Abstract

Single-pixel detectors can be used as imaging devices by making use of structured illumination. These systems work by correlating a changing incident light field with signals measured on a photodiode to derive an image of an object. In this work we demonstrate a system that utilizes a digital light projector to illuminate a scene with approximately 1300 different light patterns every second and correlate these with the back scattered light measured by three spectrally-filtered single-pixel photodetectors to produce a full-color high-quality image in a few seconds of data acquisition. We utilize a differential light projection method to self normalize the measured signals, improving the reconstruction quality whilst making the system robust to external sources of noise. This technique can readily be extended for imaging applications at non-visible wavebands.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995).
    [CrossRef] [PubMed]
  2. D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
    [CrossRef] [PubMed]
  3. R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett.89, 113601 (2002).
    [CrossRef]
  4. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004).
    [CrossRef] [PubMed]
  5. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A70, 013802 (2004).
    [CrossRef]
  6. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett.94, 063601 (2005).
    [CrossRef] [PubMed]
  7. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).
  8. J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process.11, 949–993 (2012).
    [CrossRef]
  9. J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A78, 061802 (2008).
    [CrossRef]
  10. M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag.25, 83–91 (2008).
    [CrossRef]
  11. P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual photography,” ACM Trans. Graph.24, 745–755 (2005).
    [CrossRef]
  12. B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science340, 844–847 (2013).
    [CrossRef] [PubMed]
  13. G. K. Wallace, “The jpeg still picture compression standard,” Commun. ACM34, 30–44 (1991).
    [CrossRef]
  14. D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17, 22718–22725 (2009).
    [CrossRef]
  15. F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett.104, 253603 (2010).
    [CrossRef] [PubMed]
  16. B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express20, 16892–16901 (2012).
    [CrossRef]
  17. O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett95, 131110 (2009).
    [CrossRef]
  18. D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52, 1289–1306 (2006).
    [CrossRef]
  19. K. Koh, S.-J. Kim, and S. P. Boyd, “An interior-point method for large-scale l1-regularized logistic regression.” J. Mach. Learn. Res.8, 1519–1555 (2007).

2013 (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science340, 844–847 (2013).
[CrossRef] [PubMed]

2012 (2)

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process.11, 949–993 (2012).
[CrossRef]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express20, 16892–16901 (2012).
[CrossRef]

2010 (1)

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett.104, 253603 (2010).
[CrossRef] [PubMed]

2009 (2)

2008 (2)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A78, 061802 (2008).
[CrossRef]

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag.25, 83–91 (2008).
[CrossRef]

2007 (1)

K. Koh, S.-J. Kim, and S. P. Boyd, “An interior-point method for large-scale l1-regularized logistic regression.” J. Mach. Learn. Res.8, 1519–1555 (2007).

2006 (1)

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52, 1289–1306 (2006).
[CrossRef]

2005 (3)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett.94, 063601 (2005).
[CrossRef] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual photography,” ACM Trans. Graph.24, 745–755 (2005).
[CrossRef]

2004 (2)

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A70, 013802 (2004).
[CrossRef]

2002 (1)

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett.89, 113601 (2002).
[CrossRef]

1995 (2)

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995).
[CrossRef] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

1991 (1)

G. K. Wallace, “The jpeg still picture compression standard,” Commun. ACM34, 30–44 (1991).
[CrossRef]

Bache, M.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A70, 013802 (2004).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004).
[CrossRef] [PubMed]

Baraniuk, R.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag.25, 83–91 (2008).
[CrossRef]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett.89, 113601 (2002).
[CrossRef]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett.89, 113601 (2002).
[CrossRef]

Bowman, A.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science340, 844–847 (2013).
[CrossRef] [PubMed]

Bowman, R.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science340, 844–847 (2013).
[CrossRef] [PubMed]

D. Preece, R. Bowman, A. Linnenberger, G. Gibson, S. Serati, and M. Padgett, “Increasing trap stiffness with position clamping in holographic optical tweezers,” Opt. Express17, 22718–22725 (2009).
[CrossRef]

Boyd, R. W.

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process.11, 949–993 (2012).
[CrossRef]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett.89, 113601 (2002).
[CrossRef]

Boyd, S. P.

K. Koh, S.-J. Kim, and S. P. Boyd, “An interior-point method for large-scale l1-regularized logistic regression.” J. Mach. Learn. Res.8, 1519–1555 (2007).

Brambilla, E.

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A70, 013802 (2004).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004).
[CrossRef] [PubMed]

Bromberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett95, 131110 (2009).
[CrossRef]

Chen, B.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual photography,” ACM Trans. Graph.24, 745–755 (2005).
[CrossRef]

D’Angelo, M.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett.94, 063601 (2005).
[CrossRef] [PubMed]

Davenport, M.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag.25, 83–91 (2008).
[CrossRef]

Donoho, D.

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52, 1289–1306 (2006).
[CrossRef]

Duarte, M.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag.25, 83–91 (2008).
[CrossRef]

Edgar, M. P.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science340, 844–847 (2013).
[CrossRef] [PubMed]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express20, 16892–16901 (2012).
[CrossRef]

Ferri, F.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett.104, 253603 (2010).
[CrossRef] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).

Garg, G.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual photography,” ACM Trans. Graph.24, 745–755 (2005).
[CrossRef]

Gatti, A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett.104, 253603 (2010).
[CrossRef] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A70, 013802 (2004).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004).
[CrossRef] [PubMed]

Gibson, G.

Horowitz, M.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual photography,” ACM Trans. Graph.24, 745–755 (2005).
[CrossRef]

Katz, O.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett95, 131110 (2009).
[CrossRef]

Kelly, K.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag.25, 83–91 (2008).
[CrossRef]

Kim, S.-J.

K. Koh, S.-J. Kim, and S. P. Boyd, “An interior-point method for large-scale l1-regularized logistic regression.” J. Mach. Learn. Res.8, 1519–1555 (2007).

Klyshko, D. N.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

Koh, K.

K. Koh, S.-J. Kim, and S. P. Boyd, “An interior-point method for large-scale l1-regularized logistic regression.” J. Mach. Learn. Res.8, 1519–1555 (2007).

Laska, J.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag.25, 83–91 (2008).
[CrossRef]

Lensch, H. P. A.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual photography,” ACM Trans. Graph.24, 745–755 (2005).
[CrossRef]

Levoy, M.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual photography,” ACM Trans. Graph.24, 745–755 (2005).
[CrossRef]

Linnenberger, A.

Lugiato, L. A.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett.104, 253603 (2010).
[CrossRef] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A70, 013802 (2004).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004).
[CrossRef] [PubMed]

Magatti, D.

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett.104, 253603 (2010).
[CrossRef] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).

Marschner, S. R.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual photography,” ACM Trans. Graph.24, 745–755 (2005).
[CrossRef]

Padgett, M.

Padgett, M. J.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science340, 844–847 (2013).
[CrossRef] [PubMed]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express20, 16892–16901 (2012).
[CrossRef]

Pittman, T. B.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995).
[CrossRef] [PubMed]

Preece, D.

Scarcelli, G.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett.94, 063601 (2005).
[CrossRef] [PubMed]

Sen, P.

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual photography,” ACM Trans. Graph.24, 745–755 (2005).
[CrossRef]

Serati, S.

Sergienko, A. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995).
[CrossRef] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

Shapiro, J. H.

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process.11, 949–993 (2012).
[CrossRef]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express20, 16892–16901 (2012).
[CrossRef]

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A78, 061802 (2008).
[CrossRef]

Shih, Y.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett.94, 063601 (2005).
[CrossRef] [PubMed]

Shih, Y. H.

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995).
[CrossRef] [PubMed]

Silberberg, Y.

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett95, 131110 (2009).
[CrossRef]

Strekalov, D. V.

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995).
[CrossRef] [PubMed]

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

Sun, B.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science340, 844–847 (2013).
[CrossRef] [PubMed]

B. Sun, S. S. Welsh, M. P. Edgar, J. H. Shapiro, and M. J. Padgett, “Normalized ghost imaging,” Opt. Express20, 16892–16901 (2012).
[CrossRef]

Sun, T.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag.25, 83–91 (2008).
[CrossRef]

Takhar, D.

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag.25, 83–91 (2008).
[CrossRef]

Valencia, A.

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett.94, 063601 (2005).
[CrossRef] [PubMed]

Vittert, L. E.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science340, 844–847 (2013).
[CrossRef] [PubMed]

Wallace, G. K.

G. K. Wallace, “The jpeg still picture compression standard,” Commun. ACM34, 30–44 (1991).
[CrossRef]

Welsh, S.

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science340, 844–847 (2013).
[CrossRef] [PubMed]

Welsh, S. S.

ACM Trans. Graph. (1)

P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual photography,” ACM Trans. Graph.24, 745–755 (2005).
[CrossRef]

Appl. Phys. Lett (1)

O. Katz, Y. Bromberg, and Y. Silberberg, “Compressive ghost imaging,” Appl. Phys. Lett95, 131110 (2009).
[CrossRef]

Commun. ACM (1)

G. K. Wallace, “The jpeg still picture compression standard,” Commun. ACM34, 30–44 (1991).
[CrossRef]

IEEE Signal Proc. Mag. (1)

M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, and R. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Proc. Mag.25, 83–91 (2008).
[CrossRef]

IEEE Trans. Inf. Theory (1)

D. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory52, 1289–1306 (2006).
[CrossRef]

J. Mach. Learn. Res. (1)

K. Koh, S.-J. Kim, and S. P. Boyd, “An interior-point method for large-scale l1-regularized logistic regression.” J. Mach. Learn. Res.8, 1519–1555 (2007).

Opt. Express (2)

Phys. Rev. A (3)

J. H. Shapiro, “Computational ghost imaging,” Phys. Rev. A78, 061802 (2008).
[CrossRef]

T. B. Pittman, Y. H. Shih, D. V. Strekalov, and A. V. Sergienko, “Optical imaging by means of two-photon quantum entanglement,” Phys. Rev. A52, R3429–R3432 (1995).
[CrossRef] [PubMed]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A70, 013802 (2004).
[CrossRef]

Phys. Rev. Lett. (6)

A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett.94, 063601 (2005).
[CrossRef] [PubMed]

F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett.94, 183602 (2005).

D. V. Strekalov, A. V. Sergienko, D. N. Klyshko, and Y. H. Shih, “Observation of two-photon “ghost” interference and diffraction,” Phys. Rev. Lett.74, 3600–3603 (1995).
[CrossRef] [PubMed]

R. S. Bennink, S. J. Bentley, and R. W. Boyd, ““Two-photon” coincidence imaging with a classical source,” Phys. Rev. Lett.89, 113601 (2002).
[CrossRef]

A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: Comparing entanglement and classical correlation,” Phys. Rev. Lett.93, 093602 (2004).
[CrossRef] [PubMed]

F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, “Differential ghost imaging,” Phys. Rev. Lett.104, 253603 (2010).
[CrossRef] [PubMed]

Quantum Inf. Process. (1)

J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process.11, 949–993 (2012).
[CrossRef]

Science (1)

B. Sun, M. P. Edgar, R. Bowman, L. E. Vittert, S. Welsh, A. Bowman, and M. J. Padgett, “3D computational imaging with single-pixel detectors,” Science340, 844–847 (2013).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental system for imaging a colored 3D scene. A dichroic beamsplitter (X-Cube) spectrally separates white light to three outputs (red, green and blue) where three unfiltered photodiodes measure the reflected intensity for each incident pattern from a digital light projector. The measured signals and projected patterns are used in an computer algorithm to reconstruct an image of the scene.

Fig. 2
Fig. 2

(a) Full-color iterative reconstruction of a 3D scene, obtained by combining the separate reconstructions derived from three photodetectors sensitive to (b) red, (c) green and (d) blue color channels. The illumination patterns and final reconstruction utilized a 256 × 128 pixel resolution and required > 20× Nyquist number of measurements. The 3D scene had dimensions of approximately 20cm × 10cm and was located approximately 1m from the digital light projector.

Fig. 3
Fig. 3

Comparison of colored image reconstructions with 128 × 64 pixel resolution for increasing sample size using an iterative and a compressive algorithm. For 8000 (approximately Nyquist) measurements the acquisition time is less than 12 seconds.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S μ i = I i ' ( x , y ) R μ ( x , y ) d x d y ,
O μ ( x , y ) = ( S μ S μ ) ( I ( x , y ) I ( x , y ) ) ,
O μ ( x , y ) = 1 M i = 1 M S μ i I i ( x , y ) ,
I = [ I 1 I 2 I M ] T .
S μ = [ S μ 1 S μ 2 S μ M ] T ,
IO μ = S μ ,
I D C T O * μ = S μ ,
1 2 S μ I D C T O * μ 2 + λ | O * μ | ,

Metrics