Abstract

The plasmonic nanostructures are widely used to design sensors with improved capabilities. The position of the localized surface plasmon resonance (LSPR) is part of their characteristics and deserves to be specifically studied, according to its importance in sensor tuning, especially for spectroscopic applications. In the visible and near infra-red domain, the LSPR of an array of nano-gold-cylinders is considered as a function of the diameter, height of cylinders and the thickness of chromium adhesion layer and roughness. A numerical experience plan is used to calculate heuristic laws governing the inverse problem and the propagation of uncertainties. Simple linear formulae are deduced from fitting of discrete dipole approximation (DDA) calculations of spectra and a good agreement with various experimental results is found. The size of cylinders can be deduced from a target position of the LSPR and conversely, the approximate position of the LSPR can be simply deduced from the height and diameter of cylinders. The sensitivity coefficients and the propagation of uncertainties on these parameters are evaluated from the fitting of 15500 computations of the DDA model. The case of a grating of nanodisks and of homothetic cylinders is presented and expected trends in the improvement of the fabrication process are proposed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Le Ru and P. G. Etchegoin, Principles of sSurface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).
  2. M. Vidotti, R. F. Carvalhal, R. K. Mendes, D. C. M. Ferreira, and L. T. Kubota, “Biosensors based on gold nanostructures,” J. Braz. Chem. Soc.22, 3–20 (2011).
    [CrossRef]
  3. S. A. Maier, Plasmonics. Fundamentals and Applications (Springer, New York, USA, 2007).
  4. J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72, 033407 (2005).
    [CrossRef]
  5. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65, 075419–075427 (2002).
    [CrossRef]
  6. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticles arrays,” Appl. Phys. Lett.82, 3095–3097 (2003).
    [CrossRef]
  7. A.-S. Grimault, A. Vial, and M. Lamy de la Chapelle, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Appl. Phys. B-Lasers Opt.84, 111–115 (2006).
    [CrossRef]
  8. N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97, 023113–023116 (2010).
    [CrossRef]
  9. H.-H. Yan, Y.-Y. Xiao, S.-X. Xie, and H.-J. Li, “Tunable plasmon resonance of a touching gold cylinder arrays,” J. At. Mol. Sci.3, 252–261 (2012).
  10. A. Dasgupta and G. V. P. Kumar, “Palladium bridged gold nanocylinder dimer: plasmonic properties and hydrogen sensitivity,” Appl. Opt.51, 1688–1693 (2012).
    [CrossRef] [PubMed]
  11. B. Lamprecht, G. Schider, R. T. Lechner, H. Diltbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticles gratings: influence of dipolar interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4723 (2000).
    [CrossRef] [PubMed]
  12. S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structures in near–field,” Eur. Phys. J.-Appl. Phys., 5, 277–281 (1999).
    [CrossRef]
  13. D. Barchiesi, “Pseudo modulation transfer function in reflection scanning near-field optical microscopy,” Opt. Commun.154, 167–172 (1998).
    [CrossRef]
  14. J. Grand, Plasmons de surface de nanoparticules : spectroscopie d’extinction en champs proche et lointain, diffusion Raman exaltée, Ph.D. thesis (Université de technologie de Troyes, 2004).
    [PubMed]
  15. D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B-Lasers Opt.93, 177–181 (2008).
    [CrossRef]
  16. S. Kessentini and D. Barchiesi, “Roughness effect on the efficiency of dimer antenna based biosensor,” Advanced Electromagnetics (AEM)1, 41–47 (2012).
  17. L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422, 303–307 (2006).
    [CrossRef]
  18. M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticles plasmonics,” Laser & Photon. Rev.2, 136–159 (2008).
    [CrossRef]
  19. D. Sharma, R. Sharma, S. Dua, and V. N. Ojha, “Pitch measurements of 1D/2D gratings using optical profiler and comparison with SEM /AFM,” in AdMet 2012, (Metrology Society of India, ARAI, Pune, India, 2012), NM 003, 1–4.
  20. G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B65, 045430 (2005).
    [CrossRef]
  21. D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy229, 525–532 (2008).
    [CrossRef]
  22. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., New York, 1998).
    [CrossRef]
  23. A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “On-chip nanoplasmonic biosensors with actively controlled nanofluidic surface delivery,” in Plasmonics: metallic nanostructures and their optical properties VIII, M. I. Stockman, ed. (SPIE, San Diego, California, USA, 2010), vol. 7757, 775735.
    [CrossRef]
  24. X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” J. Adv. Mater.21, 4880–4910 (2009).
    [CrossRef]
  25. Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys103, 014308 (2008).
    [CrossRef]
  26. H. Shen, N. Guillot, J. Rouxel, M. Lamy de la Chapelle, and T. Toury, “Optimized plasmonic nanostructures for improved sensing activities,” Opt. Express20, 21278–21290 (2012).
    [CrossRef] [PubMed]
  27. A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D.40, 7152–7158 (2007).
    [CrossRef]
  28. D. Barchiesi, N. Lidgi-Guigui, and M. Lamy de la Chapelle, “Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor,” Opt. Commun.285, 1619–1623 (2012).
    [CrossRef]
  29. D. Barchiesi, New perspectives in biosensors technology and applications (INTECH Open Access, Rijeka, Croatia, 2011), chap. 5, pp. 105–126.
  30. H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3, 2043–2048 (2009).
    [CrossRef] [PubMed]
  31. F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Transactions on antennas and propagation43, 1183–1191 (1995).
  32. K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness,” J. Opt. Soc. Am. A24, 522–529 (2007).
    [CrossRef]
  33. V. Poroshin, Y. Borovin, and D. Bogomolov, “Transfer of the surface roughness geometry into the universal FEM software ANSYS,” Advanced Engineering3, 1846–5900 (2009).
  34. A. Kato, S. Burger, and F. Scholze, “Analytical modeling and three-dimensional finite element simulation in line edge roughness in scatterometry,” Appl. Opt.51, 6457–6464 (2012).
    [CrossRef] [PubMed]
  35. A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
    [CrossRef]
  36. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A11, 1491–1499 (1994).
    [CrossRef]
  37. N. Félidj, J. Aubard, and G. Lévi, “Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys111, 1195–1208 (1999).
    [CrossRef]
  38. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
    [CrossRef]
  39. K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption of gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive,” J. Phys. Chem. B109, 20331–20338 (2005).
    [CrossRef]
  40. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem.110, 7238–7248 (2006).
    [CrossRef]
  41. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A25, 2693–2703 (2008).
    [CrossRef]
  42. S. Kessentini and D. Barchiesi, “Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy,” Biomed. Opt. Express3, 590–604 (2012).
    [CrossRef] [PubMed]
  43. H. Devoe, “Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction,” J. Chem. Phys.41, 393–400 (1964).
    [CrossRef]
  44. H. Devoe, “Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals,” J. Chem. Phys.43, 3199–3208 (1965).
    [CrossRef]
  45. E. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973).
    [CrossRef]
  46. V. A. Markel, “Scattering of light from two interacting spherical particles,” J. Mod. Opt.39, 853–861 (1992).
    [CrossRef]
  47. P. C. Chaumet, A. Rahmani, and G. W. Bryant, “Generalization of the coupled dipole method to periodic structures,” Phys. Rev. B67, 165404(1–5) (2003).
    [CrossRef]
  48. E. Zubko, D. Petrov, Y. Grynko, Y. Shkuratov, H. Okamotot, K. Muinonen, T. Nousiainen, H. Kimura, T. Yamamoto, and G. Videen, “Validity criteria of the discrete dipole approximation,” Appl. Opt.49, 1267–1279 (2010).
    [CrossRef] [PubMed]
  49. C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. Van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009).
    [CrossRef]
  50. W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys.193, 869–875 (1995).
    [CrossRef]
  51. H. Parviainen and K. Lumme, “Scattering from rough thin films: discrete-dipole-approximation simulations,” J. Opt. Soc. Am. A25, 90–97 (2008).
    [CrossRef]
  52. B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 7.1,” http://arXiv.org/abs/1002.1505v1 (2010).
  53. A. J. Haija, W. L. Freeman, and T. Roarty, “Effective characteristic matrix of ultrathin multilayer structures,” Opt. Appl.36, 39–50 (2006).
  54. A. J. Abu El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys.93, 2590–2594 (2003).
    [CrossRef]
  55. D. Barchiesi, “Numerical retrieval of thin aluminium layer properties from SPR experimental data,” Opt. Express20, 9064–9078 (2012).
    [CrossRef] [PubMed]
  56. P. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972).
    [CrossRef]
  57. E. D. Palik, Handbook of Optical Constants (Academic Press Inc., San Diego USA, 1985).
  58. S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Influence of the metal film thickness on the sensitivity of surface plasmon resonance biosensors,” Appl. Spectrosc.59, 661–667 (2005).
    [CrossRef] [PubMed]
  59. H. Neff, W. Zong, A. Lima, M. Borre, and G. Holzhüter, “Optical properties and instrumental performance of thin gold films near the surface plasmon resonance,” Thin Solid Films496, 688–697 (2006).
    [CrossRef]
  60. B. A. Sexton, B. N. Feltis, and T. J. Davis, “Effect of surface roughness on the extinction-based localized surface plasmon resonance biosensor,” Sens. Actuator A-Phys.141, 471475 (2008).
  61. Working Group 1, Evaluation of measurement data - Guide to the expression of uncertainty in measurement, (Joint Committee for Guides in Metrology, Paris, 1st ed., 2008, Corrected version 2010).
  62. D. Macías, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in Near-Field Optics,” J. Opt. Soc. Am. A21, 1465–1471 (2004).
    [CrossRef]
  63. T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett.33, 2812–2814 (2008).
    [CrossRef] [PubMed]
  64. D. Macías, A. Vial, and D. Barchiesi, “Evolution strategies approach for the solution of an inverse problem in near-field optics,” in Lecture notes in computer science (6e European Workshop on Evolutionary Computation in Image Analysis and Signal Processing), vol. 3005 / 2004, G. Raidl, S. Cagnoni, J. Branke, R. Corne, D. W. Drechsler, Y. Jin, C. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G. Smith, and G. Squillero, eds. (Springer-VerlagHeidelberg, Germany, 2004), 329 –338.
  65. D. Barchiesi and T. Grosges, “Measurement of the decay lengths of the near field signal in tapping mode,” Curr. Appl. Phys.9, 1227–1231 (2009).
    [CrossRef]
  66. D. Barchiesi, O. Bergossi, M. Spajer, and C. Pieralli, “Image resolution in reflection scanning near-field optical microscopy (R-SNOM) using shear-force (ShF) feedback: characterization using spline and Fourier spectrum,” Appl. Opt.36, 2171–2177 (1997).
    [CrossRef] [PubMed]
  67. T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance,” Biomed. Opt. Express2, 1584–1596 (2011).
    [CrossRef] [PubMed]
  68. K. J. Prashant, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: Application in biological imaging and biomedicine,” Accounts Chem. Res.41, 1578–1586 (2008).

2012 (8)

2011 (3)

T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance,” Biomed. Opt. Express2, 1584–1596 (2011).
[CrossRef] [PubMed]

A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
[CrossRef]

M. Vidotti, R. F. Carvalhal, R. K. Mendes, D. C. M. Ferreira, and L. T. Kubota, “Biosensors based on gold nanostructures,” J. Braz. Chem. Soc.22, 3–20 (2011).
[CrossRef]

2010 (2)

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97, 023113–023116 (2010).
[CrossRef]

E. Zubko, D. Petrov, Y. Grynko, Y. Shkuratov, H. Okamotot, K. Muinonen, T. Nousiainen, H. Kimura, T. Yamamoto, and G. Videen, “Validity criteria of the discrete dipole approximation,” Appl. Opt.49, 1267–1279 (2010).
[CrossRef] [PubMed]

2009 (5)

D. Barchiesi and T. Grosges, “Measurement of the decay lengths of the near field signal in tapping mode,” Curr. Appl. Phys.9, 1227–1231 (2009).
[CrossRef]

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” J. Adv. Mater.21, 4880–4910 (2009).
[CrossRef]

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3, 2043–2048 (2009).
[CrossRef] [PubMed]

V. Poroshin, Y. Borovin, and D. Bogomolov, “Transfer of the surface roughness geometry into the universal FEM software ANSYS,” Advanced Engineering3, 1846–5900 (2009).

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. Van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009).
[CrossRef]

2008 (9)

D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy229, 525–532 (2008).
[CrossRef]

Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys103, 014308 (2008).
[CrossRef]

M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticles plasmonics,” Laser & Photon. Rev.2, 136–159 (2008).
[CrossRef]

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B-Lasers Opt.93, 177–181 (2008).
[CrossRef]

K. J. Prashant, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: Application in biological imaging and biomedicine,” Accounts Chem. Res.41, 1578–1586 (2008).

B. A. Sexton, B. N. Feltis, and T. J. Davis, “Effect of surface roughness on the extinction-based localized surface plasmon resonance biosensor,” Sens. Actuator A-Phys.141, 471475 (2008).

H. Parviainen and K. Lumme, “Scattering from rough thin films: discrete-dipole-approximation simulations,” J. Opt. Soc. Am. A25, 90–97 (2008).
[CrossRef]

B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: theory and tests,” J. Opt. Soc. Am. A25, 2693–2703 (2008).
[CrossRef]

T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett.33, 2812–2814 (2008).
[CrossRef] [PubMed]

2007 (2)

K. M. Byun, S. J. Yoon, D. Kim, and S. J. Kim, “Sensitivity analysis of a nanowire-based surface plasmon resonance biosensor in the presence of surface roughness,” J. Opt. Soc. Am. A24, 522–529 (2007).
[CrossRef]

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D.40, 7152–7158 (2007).
[CrossRef]

2006 (5)

L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422, 303–307 (2006).
[CrossRef]

A.-S. Grimault, A. Vial, and M. Lamy de la Chapelle, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Appl. Phys. B-Lasers Opt.84, 111–115 (2006).
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem.110, 7238–7248 (2006).
[CrossRef]

A. J. Haija, W. L. Freeman, and T. Roarty, “Effective characteristic matrix of ultrathin multilayer structures,” Opt. Appl.36, 39–50 (2006).

H. Neff, W. Zong, A. Lima, M. Borre, and G. Holzhüter, “Optical properties and instrumental performance of thin gold films near the surface plasmon resonance,” Thin Solid Films496, 688–697 (2006).
[CrossRef]

2005 (4)

S. Ekgasit, C. Thammacharoen, F. Yu, and W. Knoll, “Influence of the metal film thickness on the sensitivity of surface plasmon resonance biosensors,” Appl. Spectrosc.59, 661–667 (2005).
[CrossRef] [PubMed]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption of gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive,” J. Phys. Chem. B109, 20331–20338 (2005).
[CrossRef]

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72, 033407 (2005).
[CrossRef]

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B65, 045430 (2005).
[CrossRef]

2004 (1)

2003 (4)

A. J. Abu El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys.93, 2590–2594 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticles arrays,” Appl. Phys. Lett.82, 3095–3097 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

P. C. Chaumet, A. Rahmani, and G. W. Bryant, “Generalization of the coupled dipole method to periodic structures,” Phys. Rev. B67, 165404(1–5) (2003).
[CrossRef]

2002 (1)

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65, 075419–075427 (2002).
[CrossRef]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Diltbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticles gratings: influence of dipolar interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4723 (2000).
[CrossRef] [PubMed]

1999 (2)

S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structures in near–field,” Eur. Phys. J.-Appl. Phys., 5, 277–281 (1999).
[CrossRef]

N. Félidj, J. Aubard, and G. Lévi, “Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys111, 1195–1208 (1999).
[CrossRef]

1998 (1)

D. Barchiesi, “Pseudo modulation transfer function in reflection scanning near-field optical microscopy,” Opt. Commun.154, 167–172 (1998).
[CrossRef]

1997 (1)

1995 (2)

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Transactions on antennas and propagation43, 1183–1191 (1995).

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys.193, 869–875 (1995).
[CrossRef]

1994 (1)

1992 (1)

V. A. Markel, “Scattering of light from two interacting spherical particles,” J. Mod. Opt.39, 853–861 (1992).
[CrossRef]

1973 (1)

E. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973).
[CrossRef]

1972 (1)

P. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972).
[CrossRef]

1965 (1)

H. Devoe, “Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals,” J. Chem. Phys.43, 3199–3208 (1965).
[CrossRef]

1964 (1)

H. Devoe, “Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction,” J. Chem. Phys.41, 393–400 (1964).
[CrossRef]

Abu El-Haija, A. J.

A. J. Abu El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys.93, 2590–2594 (2003).
[CrossRef]

Adam, P.-M.

L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422, 303–307 (2006).
[CrossRef]

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72, 033407 (2005).
[CrossRef]

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticles plasmonics,” Laser & Photon. Rev.2, 136–159 (2008).
[CrossRef]

Altug, H.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “On-chip nanoplasmonic biosensors with actively controlled nanofluidic surface delivery,” in Plasmonics: metallic nanostructures and their optical properties VIII, M. I. Stockman, ed. (SPIE, San Diego, California, USA, 2010), vol. 7757, 775735.
[CrossRef]

Aouani, H.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3, 2043–2048 (2009).
[CrossRef] [PubMed]

Artar, A.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “On-chip nanoplasmonic biosensors with actively controlled nanofluidic surface delivery,” in Plasmonics: metallic nanostructures and their optical properties VIII, M. I. Stockman, ed. (SPIE, San Diego, California, USA, 2010), vol. 7757, 775735.
[CrossRef]

Aubard, J.

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B65, 045430 (2005).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticles arrays,” Appl. Phys. Lett.82, 3095–3097 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65, 075419–075427 (2002).
[CrossRef]

N. Félidj, J. Aubard, and G. Lévi, “Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys111, 1195–1208 (1999).
[CrossRef]

Aussenegg, F. R.

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B65, 045430 (2005).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticles arrays,” Appl. Phys. Lett.82, 3095–3097 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65, 075419–075427 (2002).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Diltbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticles gratings: influence of dipolar interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4723 (2000).
[CrossRef] [PubMed]

Barchiesi, D.

D. Barchiesi, “Numerical retrieval of thin aluminium layer properties from SPR experimental data,” Opt. Express20, 9064–9078 (2012).
[CrossRef] [PubMed]

S. Kessentini and D. Barchiesi, “Roughness effect on the efficiency of dimer antenna based biosensor,” Advanced Electromagnetics (AEM)1, 41–47 (2012).

S. Kessentini and D. Barchiesi, “Quantitative comparison of optimized nanorods, nanoshells and hollow nanospheres for photothermal therapy,” Biomed. Opt. Express3, 590–604 (2012).
[CrossRef] [PubMed]

D. Barchiesi, N. Lidgi-Guigui, and M. Lamy de la Chapelle, “Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor,” Opt. Commun.285, 1619–1623 (2012).
[CrossRef]

T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance,” Biomed. Opt. Express2, 1584–1596 (2011).
[CrossRef] [PubMed]

D. Barchiesi and T. Grosges, “Measurement of the decay lengths of the near field signal in tapping mode,” Curr. Appl. Phys.9, 1227–1231 (2009).
[CrossRef]

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B-Lasers Opt.93, 177–181 (2008).
[CrossRef]

D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy229, 525–532 (2008).
[CrossRef]

T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett.33, 2812–2814 (2008).
[CrossRef] [PubMed]

L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422, 303–307 (2006).
[CrossRef]

D. Macías, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in Near-Field Optics,” J. Opt. Soc. Am. A21, 1465–1471 (2004).
[CrossRef]

S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structures in near–field,” Eur. Phys. J.-Appl. Phys., 5, 277–281 (1999).
[CrossRef]

D. Barchiesi, “Pseudo modulation transfer function in reflection scanning near-field optical microscopy,” Opt. Commun.154, 167–172 (1998).
[CrossRef]

D. Barchiesi, O. Bergossi, M. Spajer, and C. Pieralli, “Image resolution in reflection scanning near-field optical microscopy (R-SNOM) using shear-force (ShF) feedback: characterization using spline and Fourier spectrum,” Appl. Opt.36, 2171–2177 (1997).
[CrossRef] [PubMed]

D. Macías, A. Vial, and D. Barchiesi, “Evolution strategies approach for the solution of an inverse problem in near-field optics,” in Lecture notes in computer science (6e European Workshop on Evolutionary Computation in Image Analysis and Signal Processing), vol. 3005 / 2004, G. Raidl, S. Cagnoni, J. Branke, R. Corne, D. W. Drechsler, Y. Jin, C. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G. Smith, and G. Squillero, eds. (Springer-VerlagHeidelberg, Germany, 2004), 329 –338.

D. Barchiesi, New perspectives in biosensors technology and applications (INTECH Open Access, Rijeka, Croatia, 2011), chap. 5, pp. 105–126.

Belmar-Letellier, L.

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B-Lasers Opt.93, 177–181 (2008).
[CrossRef]

Bergossi, O.

Bijeon, J.-L.

L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422, 303–307 (2006).
[CrossRef]

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72, 033407 (2005).
[CrossRef]

Billot, L.

L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422, 303–307 (2006).
[CrossRef]

Blair, S.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3, 2043–2048 (2009).
[CrossRef] [PubMed]

Bogomolov, D.

V. Poroshin, Y. Borovin, and D. Bogomolov, “Transfer of the surface roughness geometry into the universal FEM software ANSYS,” Advanced Engineering3, 1846–5900 (2009).

Bohren, C. F.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., New York, 1998).
[CrossRef]

Borovin, Y.

V. Poroshin, Y. Borovin, and D. Bogomolov, “Transfer of the surface roughness geometry into the universal FEM software ANSYS,” Advanced Engineering3, 1846–5900 (2009).

Borre, M.

H. Neff, W. Zong, A. Lima, M. Borre, and G. Holzhüter, “Optical properties and instrumental performance of thin gold films near the surface plasmon resonance,” Thin Solid Films496, 688–697 (2006).
[CrossRef]

Broschat, S. L.

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Transactions on antennas and propagation43, 1183–1191 (1995).

Bryant, G. W.

M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticles plasmonics,” Laser & Photon. Rev.2, 136–159 (2008).
[CrossRef]

P. C. Chaumet, A. Rahmani, and G. W. Bryant, “Generalization of the coupled dipole method to periodic structures,” Phys. Rev. B67, 165404(1–5) (2003).
[CrossRef]

Burger, S.

Byun, K. M.

Carvalhal, R. F.

M. Vidotti, R. F. Carvalhal, R. K. Mendes, D. C. M. Ferreira, and L. T. Kubota, “Biosensors based on gold nanostructures,” J. Braz. Chem. Soc.22, 3–20 (2011).
[CrossRef]

Chang, T.-Y.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “On-chip nanoplasmonic biosensors with actively controlled nanofluidic surface delivery,” in Plasmonics: metallic nanostructures and their optical properties VIII, M. I. Stockman, ed. (SPIE, San Diego, California, USA, 2010), vol. 7757, 775735.
[CrossRef]

Chaumet, P. C.

P. C. Chaumet, A. Rahmani, and G. W. Bryant, “Generalization of the coupled dipole method to periodic structures,” Phys. Rev. B67, 165404(1–5) (2003).
[CrossRef]

Christy, R. W.

P. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Courjon, D.

S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structures in near–field,” Eur. Phys. J.-Appl. Phys., 5, 277–281 (1999).
[CrossRef]

Dasgupta, A.

Davis, T. J.

B. A. Sexton, B. N. Feltis, and T. J. Davis, “Effect of surface roughness on the extinction-based localized surface plasmon resonance biosensor,” Sens. Actuator A-Phys.141, 471475 (2008).

Davy, S.

S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structures in near–field,” Eur. Phys. J.-Appl. Phys., 5, 277–281 (1999).
[CrossRef]

Devaux, E.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3, 2043–2048 (2009).
[CrossRef] [PubMed]

Devoe, H.

H. Devoe, “Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals,” J. Chem. Phys.43, 3199–3208 (1965).
[CrossRef]

H. Devoe, “Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction,” J. Chem. Phys.41, 393–400 (1964).
[CrossRef]

Diltbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Diltbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticles gratings: influence of dipolar interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4723 (2000).
[CrossRef] [PubMed]

Draine, B. T.

Dua, S.

D. Sharma, R. Sharma, S. Dua, and V. N. Ojha, “Pitch measurements of 1D/2D gratings using optical profiler and comparison with SEM /AFM,” in AdMet 2012, (Metrology Society of India, ARAI, Pune, India, 2012), NM 003, 1–4.

Ebbesen, T. W.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3, 2043–2048 (2009).
[CrossRef] [PubMed]

Ekgasit, S.

El-Sayed, I. H.

K. J. Prashant, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: Application in biological imaging and biomedicine,” Accounts Chem. Res.41, 1578–1586 (2008).

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem.110, 7238–7248 (2006).
[CrossRef]

El-Sayed, M. A.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” J. Adv. Mater.21, 4880–4910 (2009).
[CrossRef]

K. J. Prashant, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: Application in biological imaging and biomedicine,” Accounts Chem. Res.41, 1578–1586 (2008).

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem.110, 7238–7248 (2006).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption of gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive,” J. Phys. Chem. B109, 20331–20338 (2005).
[CrossRef]

Etchegoin, P. G.

E. C. Le Ru and P. G. Etchegoin, Principles of sSurface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).

Félidj, N.

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B65, 045430 (2005).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticles arrays,” Appl. Phys. Lett.82, 3095–3097 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65, 075419–075427 (2002).
[CrossRef]

N. Félidj, J. Aubard, and G. Lévi, “Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys111, 1195–1208 (1999).
[CrossRef]

Feltis, B. N.

B. A. Sexton, B. N. Feltis, and T. J. Davis, “Effect of surface roughness on the extinction-based localized surface plasmon resonance biosensor,” Sens. Actuator A-Phys.141, 471475 (2008).

Ferreira, D. C. M.

M. Vidotti, R. F. Carvalhal, R. K. Mendes, D. C. M. Ferreira, and L. T. Kubota, “Biosensors based on gold nanostructures,” J. Braz. Chem. Soc.22, 3–20 (2011).
[CrossRef]

Flatau, P. J.

Freeman, W. L.

A. J. Haija, W. L. Freeman, and T. Roarty, “Effective characteristic matrix of ultrathin multilayer structures,” Opt. Appl.36, 39–50 (2006).

Frémaux, B.

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97, 023113–023116 (2010).
[CrossRef]

Gérard, D.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3, 2043–2048 (2009).
[CrossRef] [PubMed]

Grand, J.

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72, 033407 (2005).
[CrossRef]

J. Grand, Plasmons de surface de nanoparticules : spectroscopie d’extinction en champs proche et lointain, diffusion Raman exaltée, Ph.D. thesis (Université de technologie de Troyes, 2004).
[PubMed]

Gréhan, G.

Grimault, A. S.

L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422, 303–307 (2006).
[CrossRef]

Grimault, A.-S.

A.-S. Grimault, A. Vial, and M. Lamy de la Chapelle, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Appl. Phys. B-Lasers Opt.84, 111–115 (2006).
[CrossRef]

Grosges, T.

T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance,” Biomed. Opt. Express2, 1584–1596 (2011).
[CrossRef] [PubMed]

D. Barchiesi and T. Grosges, “Measurement of the decay lengths of the near field signal in tapping mode,” Curr. Appl. Phys.9, 1227–1231 (2009).
[CrossRef]

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B-Lasers Opt.93, 177–181 (2008).
[CrossRef]

D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy229, 525–532 (2008).
[CrossRef]

T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett.33, 2812–2814 (2008).
[CrossRef] [PubMed]

Grynko, Y.

Guillot, N.

H. Shen, N. Guillot, J. Rouxel, M. Lamy de la Chapelle, and T. Toury, “Optimized plasmonic nanostructures for improved sensing activities,” Opt. Express20, 21278–21290 (2012).
[CrossRef] [PubMed]

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97, 023113–023116 (2010).
[CrossRef]

Haija, A. J.

A. J. Haija, W. L. Freeman, and T. Roarty, “Effective characteristic matrix of ultrathin multilayer structures,” Opt. Appl.36, 39–50 (2006).

Hastings, F. D.

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Transactions on antennas and propagation43, 1183–1191 (1995).

Hohenau, A.

A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
[CrossRef]

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B65, 045430 (2005).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticles arrays,” Appl. Phys. Lett.82, 3095–3097 (2003).
[CrossRef]

Hohenester, U.

A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
[CrossRef]

Holzhüter, G.

H. Neff, W. Zong, A. Lima, M. Borre, and G. Holzhüter, “Optical properties and instrumental performance of thin gold films near the surface plasmon resonance,” Thin Solid Films496, 688–697 (2006).
[CrossRef]

Huang, M.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “On-chip nanoplasmonic biosensors with actively controlled nanofluidic surface delivery,” in Plasmonics: metallic nanostructures and their optical properties VIII, M. I. Stockman, ed. (SPIE, San Diego, California, USA, 2010), vol. 7757, 775735.
[CrossRef]

Huang, T. J.

Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys103, 014308 (2008).
[CrossRef]

Huang, X.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” J. Adv. Mater.21, 4880–4910 (2009).
[CrossRef]

K. J. Prashant, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: Application in biological imaging and biomedicine,” Accounts Chem. Res.41, 1578–1586 (2008).

Huffman, D. R.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., New York, 1998).
[CrossRef]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem.110, 7238–7248 (2006).
[CrossRef]

Johnson, P.

P. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972).
[CrossRef]

Juluri, B. K.

Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys103, 014308 (2008).
[CrossRef]

Kato, A.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Kessentini, S.

Kim, D.

Kim, S. J.

Kimura, H.

Knoll, W.

Kremer, E.

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B-Lasers Opt.93, 177–181 (2008).
[CrossRef]

D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy229, 525–532 (2008).
[CrossRef]

Krenn, J. R.

A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
[CrossRef]

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B65, 045430 (2005).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticles arrays,” Appl. Phys. Lett.82, 3095–3097 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65, 075419–075427 (2002).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Diltbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticles gratings: influence of dipolar interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4723 (2000).
[CrossRef] [PubMed]

Kubota, L. T.

M. Vidotti, R. F. Carvalhal, R. K. Mendes, D. C. M. Ferreira, and L. T. Kubota, “Biosensors based on gold nanostructures,” J. Braz. Chem. Soc.22, 3–20 (2011).
[CrossRef]

Kumar, G. V. P.

Lamprecht, B.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65, 075419–075427 (2002).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Diltbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticles gratings: influence of dipolar interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4723 (2000).
[CrossRef] [PubMed]

Lamy de la Chapelle, M.

H. Shen, N. Guillot, J. Rouxel, M. Lamy de la Chapelle, and T. Toury, “Optimized plasmonic nanostructures for improved sensing activities,” Opt. Express20, 21278–21290 (2012).
[CrossRef] [PubMed]

D. Barchiesi, N. Lidgi-Guigui, and M. Lamy de la Chapelle, “Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor,” Opt. Commun.285, 1619–1623 (2012).
[CrossRef]

T. Grosges, D. Barchiesi, S. Kessentini, G. Gréhan, and M. Lamy de la Chapelle, “Nanoshells for photothermal therapy: a Monte-Carlo based numerical study of their design tolerance,” Biomed. Opt. Express2, 1584–1596 (2011).
[CrossRef] [PubMed]

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97, 023113–023116 (2010).
[CrossRef]

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B-Lasers Opt.93, 177–181 (2008).
[CrossRef]

A.-S. Grimault, A. Vial, and M. Lamy de la Chapelle, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Appl. Phys. B-Lasers Opt.84, 111–115 (2006).
[CrossRef]

L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422, 303–307 (2006).
[CrossRef]

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72, 033407 (2005).
[CrossRef]

Laroche, T.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D.40, 7152–7158 (2007).
[CrossRef]

Laurent, G.

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B65, 045430 (2005).
[CrossRef]

Le Ru, E. C.

E. C. Le Ru and P. G. Etchegoin, Principles of sSurface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Diltbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticles gratings: influence of dipolar interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4723 (2000).
[CrossRef] [PubMed]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem.110, 7238–7248 (2006).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption of gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive,” J. Phys. Chem. B109, 20331–20338 (2005).
[CrossRef]

Leitner, A.

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B65, 045430 (2005).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticles arrays,” Appl. Phys. Lett.82, 3095–3097 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65, 075419–075427 (2002).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Diltbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticles gratings: influence of dipolar interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4723 (2000).
[CrossRef] [PubMed]

Lévi, G.

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B65, 045430 (2005).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticles arrays,” Appl. Phys. Lett.82, 3095–3097 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65, 075419–075427 (2002).
[CrossRef]

N. Félidj, J. Aubard, and G. Lévi, “Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys111, 1195–1208 (1999).
[CrossRef]

Li, H.-J.

H.-H. Yan, Y.-Y. Xiao, S.-X. Xie, and H.-J. Li, “Tunable plasmon resonance of a touching gold cylinder arrays,” J. At. Mol. Sci.3, 252–261 (2012).

Lidgi-Guigui, N.

D. Barchiesi, N. Lidgi-Guigui, and M. Lamy de la Chapelle, “Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor,” Opt. Commun.285, 1619–1623 (2012).
[CrossRef]

Lima, A.

H. Neff, W. Zong, A. Lima, M. Borre, and G. Holzhüter, “Optical properties and instrumental performance of thin gold films near the surface plasmon resonance,” Thin Solid Films496, 688–697 (2006).
[CrossRef]

Lumme, K.

Macías, D.

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B-Lasers Opt.93, 177–181 (2008).
[CrossRef]

D. Macías, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in Near-Field Optics,” J. Opt. Soc. Am. A21, 1465–1471 (2004).
[CrossRef]

D. Macías, A. Vial, and D. Barchiesi, “Evolution strategies approach for the solution of an inverse problem in near-field optics,” in Lecture notes in computer science (6e European Workshop on Evolutionary Computation in Image Analysis and Signal Processing), vol. 3005 / 2004, G. Raidl, S. Cagnoni, J. Branke, R. Corne, D. W. Drechsler, Y. Jin, C. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G. Smith, and G. Squillero, eds. (Springer-VerlagHeidelberg, Germany, 2004), 329 –338.

Mahdavi, F.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3, 2043–2048 (2009).
[CrossRef] [PubMed]

Mai, V.

D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy229, 525–532 (2008).
[CrossRef]

Maier, S. A.

S. A. Maier, Plasmonics. Fundamentals and Applications (Springer, New York, USA, 2007).

Manohar, S.

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. Van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009).
[CrossRef]

Mao, X.

Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys103, 014308 (2008).
[CrossRef]

Markel, V. A.

V. A. Markel, “Scattering of light from two interacting spherical particles,” J. Mod. Opt.39, 853–861 (1992).
[CrossRef]

Mendes, R. K.

M. Vidotti, R. F. Carvalhal, R. K. Mendes, D. C. M. Ferreira, and L. T. Kubota, “Biosensors based on gold nanostructures,” J. Braz. Chem. Soc.22, 3–20 (2011).
[CrossRef]

Moreau, L.

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B-Lasers Opt.93, 177–181 (2008).
[CrossRef]

Muinonen, K.

Neff, H.

H. Neff, W. Zong, A. Lima, M. Borre, and G. Holzhüter, “Optical properties and instrumental performance of thin gold films near the surface plasmon resonance,” Thin Solid Films496, 688–697 (2006).
[CrossRef]

Neretina, S.

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” J. Adv. Mater.21, 4880–4910 (2009).
[CrossRef]

Nousiainen, T.

Ojha, V. N.

D. Sharma, R. Sharma, S. Dua, and V. N. Ojha, “Pitch measurements of 1D/2D gratings using optical profiler and comparison with SEM /AFM,” in AdMet 2012, (Metrology Society of India, ARAI, Pune, India, 2012), NM 003, 1–4.

Okamotot, H.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants (Academic Press Inc., San Diego USA, 1985).

Parviainen, H.

Pelton, M.

M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticles plasmonics,” Laser & Photon. Rev.2, 136–159 (2008).
[CrossRef]

Pennypacker, C. R.

E. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973).
[CrossRef]

Péron, O.

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97, 023113–023116 (2010).
[CrossRef]

Petrov, D.

Pieralli, C.

Poroshin, V.

V. Poroshin, Y. Borovin, and D. Bogomolov, “Transfer of the surface roughness geometry into the universal FEM software ANSYS,” Advanced Engineering3, 1846–5900 (2009).

Prashant, K. J.

K. J. Prashant, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: Application in biological imaging and biomedicine,” Accounts Chem. Res.41, 1578–1586 (2008).

Purcell, E.

E. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973).
[CrossRef]

Rahmani, A.

P. C. Chaumet, A. Rahmani, and G. W. Bryant, “Generalization of the coupled dipole method to periodic structures,” Phys. Rev. B67, 165404(1–5) (2003).
[CrossRef]

Rayavarapu, R. G.

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. Van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009).
[CrossRef]

Rigneault, H.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3, 2043–2048 (2009).
[CrossRef] [PubMed]

Rinnert, E.

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97, 023113–023116 (2010).
[CrossRef]

Roarty, T.

A. J. Haija, W. L. Freeman, and T. Roarty, “Effective characteristic matrix of ultrathin multilayer structures,” Opt. Appl.36, 39–50 (2006).

Rouxel, J.

Royer, P.

L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422, 303–307 (2006).
[CrossRef]

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72, 033407 (2005).
[CrossRef]

Salerno, M.

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65, 075419–075427 (2002).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys.193, 869–875 (1995).
[CrossRef]

Schider, G.

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B65, 045430 (2005).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticles arrays,” Appl. Phys. Lett.82, 3095–3097 (2003).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65, 075419–075427 (2002).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Diltbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticles gratings: influence of dipolar interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4723 (2000).
[CrossRef] [PubMed]

Schneider, J. B.

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Transactions on antennas and propagation43, 1183–1191 (1995).

Scholze, F.

Sexton, B. A.

B. A. Sexton, B. N. Feltis, and T. J. Davis, “Effect of surface roughness on the extinction-based localized surface plasmon resonance biosensor,” Sens. Actuator A-Phys.141, 471475 (2008).

Sharma, D.

D. Sharma, R. Sharma, S. Dua, and V. N. Ojha, “Pitch measurements of 1D/2D gratings using optical profiler and comparison with SEM /AFM,” in AdMet 2012, (Metrology Society of India, ARAI, Pune, India, 2012), NM 003, 1–4.

Sharma, R.

D. Sharma, R. Sharma, S. Dua, and V. N. Ojha, “Pitch measurements of 1D/2D gratings using optical profiler and comparison with SEM /AFM,” in AdMet 2012, (Metrology Society of India, ARAI, Pune, India, 2012), NM 003, 1–4.

Shen, H.

H. Shen, N. Guillot, J. Rouxel, M. Lamy de la Chapelle, and T. Toury, “Optimized plasmonic nanostructures for improved sensing activities,” Opt. Express20, 21278–21290 (2012).
[CrossRef] [PubMed]

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97, 023113–023116 (2010).
[CrossRef]

Shkuratov, Y.

Spajer, M.

Thammacharoen, C.

Tinguely, J.-C.

A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
[CrossRef]

Toury, T.

H. Shen, N. Guillot, J. Rouxel, M. Lamy de la Chapelle, and T. Toury, “Optimized plasmonic nanostructures for improved sensing activities,” Opt. Express20, 21278–21290 (2012).
[CrossRef] [PubMed]

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97, 023113–023116 (2010).
[CrossRef]

T. Grosges, D. Barchiesi, T. Toury, and G. Gréhan, “Design of nanostructures for imaging and biomedical applications by plasmonic optimization,” Opt. Lett.33, 2812–2814 (2008).
[CrossRef] [PubMed]

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B-Lasers Opt.93, 177–181 (2008).
[CrossRef]

Trügler, A.

A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
[CrossRef]

Ungureanu, C.

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. Van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009).
[CrossRef]

Van Duyne, R. P.

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys.193, 869–875 (1995).
[CrossRef]

Van Labeke, D.

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B-Lasers Opt.93, 177–181 (2008).
[CrossRef]

Van Leeuwen, T. G.

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. Van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009).
[CrossRef]

Vial, A.

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D.40, 7152–7158 (2007).
[CrossRef]

L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422, 303–307 (2006).
[CrossRef]

A.-S. Grimault, A. Vial, and M. Lamy de la Chapelle, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Appl. Phys. B-Lasers Opt.84, 111–115 (2006).
[CrossRef]

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72, 033407 (2005).
[CrossRef]

D. Macías, A. Vial, and D. Barchiesi, “Application of evolution strategies for the solution of an inverse problem in Near-Field Optics,” J. Opt. Soc. Am. A21, 1465–1471 (2004).
[CrossRef]

D. Macías, A. Vial, and D. Barchiesi, “Evolution strategies approach for the solution of an inverse problem in near-field optics,” in Lecture notes in computer science (6e European Workshop on Evolutionary Computation in Image Analysis and Signal Processing), vol. 3005 / 2004, G. Raidl, S. Cagnoni, J. Branke, R. Corne, D. W. Drechsler, Y. Jin, C. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G. Smith, and G. Squillero, eds. (Springer-VerlagHeidelberg, Germany, 2004), 329 –338.

Videen, G.

Vidotti, M.

M. Vidotti, R. F. Carvalhal, R. K. Mendes, D. C. M. Ferreira, and L. T. Kubota, “Biosensors based on gold nanostructures,” J. Braz. Chem. Soc.22, 3–20 (2011).
[CrossRef]

Walker, T. R.

Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys103, 014308 (2008).
[CrossRef]

Wenger, J.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3, 2043–2048 (2009).
[CrossRef] [PubMed]

Xiao, Y.-Y.

H.-H. Yan, Y.-Y. Xiao, S.-X. Xie, and H.-J. Li, “Tunable plasmon resonance of a touching gold cylinder arrays,” J. At. Mol. Sci.3, 252–261 (2012).

Xie, S.-X.

H.-H. Yan, Y.-Y. Xiao, S.-X. Xie, and H.-J. Li, “Tunable plasmon resonance of a touching gold cylinder arrays,” J. At. Mol. Sci.3, 252–261 (2012).

Xu, T.

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3, 2043–2048 (2009).
[CrossRef] [PubMed]

Yamamoto, T.

Yan, H.-H.

H.-H. Yan, Y.-Y. Xiao, S.-X. Xie, and H.-J. Li, “Tunable plasmon resonance of a touching gold cylinder arrays,” J. At. Mol. Sci.3, 252–261 (2012).

Yang, W.-H.

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys.193, 869–875 (1995).
[CrossRef]

Yanik, A. A.

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “On-chip nanoplasmonic biosensors with actively controlled nanofluidic surface delivery,” in Plasmonics: metallic nanostructures and their optical properties VIII, M. I. Stockman, ed. (SPIE, San Diego, California, USA, 2010), vol. 7757, 775735.
[CrossRef]

Yoon, S. J.

Yu, F.

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

Zheng, Y. B.

Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys103, 014308 (2008).
[CrossRef]

Zong, W.

H. Neff, W. Zong, A. Lima, M. Borre, and G. Holzhüter, “Optical properties and instrumental performance of thin gold films near the surface plasmon resonance,” Thin Solid Films496, 688–697 (2006).
[CrossRef]

Zubko, E.

Accounts Chem. Res. (1)

K. J. Prashant, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape and composition: Application in biological imaging and biomedicine,” Accounts Chem. Res.41, 1578–1586 (2008).

ACS Nano (1)

H. Aouani, J. Wenger, D. Gérard, H. Rigneault, E. Devaux, T. W. Ebbesen, F. Mahdavi, T. Xu, and S. Blair, “Crucial role of the adhesion layer on the plasmonic fluorescence enhancement,” ACS Nano3, 2043–2048 (2009).
[CrossRef] [PubMed]

Advanced Electromagnetics (AEM) (1)

S. Kessentini and D. Barchiesi, “Roughness effect on the efficiency of dimer antenna based biosensor,” Advanced Electromagnetics (AEM)1, 41–47 (2012).

Advanced Engineering (1)

V. Poroshin, Y. Borovin, and D. Bogomolov, “Transfer of the surface roughness geometry into the universal FEM software ANSYS,” Advanced Engineering3, 1846–5900 (2009).

Appl. Opt. (4)

Appl. Phys. B-Lasers Opt. (2)

A.-S. Grimault, A. Vial, and M. Lamy de la Chapelle, “Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method,” Appl. Phys. B-Lasers Opt.84, 111–115 (2006).
[CrossRef]

D. Barchiesi, D. Macías, L. Belmar-Letellier, D. Van Labeke, M. Lamy de la Chapelle, T. Toury, E. Kremer, L. Moreau, and T. Grosges, “Plasmonics: influence of the intermediate (or stick) layer on the efficiency of sensors,” Appl. Phys. B-Lasers Opt.93, 177–181 (2008).
[CrossRef]

Appl. Phys. Lett. (2)

N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, and M. Lamy de la Chapelle, “Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength,” Appl. Phys. Lett.97, 023113–023116 (2010).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Optimized surface-enhanced Raman scattering on gold nanoparticles arrays,” Appl. Phys. Lett.82, 3095–3097 (2003).
[CrossRef]

Appl. Spectrosc. (1)

Astrophys. J. (1)

E. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J.186, 705–714 (1973).
[CrossRef]

Biomed. Opt. Express (2)

Chem. Phys. Lett. (1)

L. Billot, M. Lamy de la Chapelle, A. S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett.422, 303–307 (2006).
[CrossRef]

Curr. Appl. Phys. (1)

D. Barchiesi and T. Grosges, “Measurement of the decay lengths of the near field signal in tapping mode,” Curr. Appl. Phys.9, 1227–1231 (2009).
[CrossRef]

Eur. Phys. J.-Appl. Phys. (1)

S. Davy, D. Barchiesi, M. Spajer, and D. Courjon, “Spectroscopic study of resonant dielectric structures in near–field,” Eur. Phys. J.-Appl. Phys., 5, 277–281 (1999).
[CrossRef]

IEEE Transactions on antennas and propagation (1)

F. D. Hastings, J. B. Schneider, and S. L. Broschat, “A Monte-Carlo FDTD technique for rough surface scattering,” IEEE Transactions on antennas and propagation43, 1183–1191 (1995).

J. Adv. Mater. (1)

X. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” J. Adv. Mater.21, 4880–4910 (2009).
[CrossRef]

J. Appl. Phys (1)

Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, “Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays,” J. Appl. Phys103, 014308 (2008).
[CrossRef]

J. Appl. Phys. (2)

A. J. Abu El-Haija, “Effective medium approximation for the effective optical constants of a bilayer and a multilayer structure based on the characteristic matrix technique,” J. Appl. Phys.93, 2590–2594 (2003).
[CrossRef]

C. Ungureanu, R. G. Rayavarapu, S. Manohar, and T. G. Van Leeuwen, “Discrete dipole approximation simulations of gold nanorod optical properties: choice of input parameters and comparison with experiment,” J. Appl. Phys.105, 102032–102039 (2009).
[CrossRef]

J. At. Mol. Sci. (1)

H.-H. Yan, Y.-Y. Xiao, S.-X. Xie, and H.-J. Li, “Tunable plasmon resonance of a touching gold cylinder arrays,” J. At. Mol. Sci.3, 252–261 (2012).

J. Braz. Chem. Soc. (1)

M. Vidotti, R. F. Carvalhal, R. K. Mendes, D. C. M. Ferreira, and L. T. Kubota, “Biosensors based on gold nanostructures,” J. Braz. Chem. Soc.22, 3–20 (2011).
[CrossRef]

J. Chem. Phys (1)

N. Félidj, J. Aubard, and G. Lévi, “Discrete dipole approximation for ultraviolet-visible extinction spectra simulation of silver and gold colloids,” J. Chem. Phys111, 1195–1208 (1999).
[CrossRef]

J. Chem. Phys. (3)

W.-H. Yang, G. C. Schatz, and R. P. Van Duyne, “Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes,” J. Chem. Phys.193, 869–875 (1995).
[CrossRef]

H. Devoe, “Optical properties of molecular aggregates. I. Classical model of electronic absorption and refraction,” J. Chem. Phys.41, 393–400 (1964).
[CrossRef]

H. Devoe, “Optical properties of molecular aggregates. II. Classical theory of the refraction, absorption, and optical activity of solutions and crystals,” J. Chem. Phys.43, 3199–3208 (1965).
[CrossRef]

J. Microscopy (1)

D. Barchiesi, E. Kremer, V. Mai, and T. Grosges, “A Poincaré’s approach for plasmonics: the plasmon localization,” J. Microscopy229, 525–532 (2008).
[CrossRef]

J. Mod. Opt. (1)

V. A. Markel, “Scattering of light from two interacting spherical particles,” J. Mod. Opt.39, 853–861 (1992).
[CrossRef]

J. Opt. Soc. Am. A (5)

J. Phys. Chem. (1)

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem.110, 7238–7248 (2006).
[CrossRef]

J. Phys. Chem. B (2)

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B107, 668–677 (2003).
[CrossRef]

K. S. Lee and M. A. El-Sayed, “Dependence of the enhanced optical scattering efficiency relative to that of absorption of gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive,” J. Phys. Chem. B109, 20331–20338 (2005).
[CrossRef]

J. Phys. D. (1)

A. Vial and T. Laroche, “Description of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method,” J. Phys. D.40, 7152–7158 (2007).
[CrossRef]

Laser & Photon. Rev. (1)

M. Pelton, J. Aizpurua, and G. W. Bryant, “Metal-nanoparticles plasmonics,” Laser & Photon. Rev.2, 136–159 (2008).
[CrossRef]

Opt. Appl. (1)

A. J. Haija, W. L. Freeman, and T. Roarty, “Effective characteristic matrix of ultrathin multilayer structures,” Opt. Appl.36, 39–50 (2006).

Opt. Commun. (2)

D. Barchiesi, “Pseudo modulation transfer function in reflection scanning near-field optical microscopy,” Opt. Commun.154, 167–172 (1998).
[CrossRef]

D. Barchiesi, N. Lidgi-Guigui, and M. Lamy de la Chapelle, “Functionalization layer influence on the sensitivity of surface plasmon resonance (SPR) biosensor,” Opt. Commun.285, 1619–1623 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (6)

P. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6, 4370 (1972).
[CrossRef]

G. Laurent, N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, “Evidence of multipolar excitations in surface enhanced Raman scattering,” Phys. Rev. B65, 045430 (2005).
[CrossRef]

A. Trügler, J.-C. Tinguely, J. R. Krenn, A. Hohenau, and U. Hohenester, “Influence of surface roughness on the optical properties of plasmonic nanoparticles,” Phys. Rev. B83, 081412 (2011).
[CrossRef]

P. C. Chaumet, A. Rahmani, and G. W. Bryant, “Generalization of the coupled dipole method to periodic structures,” Phys. Rev. B67, 165404(1–5) (2003).
[CrossRef]

J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, and P. Royer, “Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays,” Phys. Rev. B72, 033407 (2005).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65, 075419–075427 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Diltbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticles gratings: influence of dipolar interaction on the plasmon resonance,” Phys. Rev. Lett.84, 4721–4723 (2000).
[CrossRef] [PubMed]

Sens. Actuator A-Phys. (1)

B. A. Sexton, B. N. Feltis, and T. J. Davis, “Effect of surface roughness on the extinction-based localized surface plasmon resonance biosensor,” Sens. Actuator A-Phys.141, 471475 (2008).

Thin Solid Films (1)

H. Neff, W. Zong, A. Lima, M. Borre, and G. Holzhüter, “Optical properties and instrumental performance of thin gold films near the surface plasmon resonance,” Thin Solid Films496, 688–697 (2006).
[CrossRef]

Other (11)

Working Group 1, Evaluation of measurement data - Guide to the expression of uncertainty in measurement, (Joint Committee for Guides in Metrology, Paris, 1st ed., 2008, Corrected version 2010).

D. Macías, A. Vial, and D. Barchiesi, “Evolution strategies approach for the solution of an inverse problem in near-field optics,” in Lecture notes in computer science (6e European Workshop on Evolutionary Computation in Image Analysis and Signal Processing), vol. 3005 / 2004, G. Raidl, S. Cagnoni, J. Branke, R. Corne, D. W. Drechsler, Y. Jin, C. Johnson, P. Machado, E. Marchiori, F. Rothlauf, G. Smith, and G. Squillero, eds. (Springer-VerlagHeidelberg, Germany, 2004), 329 –338.

E. D. Palik, Handbook of Optical Constants (Academic Press Inc., San Diego USA, 1985).

J. Grand, Plasmons de surface de nanoparticules : spectroscopie d’extinction en champs proche et lointain, diffusion Raman exaltée, Ph.D. thesis (Université de technologie de Troyes, 2004).
[PubMed]

D. Sharma, R. Sharma, S. Dua, and V. N. Ojha, “Pitch measurements of 1D/2D gratings using optical profiler and comparison with SEM /AFM,” in AdMet 2012, (Metrology Society of India, ARAI, Pune, India, 2012), NM 003, 1–4.

S. A. Maier, Plasmonics. Fundamentals and Applications (Springer, New York, USA, 2007).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (John Wiley & Sons, Inc., New York, 1998).
[CrossRef]

A. A. Yanik, M. Huang, A. Artar, T.-Y. Chang, and H. Altug, “On-chip nanoplasmonic biosensors with actively controlled nanofluidic surface delivery,” in Plasmonics: metallic nanostructures and their optical properties VIII, M. I. Stockman, ed. (SPIE, San Diego, California, USA, 2010), vol. 7757, 775735.
[CrossRef]

E. C. Le Ru and P. G. Etchegoin, Principles of sSurface-Enhanced Raman Spectroscopy and Related Plasmonic Effects (Elsevier, Amsterdam, 2009).

B. T. Draine and P. J. Flatau, “User guide to the discrete dipole approximation code DDSCAT 7.1,” http://arXiv.org/abs/1002.1505v1 (2010).

D. Barchiesi, New perspectives in biosensors technology and applications (INTECH Open Access, Rijeka, Croatia, 2011), chap. 5, pp. 105–126.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Biosensor: grating of gold cylinders with diameter D, height h and period P+D. The gold nanostructures are deposited on a glass substrate. A layer of Chromium of thickness e is used to improve adhesion of gold on glass.

Fig. 2
Fig. 2

Biosensor: grating of gold cylinders with diameter D, height h and period P+D. The gold nanostructures are deposited on a glass substrate. A layer of Chromium of thickness e is used to improve adhesion of gold on glass. The centers of the dipoles (discretization for DDA) are on regular mesh and the roughness is obtained by removing (yellow) or adding (red) a dipole on the surface. For computations the inter-dipole distance is d = 2 nm.

Fig. 3
Fig. 3

Reference data for the relative permittivity of gold and cubic spline fitting of Johnson and Christy data [56]. The Palik’s data are also shown [57]. The result of fit is used for the numerical computations.

Fig. 4
Fig. 4

Reference data for the relative permittivity of chromium and cubic spline fitting of Palik data [57]. The result of fit is used for the numerical computations.

Fig. 5
Fig. 5

Plots of the LSPR wavelength λ0(LSPR) in gray level as a function of cylinder diameter D and height h. The mean value of λ0(LSPR) is calculated for chromium thicknesses e = 2 nm and e = 4 nm to describe experiments in [8], where the thickness of chromium was evaluated to 3 nm, with uncertainty of more than 1 nm. The separation between cylinders is P = 200 nm. The lines are the results of fits deduced from Eq. (5).

Fig. 6
Fig. 6

Plots of the domain of experimental localized surface plasmon wavelength λ0(LSPR) in gray as a function of the cylinder diameter D[8]. The size of the gray zone is deduced from experimental uncertainties. Computed values of λ0(LSPR) are deduced from Eq. (7) for the height of cylinders h = 50 nm (blue line) and the red crosses show the uncertainties around values of λ0(LSPR) computed for the indicated value of h.

Fig. 7
Fig. 7

Plots of the domain of experimental localized surface plasmon resonance wavelength λ0(LSPR) in gray as a function of the height of cylinders h[4]. The size of the gray zone is deduced from experimental uncertainties. Computed values of λ0(LSPR) are deduced from Eq. (7) for the cylinders diameter D = 100 nm (blue line) and the red crosses show the uncertainties around values of λ0(LSPR) computed for the indicated value of D.

Fig. 8
Fig. 8

Position of the LSPR computed from the heuristic law (Eq. (11)) as a function of the aspect ratio D/h of the cylinder for various heights h. The parameters of the model are P = 200 nm with roughness (rms = 1.6 nm) and chromium adhesion layer (e = 2 − 4 nm).

Fig. 9
Fig. 9

Sensitivity coefficient SD of uncertainty on the position of the LSPR computed from the heuristic law (Eq. (11)) as a function of the cylinders height h.

Fig. 10
Fig. 10

Sensitivity coefficient Sh of uncertainty on the position of the LSPR computed from the heuristic law (Eq. (11)) as a function of cylinders height h, for various diameters D.

Fig. 11
Fig. 11

Uncertainty and relative uncertainty on the position of the LSPR computed from the heuristic law (Eq. (11)). The parameters of the model are the cylinders separation P = 200 nm and the chromium adhesion layer thickness (e ∈ [2;4] nm). The roughness is RMS = 1.6 nm.

Tables (3)

Tables Icon

Table 1 Sensitivity of the position of the localized plasmon resonance (LSPR) when propagating uncertainties through the DDA model of rough biosensor with gold cylinder (diameter D, height h) on chromium adhesion layer of thickness e.

Tables Icon

Table 2 Domain of variation of the parameters and discretization step. D, h are the diameter and the height of cylinders, e is the thickness of the chromium adhesion layer and λ0 is the wavelength in vacuum. The RMS is the root of mean square of the roughness. The number of computation in the nested loops is therefore N = 15500.

Tables Icon

Table 3 Fitting of the numerical experience plan with function defined in Eq. (5). The relative standard uncertainty on each coefficient [61] is indicated for all coefficients assuming uniform law of probability, including the uncertainty on the position of the LSPR (step of 10 nm).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

C ext = Q ext π D 2 4 = 4 π k 0 | E 0 | 2 j = 1 N { [ P j . ( α j 1 ) * P j * ] } ,
ε eff ( ε air + ε Glass ) / 2 = 1.52
u B ( λ 0 ( L S P R ) , D = 100 n m ) = 1 3 20 2 + 30 2 + 10 2 + 20 2 24 n m
u B ( λ 0 ( L S P R ) , D = 200 n m ) = 1 3 30 2 + 10 2 + 10 2 + 10 2 = 20 nm
D = ( a 1 λ 0 ( L S P R ) + b 1 ) h + ( a 2 λ 0 ( L S P R ) + b 2 )
h = D b 2 a 2 λ 0 ( L S P R ) b 1 + a 1 λ 0 ( L S P R )
λ 0 ( L S P R ) = D b 2 b 1 h a 2 + a 1 h
λ 0 ( L S P R , h = D ) = ( 1 b 1 ) D b 2 a 2 + a 1 D
λ 0 ( L S P R , h < < D ) = D b 2 a 2 ( a 2 b 1 + a 1 ( D b 2 ) ) a 2 2 h + o [ ( h / D ) 2 ] ,
u ( λ 0 ( L S P R ) ) = ( λ 0 ( L S P R ) D ) 2 u 2 ( D ) + ( λ 0 ( L S P R ) h ) 2 u 2 ( h )
= ( 1 a 2 + a 1 h S D ) 2 u 2 ( D ) + ( a 1 b 2 a 2 b 1 a 1 D ( a 2 + a 1 h ) 2 S h ) 2 u 2 ( h )

Metrics