Abstract

A novel architecture has been employed to fabricate transparent electrodes with high conductivity and high optical transmittance at high incident angles. Soft lithography is used to fabricate polymer grating patterns onto which thin metallic films are deposited. Etching removes excess metal leaving tall walls of metal. Polymer encapsulation of the structure both protects the metal and minimizes diffraction. Transmission is dependent upon the height of the walls and encapsulation and varies from 60% to 80% for structures with heights of 1400 nm to 300 nm. In encapsulated structures, very little distortion is visible (either parallel to or perpendicular to standing walls) even at viewing angles 60° from the normal. Diffraction is at characterized through measurement of intensity for zeroth through third order diffraction spots. Encapsulation is shown to significantly reduce diffraction. Measurements are supported by optical simulations.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. G. Lewis and D. C. Paine, “Applications and processing of transparent conducting oxides,” MRS Bull.25(08), 22–27 (2000).
    [CrossRef]
  2. T. Minami, “New n-type transparent conducting oxides,” MRS Bull.25(08), 38–44 (2000).
    [CrossRef]
  3. M. Katayama, “TFT-LCD technology,” Thin Solid Films341(1-2), 140–147 (1999).
    [CrossRef]
  4. D. E. Carlson and C. R. Wronski, “Amorphous silicon solar-cell,” Appl. Phys. Lett.28(11), 671–673 (1976).
    [CrossRef]
  5. C. G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films411(1), 1–5 (2002).
    [CrossRef]
  6. “Critical materials strategy summary,” Department of Energy, USA (2011). http://energy.gov/pi/office-policy-and-international-affairs/downloads/2011-critical-materials-strategy
  7. Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films460(1-2), 156–166 (2004).
    [CrossRef]
  8. C. Guillen and J. Herrero, “Influence of the film thickness on the structure, optical and electrical properties of ITO coatings deposited by sputtering at room temperature on glass and plastic substrates,” Semicond Sci Ech23(7), 075002 (2008).
    [CrossRef]
  9. M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett.88(23), 233506 (2006).
    [CrossRef]
  10. J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
    [CrossRef]
  11. J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett.8(2), 689–692 (2008).
    [CrossRef] [PubMed]
  12. M. G. Kang and L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(10), 1391–1396 (2007).
    [CrossRef]
  13. M. G. Kang, M. S. Kim, J. S. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4408–4413 (2008).
    [CrossRef]
  14. M. G. Kang, H. J. Park, S. H. Ahn, and L. J. Guo, “Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells,” Sol. Energy Mater. Sol. Cells94(6), 1179–1184 (2010).
    [CrossRef]
  15. S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2044–2049 (2008).
    [CrossRef]
  16. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78(2), 023825 (2008).
    [CrossRef]
  17. Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
    [CrossRef]
  18. J. H. Lee, C. H. Kim, K. M. Ho, and K. Constant, “Two-polymer microtransfer molding for highly layered microstructures,” Adv. Mater. (Deerfield Beach Fla.)17(20), 2481–2485 (2005).
    [CrossRef]
  19. P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new achitecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. (Deerfield Beach Fla.)23(21), 2469–2473 (2011).
    [CrossRef]
  20. Movie clip: http://home.engineering.iastate.edu/~sumitc/documents/electrodes .
  21. Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.67(4), 046607 (2003).
    [CrossRef] [PubMed]
  22. M. Li, X. H. Hu, Z. Ye, K. M. Ho, J. R. Cao, and M. Miyawaki, “Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation,” Opt. Lett.31(23), 3498–3500 (2006).
    [CrossRef] [PubMed]
  23. Z. Ye, X. H. Hu, M. Li, K. M. Ho, and P. D. Yang, “Propagation of guided modes in curved nanoribbon waveguides,” Appl. Phys. Lett.89(24), 241108 (2006).
    [CrossRef]
  24. C. R. Pichard, C. R. Tellier, and A. J. Tosser, “A three-Dimensional model for grain-boundary resistivity in metal-films,” Thin Solid Films62(2), 189–194 (1979).
    [CrossRef]
  25. P. M. T. M. van Attekum, P. H. Woerlee, G. C. Verkade, and A. A. M. Hoeben, “Influence of grain-boundaries and surface Debye temperature on the electrical-resistance of thin gold-films,” Phys. Rev. B29(2), 645–650 (1984).
    [CrossRef]

2011

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new achitecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. (Deerfield Beach Fla.)23(21), 2469–2473 (2011).
[CrossRef]

2010

Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
[CrossRef]

M. G. Kang, H. J. Park, S. H. Ahn, and L. J. Guo, “Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells,” Sol. Energy Mater. Sol. Cells94(6), 1179–1184 (2010).
[CrossRef]

2008

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2044–2049 (2008).
[CrossRef]

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78(2), 023825 (2008).
[CrossRef]

J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett.8(2), 689–692 (2008).
[CrossRef] [PubMed]

C. Guillen and J. Herrero, “Influence of the film thickness on the structure, optical and electrical properties of ITO coatings deposited by sputtering at room temperature on glass and plastic substrates,” Semicond Sci Ech23(7), 075002 (2008).
[CrossRef]

M. G. Kang, M. S. Kim, J. S. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4408–4413 (2008).
[CrossRef]

2007

M. G. Kang and L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(10), 1391–1396 (2007).
[CrossRef]

2006

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett.88(23), 233506 (2006).
[CrossRef]

M. Li, X. H. Hu, Z. Ye, K. M. Ho, J. R. Cao, and M. Miyawaki, “Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation,” Opt. Lett.31(23), 3498–3500 (2006).
[CrossRef] [PubMed]

Z. Ye, X. H. Hu, M. Li, K. M. Ho, and P. D. Yang, “Propagation of guided modes in curved nanoribbon waveguides,” Appl. Phys. Lett.89(24), 241108 (2006).
[CrossRef]

2005

J. H. Lee, C. H. Kim, K. M. Ho, and K. Constant, “Two-polymer microtransfer molding for highly layered microstructures,” Adv. Mater. (Deerfield Beach Fla.)17(20), 2481–2485 (2005).
[CrossRef]

2004

Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films460(1-2), 156–166 (2004).
[CrossRef]

2003

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.67(4), 046607 (2003).
[CrossRef] [PubMed]

2002

C. G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films411(1), 1–5 (2002).
[CrossRef]

2000

B. G. Lewis and D. C. Paine, “Applications and processing of transparent conducting oxides,” MRS Bull.25(08), 22–27 (2000).
[CrossRef]

T. Minami, “New n-type transparent conducting oxides,” MRS Bull.25(08), 38–44 (2000).
[CrossRef]

1999

M. Katayama, “TFT-LCD technology,” Thin Solid Films341(1-2), 140–147 (1999).
[CrossRef]

1984

P. M. T. M. van Attekum, P. H. Woerlee, G. C. Verkade, and A. A. M. Hoeben, “Influence of grain-boundaries and surface Debye temperature on the electrical-resistance of thin gold-films,” Phys. Rev. B29(2), 645–650 (1984).
[CrossRef]

1979

C. R. Pichard, C. R. Tellier, and A. J. Tosser, “A three-Dimensional model for grain-boundary resistivity in metal-films,” Thin Solid Films62(2), 189–194 (1979).
[CrossRef]

1976

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar-cell,” Appl. Phys. Lett.28(11), 671–673 (1976).
[CrossRef]

Ahn, S. H.

M. G. Kang, H. J. Park, S. H. Ahn, and L. J. Guo, “Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells,” Sol. Energy Mater. Sol. Cells94(6), 1179–1184 (2010).
[CrossRef]

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2044–2049 (2008).
[CrossRef]

Atamny, F.

Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films460(1-2), 156–166 (2004).
[CrossRef]

Baek, J. H.

Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
[CrossRef]

Bao, Z. N.

J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

Becerril, H. A.

J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

Betz, U.

Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films460(1-2), 156–166 (2004).
[CrossRef]

Cao, J. R.

Carlson, D. E.

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar-cell,” Appl. Phys. Lett.28(11), 671–673 (1976).
[CrossRef]

Chaudhary, S.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new achitecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. (Deerfield Beach Fla.)23(21), 2469–2473 (2011).
[CrossRef]

Chen, Y. S.

J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

Choe, J. H.

Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
[CrossRef]

Chutinan, A.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78(2), 023825 (2008).
[CrossRef]

Connor, S. T.

J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett.8(2), 689–692 (2008).
[CrossRef] [PubMed]

Constant, K.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new achitecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. (Deerfield Beach Fla.)23(21), 2469–2473 (2011).
[CrossRef]

J. H. Lee, C. H. Kim, K. M. Ho, and K. Constant, “Two-polymer microtransfer molding for highly layered microstructures,” Adv. Mater. (Deerfield Beach Fla.)17(20), 2481–2485 (2005).
[CrossRef]

Constant, K. P.

Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
[CrossRef]

Cui, Y.

J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett.8(2), 689–692 (2008).
[CrossRef] [PubMed]

Demarco, F.

Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films460(1-2), 156–166 (2004).
[CrossRef]

Dennler, G.

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett.88(23), 233506 (2006).
[CrossRef]

Escola, M. F.

Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films460(1-2), 156–166 (2004).
[CrossRef]

Granqvist, C. G.

C. G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films411(1), 1–5 (2002).
[CrossRef]

Gruner, G.

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett.88(23), 233506 (2006).
[CrossRef]

Guillen, C.

C. Guillen and J. Herrero, “Influence of the film thickness on the structure, optical and electrical properties of ITO coatings deposited by sputtering at room temperature on glass and plastic substrates,” Semicond Sci Ech23(7), 075002 (2008).
[CrossRef]

Guo, L. J.

M. G. Kang, H. J. Park, S. H. Ahn, and L. J. Guo, “Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells,” Sol. Energy Mater. Sol. Cells94(6), 1179–1184 (2010).
[CrossRef]

M. G. Kang, M. S. Kim, J. S. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4408–4413 (2008).
[CrossRef]

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2044–2049 (2008).
[CrossRef]

M. G. Kang and L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(10), 1391–1396 (2007).
[CrossRef]

Herrero, J.

C. Guillen and J. Herrero, “Influence of the film thickness on the structure, optical and electrical properties of ITO coatings deposited by sputtering at room temperature on glass and plastic substrates,” Semicond Sci Ech23(7), 075002 (2008).
[CrossRef]

Ho, K. M.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new achitecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. (Deerfield Beach Fla.)23(21), 2469–2473 (2011).
[CrossRef]

M. Li, X. H. Hu, Z. Ye, K. M. Ho, J. R. Cao, and M. Miyawaki, “Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation,” Opt. Lett.31(23), 3498–3500 (2006).
[CrossRef] [PubMed]

Z. Ye, X. H. Hu, M. Li, K. M. Ho, and P. D. Yang, “Propagation of guided modes in curved nanoribbon waveguides,” Appl. Phys. Lett.89(24), 241108 (2006).
[CrossRef]

J. H. Lee, C. H. Kim, K. M. Ho, and K. Constant, “Two-polymer microtransfer molding for highly layered microstructures,” Adv. Mater. (Deerfield Beach Fla.)17(20), 2481–2485 (2005).
[CrossRef]

Ho, K.-M.

Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
[CrossRef]

Hoeben, A. A. M.

P. M. T. M. van Attekum, P. H. Woerlee, G. C. Verkade, and A. A. M. Hoeben, “Influence of grain-boundaries and surface Debye temperature on the electrical-resistance of thin gold-films,” Phys. Rev. B29(2), 645–650 (1984).
[CrossRef]

Hu, L. B.

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett.88(23), 233506 (2006).
[CrossRef]

Hu, X. H.

Hultaker, A.

C. G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films411(1), 1–5 (2002).
[CrossRef]

John, S.

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78(2), 023825 (2008).
[CrossRef]

Jung, T.

Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
[CrossRef]

Kang, M. G.

M. G. Kang, H. J. Park, S. H. Ahn, and L. J. Guo, “Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells,” Sol. Energy Mater. Sol. Cells94(6), 1179–1184 (2010).
[CrossRef]

M. G. Kang, M. S. Kim, J. S. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4408–4413 (2008).
[CrossRef]

M. G. Kang and L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(10), 1391–1396 (2007).
[CrossRef]

Katayama, M.

M. Katayama, “TFT-LCD technology,” Thin Solid Films341(1-2), 140–147 (1999).
[CrossRef]

Kim, C. H.

J. H. Lee, C. H. Kim, K. M. Ho, and K. Constant, “Two-polymer microtransfer molding for highly layered microstructures,” Adv. Mater. (Deerfield Beach Fla.)17(20), 2481–2485 (2005).
[CrossRef]

Kim, D. H.

Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
[CrossRef]

Kim, E. H.

Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
[CrossRef]

Kim, J. S.

M. G. Kang, M. S. Kim, J. S. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4408–4413 (2008).
[CrossRef]

Kim, M. S.

M. G. Kang, M. S. Kim, J. S. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4408–4413 (2008).
[CrossRef]

Kim, T. G.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new achitecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. (Deerfield Beach Fla.)23(21), 2469–2473 (2011).
[CrossRef]

Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
[CrossRef]

Kuang, P.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new achitecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. (Deerfield Beach Fla.)23(21), 2469–2473 (2011).
[CrossRef]

Lee, J. H.

J. H. Lee, C. H. Kim, K. M. Ho, and K. Constant, “Two-polymer microtransfer molding for highly layered microstructures,” Adv. Mater. (Deerfield Beach Fla.)17(20), 2481–2485 (2005).
[CrossRef]

Lee, J. Y.

J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett.8(2), 689–692 (2008).
[CrossRef] [PubMed]

Leterrier, Y.

Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films460(1-2), 156–166 (2004).
[CrossRef]

Leung, W.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new achitecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. (Deerfield Beach Fla.)23(21), 2469–2473 (2011).
[CrossRef]

Lewis, B. G.

B. G. Lewis and D. C. Paine, “Applications and processing of transparent conducting oxides,” MRS Bull.25(08), 22–27 (2000).
[CrossRef]

Li, M.

Li, Z. Y.

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.67(4), 046607 (2003).
[CrossRef] [PubMed]

Lin, L. L.

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.67(4), 046607 (2003).
[CrossRef] [PubMed]

Liu, Z. F.

J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

Mahadevapuram, R. C.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new achitecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. (Deerfield Beach Fla.)23(21), 2469–2473 (2011).
[CrossRef]

Manson, J. A. E.

Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films460(1-2), 156–166 (2004).
[CrossRef]

McGehee, M. D.

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett.88(23), 233506 (2006).
[CrossRef]

Medico, L.

Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films460(1-2), 156–166 (2004).
[CrossRef]

Minami, T.

T. Minami, “New n-type transparent conducting oxides,” MRS Bull.25(08), 38–44 (2000).
[CrossRef]

Miyawaki, M.

Nalwa, K. S.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new achitecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. (Deerfield Beach Fla.)23(21), 2469–2473 (2011).
[CrossRef]

Olsson, M. K.

Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films460(1-2), 156–166 (2004).
[CrossRef]

Paine, D. C.

B. G. Lewis and D. C. Paine, “Applications and processing of transparent conducting oxides,” MRS Bull.25(08), 22–27 (2000).
[CrossRef]

Park, H. J.

M. G. Kang, H. J. Park, S. H. Ahn, and L. J. Guo, “Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells,” Sol. Energy Mater. Sol. Cells94(6), 1179–1184 (2010).
[CrossRef]

Park, J. M.

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new achitecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. (Deerfield Beach Fla.)23(21), 2469–2473 (2011).
[CrossRef]

Park, J.-M.

Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
[CrossRef]

Park, Q. H.

Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
[CrossRef]

Peumans, P.

J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett.8(2), 689–692 (2008).
[CrossRef] [PubMed]

J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

Pichard, C. R.

C. R. Pichard, C. R. Tellier, and A. J. Tosser, “A three-Dimensional model for grain-boundary resistivity in metal-films,” Thin Solid Films62(2), 189–194 (1979).
[CrossRef]

Prall, H. J.

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett.88(23), 233506 (2006).
[CrossRef]

Rowell, M. W.

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett.88(23), 233506 (2006).
[CrossRef]

Ryu, H.-Y.

Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
[CrossRef]

Sariciftci, N. S.

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett.88(23), 233506 (2006).
[CrossRef]

Shin, Y. C.

Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
[CrossRef]

Tellier, C. R.

C. R. Pichard, C. R. Tellier, and A. J. Tosser, “A three-Dimensional model for grain-boundary resistivity in metal-films,” Thin Solid Films62(2), 189–194 (1979).
[CrossRef]

Topinka, M. A.

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett.88(23), 233506 (2006).
[CrossRef]

Tosser, A. J.

C. R. Pichard, C. R. Tellier, and A. J. Tosser, “A three-Dimensional model for grain-boundary resistivity in metal-films,” Thin Solid Films62(2), 189–194 (1979).
[CrossRef]

van Attekum, P. M. T. M.

P. M. T. M. van Attekum, P. H. Woerlee, G. C. Verkade, and A. A. M. Hoeben, “Influence of grain-boundaries and surface Debye temperature on the electrical-resistance of thin gold-films,” Phys. Rev. B29(2), 645–650 (1984).
[CrossRef]

Verkade, G. C.

P. M. T. M. van Attekum, P. H. Woerlee, G. C. Verkade, and A. A. M. Hoeben, “Influence of grain-boundaries and surface Debye temperature on the electrical-resistance of thin gold-films,” Phys. Rev. B29(2), 645–650 (1984).
[CrossRef]

Woerlee, P. H.

P. M. T. M. van Attekum, P. H. Woerlee, G. C. Verkade, and A. A. M. Hoeben, “Influence of grain-boundaries and surface Debye temperature on the electrical-resistance of thin gold-films,” Phys. Rev. B29(2), 645–650 (1984).
[CrossRef]

Wronski, C. R.

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar-cell,” Appl. Phys. Lett.28(11), 671–673 (1976).
[CrossRef]

Wu, J. B.

J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

Yang, P. D.

Z. Ye, X. H. Hu, M. Li, K. M. Ho, and P. D. Yang, “Propagation of guided modes in curved nanoribbon waveguides,” Appl. Phys. Lett.89(24), 241108 (2006).
[CrossRef]

Ye, Z.

Adv. Mater. (Deerfield Beach Fla.)

M. G. Kang and L. J. Guo, “Nanoimprinted semitransparent metal electrodes and their application in organic light-emitting diodes,” Adv. Mater. (Deerfield Beach Fla.)19(10), 1391–1396 (2007).
[CrossRef]

M. G. Kang, M. S. Kim, J. S. Kim, and L. J. Guo, “Organic solar cells using nanoimprinted transparent metal electrodes,” Adv. Mater. (Deerfield Beach Fla.)20(23), 4408–4413 (2008).
[CrossRef]

S. H. Ahn and L. J. Guo, “High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates,” Adv. Mater. (Deerfield Beach Fla.)20(11), 2044–2049 (2008).
[CrossRef]

J. H. Lee, C. H. Kim, K. M. Ho, and K. Constant, “Two-polymer microtransfer molding for highly layered microstructures,” Adv. Mater. (Deerfield Beach Fla.)17(20), 2481–2485 (2005).
[CrossRef]

P. Kuang, J. M. Park, W. Leung, R. C. Mahadevapuram, K. S. Nalwa, T. G. Kim, S. Chaudhary, K. M. Ho, and K. Constant, “A new achitecture for transparent electrodes: relieving the trade-off between electrical conductivity and optical transmittance,” Adv. Mater. (Deerfield Beach Fla.)23(21), 2469–2473 (2011).
[CrossRef]

Appl. Phys. Lett.

D. E. Carlson and C. R. Wronski, “Amorphous silicon solar-cell,” Appl. Phys. Lett.28(11), 671–673 (1976).
[CrossRef]

M. W. Rowell, M. A. Topinka, M. D. McGehee, H. J. Prall, G. Dennler, N. S. Sariciftci, L. B. Hu, and G. Gruner, “Organic solar cells with carbon nanotube network electrodes,” Appl. Phys. Lett.88(23), 233506 (2006).
[CrossRef]

J. B. Wu, H. A. Becerril, Z. N. Bao, Z. F. Liu, Y. S. Chen, and P. Peumans, “Organic solar cells with solution-processed graphene transparent electrodes,” Appl. Phys. Lett.92(26), 263302 (2008).
[CrossRef]

Z. Ye, X. H. Hu, M. Li, K. M. Ho, and P. D. Yang, “Propagation of guided modes in curved nanoribbon waveguides,” Appl. Phys. Lett.89(24), 241108 (2006).
[CrossRef]

IEEE J. Quantum Electron.

Y. C. Shin, D. H. Kim, E. H. Kim, J.-M. Park, K.-M. Ho, K. P. Constant, J. H. Choe, Q. H. Park, H.-Y. Ryu, J. H. Baek, T. Jung, and T. G. Kim, “High efficiency GaN light-emitting diodes with two dimensional photonic crystal structures of deep-hole square lattices,” IEEE J. Quantum Electron.46(1), 116–120 (2010).
[CrossRef]

MRS Bull.

B. G. Lewis and D. C. Paine, “Applications and processing of transparent conducting oxides,” MRS Bull.25(08), 22–27 (2000).
[CrossRef]

T. Minami, “New n-type transparent conducting oxides,” MRS Bull.25(08), 38–44 (2000).
[CrossRef]

Nano Lett.

J. Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett.8(2), 689–692 (2008).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78(2), 023825 (2008).
[CrossRef]

Phys. Rev. B

P. M. T. M. van Attekum, P. H. Woerlee, G. C. Verkade, and A. A. M. Hoeben, “Influence of grain-boundaries and surface Debye temperature on the electrical-resistance of thin gold-films,” Phys. Rev. B29(2), 645–650 (1984).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

Z. Y. Li and L. L. Lin, “Photonic band structures solved by a plane-wave-based transfer-matrix method,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.67(4), 046607 (2003).
[CrossRef] [PubMed]

Semicond Sci Ech

C. Guillen and J. Herrero, “Influence of the film thickness on the structure, optical and electrical properties of ITO coatings deposited by sputtering at room temperature on glass and plastic substrates,” Semicond Sci Ech23(7), 075002 (2008).
[CrossRef]

Sol. Energy Mater. Sol. Cells

M. G. Kang, H. J. Park, S. H. Ahn, and L. J. Guo, “Transparent Cu nanowire mesh electrode on flexible substrates fabricated by transfer printing and its application in organic solar cells,” Sol. Energy Mater. Sol. Cells94(6), 1179–1184 (2010).
[CrossRef]

Thin Solid Films

Y. Leterrier, L. Medico, F. Demarco, J. A. E. Manson, U. Betz, M. F. Escola, M. K. Olsson, and F. Atamny, “Mechanical integrity of transparent conductive oxide films for flexible polymer-based displays,” Thin Solid Films460(1-2), 156–166 (2004).
[CrossRef]

M. Katayama, “TFT-LCD technology,” Thin Solid Films341(1-2), 140–147 (1999).
[CrossRef]

C. G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications,” Thin Solid Films411(1), 1–5 (2002).
[CrossRef]

C. R. Pichard, C. R. Tellier, and A. J. Tosser, “A three-Dimensional model for grain-boundary resistivity in metal-films,” Thin Solid Films62(2), 189–194 (1979).
[CrossRef]

Other

“Critical materials strategy summary,” Department of Energy, USA (2011). http://energy.gov/pi/office-policy-and-international-affairs/downloads/2011-critical-materials-strategy

Movie clip: http://home.engineering.iastate.edu/~sumitc/documents/electrodes .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics for metal deposition, argon plasma etching, and encapsulation process.

Fig. 2
Fig. 2

The measured transmission spectra for structures (a) with 1400nm height (b) and with 300nm height with gold sidewalls before and after plasma etching.

Fig. 3
Fig. 3

Image of a 1400nm height structure after argon plasma etching with the upper left corner of the structure encapsulated.

Fig. 4
Fig. 4

Still images from a movie clip when the “Ames Laboratory” logo is (a) under the encapsulated area, (b) unencapsulated area showing double imaging with vertical grating direction, (c) encapsulated area with sample tilted 60° and (d) with sample tilted 60° but also rotated 90°. (Unencapsulated PU grating structure dimensions: periodicity = 2.5 μm, height ≈1.2 μm, width ≈1.2 μm.).

Fig. 5
Fig. 5

The measured total transmission spectra of (a) an unencapsulated sample and (b) an encapsulated sample. The grating sample dimensions are 2.5μm periodicity, 1.2μm width, and 1.2μm height with 25nm gold sidewalls.

Fig. 6
Fig. 6

Calculated and measured transmission. The solid and dashed lines stand for measured and calculated transmission, respectively, with various incident angles of 0° (black), 30° (red), and 60° (green). (a) and (b) show transmission for a sample rotated in the direction parallel to the grating for p-polarized and s-polarized waves, respectively. (c) and (d) show transmission for a sample rotated as a venetian blind in the direction perpendicular to the grating with s-polarized and p-polarized waves, respectively.

Fig. 7
Fig. 7

Diffraction intensity of the HeNe laser for (a) 1.2um height sample and (b) 300nm height sample.

Metrics