylate),” JVST B 21, 91 (2003).

Haynes, C.

C. Haynes and R. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Heitzman, C. E.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Henry, A.

B. Sharma, R. R. Frontiera, A. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Hicks, E. M.

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography,” J. Phys. Chem. B 109(47), 22351–22358 (2005).
[Crossref] [PubMed]

Hill, D. A.

Q. Hang, D. A. Hill, and G. H. Bernstein, “Efficient removers for poly(methylmethacrylate),” JVST B 21, 91 (2003).

Jeon, S.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Jeyadheepan, K.

S. A. Ramakrishna, P. Mandal, K. Jeyadheepan, N. Shukla, S. Chakrabarti, M. Kadic, S. Enoch, and S. Guenneau, “Plasmonic interaction of visible light with gold nanoscale checkerboards,” Phys. Rev. B 84(24), 245424 (2011).
[Crossref]

Juodkazis, S.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol. Chem. 207(1), 126–134 (2009).
[Crossref]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Kadic, M.

S. A. Ramakrishna, P. Mandal, K. Jeyadheepan, N. Shukla, S. Chakrabarti, M. Kadic, S. Enoch, and S. Guenneau, “Plasmonic interaction of visible light with gold nanoscale checkerboards,” Phys. Rev. B 84(24), 245424 (2011).
[Crossref]

Kasa, H.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol. Chem. 207(1), 126–134 (2009).
[Crossref]

Kenis, P. J. A.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Khoury, C. G.

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H.-N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C 114(16), 7480–7488 (2010).
[Crossref]

Kintaka, K.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol. Chem. 207(1), 126–134 (2009).
[Crossref]

Lakowicz, J. R.

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1(1), 5–33 (2006).
[Crossref] [PubMed]

Lamy de la Chapelle, M.

Lee, D. H.

P. A. Mistark, S. Park, S. E. Yalcin, D. H. Lee, O. Yavuzcetin, M. T. Tuominen, T. P. Russell, and M. Achermann, “Block-copolymer-based plasmonic nanostructures,” ACS Nano 3(12), 3987–3992 (2009).
[Crossref] [PubMed]

Lee, P.-T.

Lesnyak, V.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[Crossref] [PubMed]

Li, Z.

Y. Lu, Y. Yin, Z. Li, and Y. Xia, “Synthesis and self-assembly of Au@SiO2 core-shell colloids,” Nano Lett. 2(7), 785–788 (2002).
[Crossref]

Lindquist, N. C.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Liu, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Liu, N.

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures,” J. Am. Chem. Soc. 134(1), 146–149 (2012).
[Crossref] [PubMed]

Lu, Y.

Y. Lu, Y. Yin, Z. Li, and Y. Xia, “Synthesis and self-assembly of Au@SiO2 core-shell colloids,” Nano Lett. 2(7), 785–788 (2002).
[Crossref]

Luo, D.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref] [PubMed]

Lyandres, O.

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography,” J. Phys. Chem. B 109(47), 22351–22358 (2005).
[Crossref] [PubMed]

Mandal, P.

S. A. Ramakrishna, P. Mandal, K. Jeyadheepan, N. Shukla, S. Chakrabarti, M. Kadic, S. Enoch, and S. Guenneau, “Plasmonic interaction of visible light with gold nanoscale checkerboards,” Phys. Rev. B 84(24), 245424 (2011).
[Crossref]

Mann, S.

E. Dujardin, C. Peet, G. Stubbs, J. N. Culver, and S. Mann, “Organization of metallic nanoparticles using tobacco mosaic virus templates,” Nano Lett. 3(3), 413–417 (2003).
[Crossref]

Mayes, A. M.

J. Y. Cheng, A. M. Mayes, and C. A. Ross, “Nanostructure engineering by templated self-assembly of block copolymers,” Nat. Mater. 3(11), 823–828 (2004).
[Crossref] [PubMed]

McPeak, K. M.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Misawa, H.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol. Chem. 207(1), 126–134 (2009).
[Crossref]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Misra, V.

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H.-N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C 114(16), 7480–7488 (2010).
[Crossref]

Mistark, P. A.

P. A. Mistark, S. Park, S. E. Yalcin, D. H. Lee, O. Yavuzcetin, M. T. Tuominen, T. P. Russell, and M. Achermann, “Block-copolymer-based plasmonic nanostructures,” ACS Nano 3(12), 3987–3992 (2009).
[Crossref] [PubMed]

Mizeikis, V.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol. Chem. 207(1), 126–134 (2009).
[Crossref]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Murazawa, N.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol. Chem. 207(1), 126–134 (2009).
[Crossref]

Mutlugun, E.

S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology 24(15), 155201 (2013).
[Crossref] [PubMed]

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[Crossref] [PubMed]

I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, “Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity,” Opt. Express 15(22), 14289–14298 (2007).
[Crossref] [PubMed]

Nagpal, P.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Neureuther, A. R.

A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8(11), 4033–4038 (2008).
[Crossref] [PubMed]

Nishii, J.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol. Chem. 207(1), 126–134 (2009).
[Crossref]

Nizamoglu, S.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[Crossref] [PubMed]

I. M. Soganci, S. Nizamoglu, E. Mutlugun, O. Akin, and H. V. Demir, “Localized plasmon-engineered spontaneous emission of CdSe/ZnS nanocrystals closely-packed in the proximity of Ag nanoisland films for controlling emission linewidth, peak, and intensity,” Opt. Express 15(22), 14289–14298 (2007).
[Crossref] [PubMed]

Noguez, C.

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
[Crossref]

Norris, D. J.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Norton, S. J.

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H.-N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C 114(16), 7480–7488 (2010).
[Crossref]

Oh, S. H.

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Ozel, I. O.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[Crossref] [PubMed]

Ozel, T.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[Crossref] [PubMed]

Pala, R. A.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Park, J.-U.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Park, S.

P. A. Mistark, S. Park, S. E. Yalcin, D. H. Lee, O. Yavuzcetin, M. T. Tuominen, T. P. Russell, and M. Achermann, “Block-copolymer-based plasmonic nanostructures,” ACS Nano 3(12), 3987–3992 (2009).
[Crossref] [PubMed]

Peet, C.

E. Dujardin, C. Peet, G. Stubbs, J. N. Culver, and S. Mann, “Organization of metallic nanoparticles using tobacco mosaic virus templates,” Nano Lett. 3(3), 413–417 (2003).
[Crossref]

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

Ramakrishna, S. A.

S. A. Ramakrishna, P. Mandal, K. Jeyadheepan, N. Shukla, S. Chakrabarti, M. Kadic, S. Enoch, and S. Guenneau, “Plasmonic interaction of visible light with gold nanoscale checkerboards,” Phys. Rev. B 84(24), 245424 (2011).
[Crossref]

Ringe, E.

B. Sharma, R. R. Frontiera, A. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Rogers, J. A.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Ross, C. A.

J. Y. Cheng, A. M. Mayes, and C. A. Ross, “Nanostructure engineering by templated self-assembly of block copolymers,” Nat. Mater. 3(11), 823–828 (2004).
[Crossref] [PubMed]

Rouxel, J.

Russell, T. P.

P. A. Mistark, S. Park, S. E. Yalcin, D. H. Lee, O. Yavuzcetin, M. T. Tuominen, T. P. Russell, and M. Achermann, “Block-copolymer-based plasmonic nanostructures,” ACS Nano 3(12), 3987–3992 (2009).
[Crossref] [PubMed]

Samarskaya, O.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[Crossref] [PubMed]

Sasaki, K.

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Schatz, G. C.

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography,” J. Phys. Chem. B 109(47), 22351–22358 (2005).
[Crossref] [PubMed]

Sefunc, M. A.

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[Crossref] [PubMed]

Sharma, B.

B. Sharma, R. R. Frontiera, A. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Shen, H.

Shen, X.

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures,” J. Am. Chem. Soc. 134(1), 146–149 (2012).
[Crossref] [PubMed]

Shi, D.

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures,” J. Am. Chem. Soc. 134(1), 146–149 (2012).
[Crossref] [PubMed]

Shukla, N.

S. A. Ramakrishna, P. Mandal, K. Jeyadheepan, N. Shukla, S. Chakrabarti, M. Kadic, S. Enoch, and S. Guenneau, “Plasmonic interaction of visible light with gold nanoscale checkerboards,” Phys. Rev. B 84(24), 245424 (2011).
[Crossref]

Sinsermsuksakul, P.

A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8(11), 4033–4038 (2008).
[Crossref] [PubMed]

Soganci, I. M.

Song, C.

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures,” J. Am. Chem. Soc. 134(1), 146–149 (2012).
[Crossref] [PubMed]

Spears, K. G.

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography,” J. Phys. Chem. B 109(47), 22351–22358 (2005).
[Crossref] [PubMed]

Stubbs, G.

E. Dujardin, C. Peet, G. Stubbs, J. N. Culver, and S. Mann, “Organization of metallic nanoparticles using tobacco mosaic virus templates,” Nano Lett. 3(3), 413–417 (2003).
[Crossref]

Tan, S. J.

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref] [PubMed]

Tao, A. R.

A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8(11), 4033–4038 (2008).
[Crossref] [PubMed]

Toury, T.

Tsai, C.-Y.

Tuominen, M. T.

P. A. Mistark, S. Park, S. E. Yalcin, D. H. Lee, O. Yavuzcetin, M. T. Tuominen, T. P. Russell, and M. Achermann, “Block-copolymer-based plasmonic nanostructures,” ACS Nano 3(12), 3987–3992 (2009).
[Crossref] [PubMed]

Ueno, K.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol. Chem. 207(1), 126–134 (2009).
[Crossref]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Van Duyne, R.

C. Haynes and R. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

Van Duyne, R. P.

B. Sharma, R. R. Frontiera, A. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography,” J. Phys. Chem. B 109(47), 22351–22358 (2005).
[Crossref] [PubMed]

Vo-Dinh, T.

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H.-N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C 114(16), 7480–7488 (2010).
[Crossref]

Wang, H.-N.

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H.-N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C 114(16), 7480–7488 (2010).
[Crossref]

Wang, J.

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures,” J. Am. Chem. Soc. 134(1), 146–149 (2012).
[Crossref] [PubMed]

Wang, Z.

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures,” J. Am. Chem. Soc. 134(1), 146–149 (2012).
[Crossref] [PubMed]

White, J.

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

Wu, C.-Y.

Xia, Y.

Y. Lu, Y. Yin, Z. Li, and Y. Xia, “Synthesis and self-assembly of Au@SiO2 core-shell colloids,” Nano Lett. 2(7), 785–788 (2002).
[Crossref]

Yalcin, S. E.

P. A. Mistark, S. Park, S. E. Yalcin, D. H. Lee, O. Yavuzcetin, M. T. Tuominen, T. P. Russell, and M. Achermann, “Block-copolymer-based plasmonic nanostructures,” ACS Nano 3(12), 3987–3992 (2009).
[Crossref] [PubMed]

Yang, P.

A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8(11), 4033–4038 (2008).
[Crossref] [PubMed]

Yang, S.

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Yavuzcetin, O.

P. A. Mistark, S. Park, S. E. Yalcin, D. H. Lee, O. Yavuzcetin, M. T. Tuominen, T. P. Russell, and M. Achermann, “Block-copolymer-based plasmonic nanostructures,” ACS Nano 3(12), 3987–3992 (2009).
[Crossref] [PubMed]

Yin, Y.

Y. Lu, Y. Yin, Z. Li, and Y. Xia, “Synthesis and self-assembly of Au@SiO2 core-shell colloids,” Nano Lett. 2(7), 785–788 (2002).
[Crossref]

Yokota, Y.

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol. Chem. 207(1), 126–134 (2009).
[Crossref]

Zhang, J. Z.

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
[Crossref]

Zhang, X.

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography,” J. Phys. Chem. B 109(47), 22351–22358 (2005).
[Crossref] [PubMed]

Zou, S.

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography,” J. Phys. Chem. B 109(47), 22351–22358 (2005).
[Crossref] [PubMed]

ACS Nano (2)

T. Ozel, S. Nizamoglu, M. A. Sefunc, O. Samarskaya, I. O. Ozel, E. Mutlugun, V. Lesnyak, N. Gaponik, A. Eychmuller, S. V. Gaponenko, and H. V. Demir, “Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots,” ACS Nano 5(2), 1328–1334 (2011).
[Crossref] [PubMed]

P. A. Mistark, S. Park, S. E. Yalcin, D. H. Lee, O. Yavuzcetin, M. T. Tuominen, T. P. Russell, and M. Achermann, “Block-copolymer-based plasmonic nanostructures,” ACS Nano 3(12), 3987–3992 (2009).
[Crossref] [PubMed]

Adv. Mater. (2)

R. A. Pala, J. White, E. Barnard, J. Liu, and M. L. Brongersma, “Design of plasmonic thin-film solar cells with broadband absorption enhancements,” Adv. Mater. 21(34), 3504–3509 (2009).
[Crossref]

K. Ueno, S. Juodkazis, V. Mizeikis, K. Sasaki, and H. Misawa, “Clusters of closely spaced gold nanoparticles as a source of two-photon photoluminescence at visible wavelengths,” Adv. Mater. 20(1), 26–30 (2008).
[Crossref]

Appl. Phys. Lett. (2)

K. R. Catchpole and A. Polman, “Design principles for particle plasmon enhanced solar cells,” Appl. Phys. Lett. 93(19), 191113 (2008).
[Crossref]

H. W. Deckman, “Natural lithography,” Appl. Phys. Lett. 41(4), 377 (1982).
[Crossref]

J. Am. Chem. Soc. (1)

X. Shen, C. Song, J. Wang, D. Shi, Z. Wang, N. Liu, and B. Ding, “Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures,” J. Am. Chem. Soc. 134(1), 146–149 (2012).
[Crossref] [PubMed]

J. Photochem. Photobiol. Chem. (1)

Y. Yokota, K. Ueno, S. Juodkazis, V. Mizeikis, N. Murazawa, H. Misawa, H. Kasa, K. Kintaka, and J. Nishii, “Nano-textured metallic surfaces for optical sensing and detection applications,” J. Photochem. Photobiol. Chem. 207(1), 126–134 (2009).
[Crossref]

J. Phys. Chem. B (2)

C. Haynes and R. Van Duyne, “Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics,” J. Phys. Chem. B 105(24), 5599–5611 (2001).
[Crossref]

E. M. Hicks, X. Zhang, S. Zou, O. Lyandres, K. G. Spears, G. C. Schatz, and R. P. Van Duyne, “Plasmonic properties of film over nanowell surfaces fabricated by nanosphere lithography,” J. Phys. Chem. B 109(47), 22351–22358 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H.-N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing,” J. Phys. Chem. C 114(16), 7480–7488 (2010).
[Crossref]

JVST B (1)

Q. Hang, D. A. Hill, and G. H. Bernstein, “Efficient removers for poly(methylmethacrylate),” JVST B 21, 91 (2003).

Mater. Today (1)

B. Sharma, R. R. Frontiera, A. Henry, E. Ringe, and R. P. Van Duyne, “SERS: materials, applications, and the future,” Mater. Today 15(1-2), 16–25 (2012).
[Crossref]

Nano Lett. (3)

A. R. Tao, D. P. Ceperley, P. Sinsermsuksakul, A. R. Neureuther, and P. Yang, “Self-organized silver nanoparticles for three-dimensional plasmonic crystals,” Nano Lett. 8(11), 4033–4038 (2008).
[Crossref] [PubMed]

Y. Lu, Y. Yin, Z. Li, and Y. Xia, “Synthesis and self-assembly of Au@SiO2 core-shell colloids,” Nano Lett. 2(7), 785–788 (2002).
[Crossref]

E. Dujardin, C. Peet, G. Stubbs, J. N. Culver, and S. Mann, “Organization of metallic nanoparticles using tobacco mosaic virus templates,” Nano Lett. 3(3), 413–417 (2003).
[Crossref]

Nanotechnology (1)

S. Akhavan, K. Gungor, E. Mutlugun, and H. V. Demir, “Plasmonic light-sensitive skins of nanocrystal monolayers,” Nanotechnology 24(15), 155201 (2013).
[Crossref] [PubMed]

Nat Commun (1)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011).
[Crossref] [PubMed]

Nat. Mater. (2)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

J. Y. Cheng, A. M. Mayes, and C. A. Ross, “Nanostructure engineering by templated self-assembly of block copolymers,” Nat. Mater. 3(11), 823–828 (2004).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, “Building plasmonic nanostructures with DNA,” Nat. Nanotechnol. 6(5), 268–276 (2011).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. B (1)

S. A. Ramakrishna, P. Mandal, K. Jeyadheepan, N. Shukla, S. Chakrabarti, M. Kadic, S. Enoch, and S. Guenneau, “Plasmonic interaction of visible light with gold nanoscale checkerboards,” Phys. Rev. B 84(24), 245424 (2011).
[Crossref]

Plasmonics (2)

J. Z. Zhang and C. Noguez, “Plasmonic optical properties and applications of metal nanostructures,” Plasmonics 3(4), 127–150 (2008).
[Crossref]

J. R. Lakowicz, “Plasmonics in biology and plasmon-controlled fluorescence,” Plasmonics 1(1), 5–33 (2006).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. J. A. Kenis, and J. A. Rogers, “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U.S.A. 101(34), 12428–12433 (2004).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

N. C. Lindquist, P. Nagpal, K. M. McPeak, D. J. Norris, and S. H. Oh, “Engineering metallic nanostructures for plasmonics and nanophotonics,” Rep. Prog. Phys. 75(3), 036501 (2012).
[Crossref] [PubMed]

Other (1)

S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

Supplementary Material (1)

» Media 1: MP4 (620 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Perspective and plan-view SEM images of the fabricated 3D (a) and 2D (b) plasmonic structures. (c) Process flow illustrated step by step: (I) On pre-deposited 5 nm chromium, PMMA 495 K and PMMA 950 K are spin-coated, respectively. (II) Electron beam scans the pattern on PMMA resist. (III) O2 plasma cleaning removes the PMMA residues remained after developing. (IV) 40 nm thick gold is thermally deposited. (V) The 3D-structure fabrication is completed and (VI) an additional lift-off step is required for the 2D-structure. (d) EBL mask layout shown with important features.

Fig. 2
Fig. 2

(a) Cross-sectional SEM image of the 3D-structure showing no sidewall formation between two planes. Atomic force microscopy topographic images of the 2D- (b) and 3D- (c) structures indicating a gold thickness of 40 nm and a pit depth of 80 nm.

Fig. 3
Fig. 3

(a) Electron-beam lithography fabrication layout indicating important size parameters along with the unit cell used in EBL for laying out the design structure marked with a red square. (b) Equivalent diagonal simulation configuration shown with the unit cell in the red square used in numerical simulations. This layout is identical to the one given in (a).

Fig. 4
Fig. 4

Simulation results showing electric field intensity distributions for the 3D- (a), the 2D- (b), the upper plane (c) and the lower plane (d) structures. Important positions along z-direction and the components of the upper and lower plane structures are illustrated (e). Percent extinction of the simulated structures showing coupling between the upper and lower planes in the 3D-structure (f). Nearfield intensity distributions of the 3D-structure at the same specific cross-sectional planes as in (a) are plotted for illumination with varying wavelength as a movie (Media 1).

Fig. 5
Fig. 5

(a) 3D-structure-like grating structure with specified dimensions shown for TM excitation configuration. (b) Resulting extinction for a given grating structure with TM, TE and unpolarized illuminations compared with the 3D- and 2D-structures. Nearfield intensity distributions in logarithmic scale for the resonance wavelengths 580 nm (c) and 715 nm (d).

Fig. 6
Fig. 6

Comparison of simulated and experimental farfield extinction of the 3D- (a) and 2D- (b) structures.

Fig. 7
Fig. 7

(a) Lorentzian peak fit to simulated extinction with two peaks. (b) Lorentzian peak fit to experimental extinction with two peaks.

Tables (1)

Tables Icon

Table 1 Two Lorentzian peaks fit results for simulation and experiment.

Metrics