Abstract

We demonstrate a new type of anisotropy in thin films of amorphous azobenzene polymers induced between 570 and 633 nm, where the absorbance in the film is on the order of 0.05. The anisotropy has a pronounced radial contribution. This observation points to an additional mechanism for the alignment of azobenzene molecules.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem., Rapid. Commun.8(9), 467–471 (1987).
    [CrossRef]
  2. L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University Press, 2009).
  3. P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings in azoaromatic polymer films,” Appl. Phys. Lett.66(2), 136 (1995).
    [CrossRef]
  4. D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced surface-relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66(10), 1166–1168 (1995).
    [CrossRef]
  5. L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett.77(5), 657–659 (2000).
    [CrossRef]
  6. N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically induced surface relief phenomena in azobenzene polymers,” Appl. Phys. Lett.74(4), 519–521 (1999).
    [CrossRef]
  7. L. Nedelchev, L. Nikolova, A. Matharu, and P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B75(6-7), 671–676 (2002).
    [CrossRef]
  8. S. Lee, H. S. Kang, and J. K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. (Deerfield Beach Fla.)24(16), 2069–2103 (2012).
    [CrossRef] [PubMed]
  9. A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat Commun3, 989 (2012).
    [CrossRef] [PubMed]
  10. P. S. Ramanujam, S. Hvilsted, and F. Andruzzi, “Novel biphotonic holographic storage in a side-chain liquid crystalline polyester,” Appl. Phys. Lett.62(10), 1041–1043 (1993).
    [CrossRef]
  11. C. Kulinna, S. Hvilsted, C. Hendann, H. W. Siesler, and P. S. Ramanujam, “Selectively deuterated liquid crystalline azobenzene side-chain polyesters. 3. Investigations of laser-induced segmental mobility by Fourier transform infrared spectroscopy,” Macromolecules31(7), 2141–2151 (1998).
    [CrossRef]
  12. C. Sánchez, R. Alcalá, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett.78(25), 3944–3947 (2001).
    [CrossRef]
  13. L. Nedelchev, A. Matharu, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “Propagation of polarized light through azobenzene polyester films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)375, 563–575 (2002).
    [CrossRef]
  14. J. Janousek, S. Johansson, P. Tidemand-Lichtenberg, S. Wang, J. L. Mortensen, P. Buchhave, and F. Laurell, “Efficient all solid-state continuous-wave yellow-orange light source,” Opt. Express13(4), 1188–1192 (2005).
    [CrossRef] [PubMed]
  15. M. Chi, O. B. Jensen, G. Erbert, B. Sumpf, and P. M. Petersen, “Tunable high-power narrow-spectrum external-cavity diode laser at 675 nm as a pump source for UV generation,” Appl. Opt.50(1), 90–94 (2011).
    [CrossRef] [PubMed]
  16. R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature383(6600), 505–508 (1996).
    [CrossRef]
  17. S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyester architecture for reversible optical storage,” Macromolecules28(7), 2172–2183 (1995).
    [CrossRef]
  18. C. Manzo, D. Paparo, and L. Marrucci, “Photoinduced random molecular reorientation by nonradiative energy relaxation: an experimental test,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 051702 (2004).
    [CrossRef] [PubMed]
  19. D. Henao and A. Majumdar, “Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals,” SIAM J. Math. Anal.44(5), 3217–3241 (2012).
    [CrossRef]
  20. S. Kralj and E. G. Virga, “Universal fine structure of nematic hedgehogs,” J. Phys. Math. Gen.34(4), 829–838 (2001).
    [CrossRef]

2012 (3)

S. Lee, H. S. Kang, and J. K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. (Deerfield Beach Fla.)24(16), 2069–2103 (2012).
[CrossRef] [PubMed]

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat Commun3, 989 (2012).
[CrossRef] [PubMed]

D. Henao and A. Majumdar, “Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals,” SIAM J. Math. Anal.44(5), 3217–3241 (2012).
[CrossRef]

2011 (1)

2005 (1)

2004 (1)

C. Manzo, D. Paparo, and L. Marrucci, “Photoinduced random molecular reorientation by nonradiative energy relaxation: an experimental test,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 051702 (2004).
[CrossRef] [PubMed]

2002 (2)

L. Nedelchev, A. Matharu, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “Propagation of polarized light through azobenzene polyester films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)375, 563–575 (2002).
[CrossRef]

L. Nedelchev, L. Nikolova, A. Matharu, and P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B75(6-7), 671–676 (2002).
[CrossRef]

2001 (2)

C. Sánchez, R. Alcalá, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett.78(25), 3944–3947 (2001).
[CrossRef]

S. Kralj and E. G. Virga, “Universal fine structure of nematic hedgehogs,” J. Phys. Math. Gen.34(4), 829–838 (2001).
[CrossRef]

2000 (1)

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett.77(5), 657–659 (2000).
[CrossRef]

1999 (1)

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically induced surface relief phenomena in azobenzene polymers,” Appl. Phys. Lett.74(4), 519–521 (1999).
[CrossRef]

1998 (1)

C. Kulinna, S. Hvilsted, C. Hendann, H. W. Siesler, and P. S. Ramanujam, “Selectively deuterated liquid crystalline azobenzene side-chain polyesters. 3. Investigations of laser-induced segmental mobility by Fourier transform infrared spectroscopy,” Macromolecules31(7), 2141–2151 (1998).
[CrossRef]

1996 (1)

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature383(6600), 505–508 (1996).
[CrossRef]

1995 (3)

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyester architecture for reversible optical storage,” Macromolecules28(7), 2172–2183 (1995).
[CrossRef]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings in azoaromatic polymer films,” Appl. Phys. Lett.66(2), 136 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced surface-relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66(10), 1166–1168 (1995).
[CrossRef]

1993 (1)

P. S. Ramanujam, S. Hvilsted, and F. Andruzzi, “Novel biphotonic holographic storage in a side-chain liquid crystalline polyester,” Appl. Phys. Lett.62(10), 1041–1043 (1993).
[CrossRef]

1987 (1)

M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem., Rapid. Commun.8(9), 467–471 (1987).
[CrossRef]

Alcalá, R.

C. Sánchez, R. Alcalá, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett.78(25), 3944–3947 (2001).
[CrossRef]

Ambrosio, A.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat Commun3, 989 (2012).
[CrossRef] [PubMed]

Andruzzi, F.

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyester architecture for reversible optical storage,” Macromolecules28(7), 2172–2183 (1995).
[CrossRef]

P. S. Ramanujam, S. Hvilsted, and F. Andruzzi, “Novel biphotonic holographic storage in a side-chain liquid crystalline polyester,” Appl. Phys. Lett.62(10), 1041–1043 (1993).
[CrossRef]

Batalla, E.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings in azoaromatic polymer films,” Appl. Phys. Lett.66(2), 136 (1995).
[CrossRef]

Berg, R. H.

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically induced surface relief phenomena in azobenzene polymers,” Appl. Phys. Lett.74(4), 519–521 (1999).
[CrossRef]

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature383(6600), 505–508 (1996).
[CrossRef]

Borbone, F.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat Commun3, 989 (2012).
[CrossRef] [PubMed]

Buchhave, P.

Chi, M.

Dragostinova, V.

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett.77(5), 657–659 (2000).
[CrossRef]

Eich, M.

M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem., Rapid. Commun.8(9), 467–471 (1987).
[CrossRef]

Erbert, G.

Henao, D.

D. Henao and A. Majumdar, “Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals,” SIAM J. Math. Anal.44(5), 3217–3241 (2012).
[CrossRef]

Hendann, C.

C. Kulinna, S. Hvilsted, C. Hendann, H. W. Siesler, and P. S. Ramanujam, “Selectively deuterated liquid crystalline azobenzene side-chain polyesters. 3. Investigations of laser-induced segmental mobility by Fourier transform infrared spectroscopy,” Macromolecules31(7), 2141–2151 (1998).
[CrossRef]

Holme, N. C. R.

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically induced surface relief phenomena in azobenzene polymers,” Appl. Phys. Lett.74(4), 519–521 (1999).
[CrossRef]

Hvilsted, S.

L. Nedelchev, A. Matharu, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “Propagation of polarized light through azobenzene polyester films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)375, 563–575 (2002).
[CrossRef]

C. Sánchez, R. Alcalá, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett.78(25), 3944–3947 (2001).
[CrossRef]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett.77(5), 657–659 (2000).
[CrossRef]

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically induced surface relief phenomena in azobenzene polymers,” Appl. Phys. Lett.74(4), 519–521 (1999).
[CrossRef]

C. Kulinna, S. Hvilsted, C. Hendann, H. W. Siesler, and P. S. Ramanujam, “Selectively deuterated liquid crystalline azobenzene side-chain polyesters. 3. Investigations of laser-induced segmental mobility by Fourier transform infrared spectroscopy,” Macromolecules31(7), 2141–2151 (1998).
[CrossRef]

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature383(6600), 505–508 (1996).
[CrossRef]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyester architecture for reversible optical storage,” Macromolecules28(7), 2172–2183 (1995).
[CrossRef]

P. S. Ramanujam, S. Hvilsted, and F. Andruzzi, “Novel biphotonic holographic storage in a side-chain liquid crystalline polyester,” Appl. Phys. Lett.62(10), 1041–1043 (1993).
[CrossRef]

Janousek, J.

Jensen, O. B.

Johansson, S.

Kang, H. S.

S. Lee, H. S. Kang, and J. K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. (Deerfield Beach Fla.)24(16), 2069–2103 (2012).
[CrossRef] [PubMed]

Kim, D. Y.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced surface-relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66(10), 1166–1168 (1995).
[CrossRef]

Kralj, S.

S. Kralj and E. G. Virga, “Universal fine structure of nematic hedgehogs,” J. Phys. Math. Gen.34(4), 829–838 (2001).
[CrossRef]

Kulinna, C.

C. Kulinna, S. Hvilsted, C. Hendann, H. W. Siesler, and P. S. Ramanujam, “Selectively deuterated liquid crystalline azobenzene side-chain polyesters. 3. Investigations of laser-induced segmental mobility by Fourier transform infrared spectroscopy,” Macromolecules31(7), 2141–2151 (1998).
[CrossRef]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyester architecture for reversible optical storage,” Macromolecules28(7), 2172–2183 (1995).
[CrossRef]

Kumar, J.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced surface-relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66(10), 1166–1168 (1995).
[CrossRef]

Laurell, F.

Lee, S.

S. Lee, H. S. Kang, and J. K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. (Deerfield Beach Fla.)24(16), 2069–2103 (2012).
[CrossRef] [PubMed]

Li, L.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced surface-relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66(10), 1166–1168 (1995).
[CrossRef]

Maddalena, P.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat Commun3, 989 (2012).
[CrossRef] [PubMed]

Majumdar, A.

D. Henao and A. Majumdar, “Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals,” SIAM J. Math. Anal.44(5), 3217–3241 (2012).
[CrossRef]

Manzo, C.

C. Manzo, D. Paparo, and L. Marrucci, “Photoinduced random molecular reorientation by nonradiative energy relaxation: an experimental test,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 051702 (2004).
[CrossRef] [PubMed]

Marrucci, L.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat Commun3, 989 (2012).
[CrossRef] [PubMed]

C. Manzo, D. Paparo, and L. Marrucci, “Photoinduced random molecular reorientation by nonradiative energy relaxation: an experimental test,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 051702 (2004).
[CrossRef] [PubMed]

Matharu, A.

L. Nedelchev, L. Nikolova, A. Matharu, and P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B75(6-7), 671–676 (2002).
[CrossRef]

L. Nedelchev, A. Matharu, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “Propagation of polarized light through azobenzene polyester films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)375, 563–575 (2002).
[CrossRef]

Mortensen, J. L.

Natansohn, A.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings in azoaromatic polymer films,” Appl. Phys. Lett.66(2), 136 (1995).
[CrossRef]

Nedelchev, L.

L. Nedelchev, L. Nikolova, A. Matharu, and P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B75(6-7), 671–676 (2002).
[CrossRef]

L. Nedelchev, A. Matharu, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “Propagation of polarized light through azobenzene polyester films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)375, 563–575 (2002).
[CrossRef]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett.77(5), 657–659 (2000).
[CrossRef]

Nikolova, L.

L. Nedelchev, A. Matharu, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “Propagation of polarized light through azobenzene polyester films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)375, 563–575 (2002).
[CrossRef]

L. Nedelchev, L. Nikolova, A. Matharu, and P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B75(6-7), 671–676 (2002).
[CrossRef]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett.77(5), 657–659 (2000).
[CrossRef]

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically induced surface relief phenomena in azobenzene polymers,” Appl. Phys. Lett.74(4), 519–521 (1999).
[CrossRef]

Paparo, D.

C. Manzo, D. Paparo, and L. Marrucci, “Photoinduced random molecular reorientation by nonradiative energy relaxation: an experimental test,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 051702 (2004).
[CrossRef] [PubMed]

Park, J. K.

S. Lee, H. S. Kang, and J. K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. (Deerfield Beach Fla.)24(16), 2069–2103 (2012).
[CrossRef] [PubMed]

Petersen, P. M.

Petrova, T.

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett.77(5), 657–659 (2000).
[CrossRef]

Ramanujam, P. S.

L. Nedelchev, A. Matharu, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “Propagation of polarized light through azobenzene polyester films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)375, 563–575 (2002).
[CrossRef]

L. Nedelchev, L. Nikolova, A. Matharu, and P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B75(6-7), 671–676 (2002).
[CrossRef]

C. Sánchez, R. Alcalá, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett.78(25), 3944–3947 (2001).
[CrossRef]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett.77(5), 657–659 (2000).
[CrossRef]

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically induced surface relief phenomena in azobenzene polymers,” Appl. Phys. Lett.74(4), 519–521 (1999).
[CrossRef]

C. Kulinna, S. Hvilsted, C. Hendann, H. W. Siesler, and P. S. Ramanujam, “Selectively deuterated liquid crystalline azobenzene side-chain polyesters. 3. Investigations of laser-induced segmental mobility by Fourier transform infrared spectroscopy,” Macromolecules31(7), 2141–2151 (1998).
[CrossRef]

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature383(6600), 505–508 (1996).
[CrossRef]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyester architecture for reversible optical storage,” Macromolecules28(7), 2172–2183 (1995).
[CrossRef]

P. S. Ramanujam, S. Hvilsted, and F. Andruzzi, “Novel biphotonic holographic storage in a side-chain liquid crystalline polyester,” Appl. Phys. Lett.62(10), 1041–1043 (1993).
[CrossRef]

Rasmussen, P. H.

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically induced surface relief phenomena in azobenzene polymers,” Appl. Phys. Lett.74(4), 519–521 (1999).
[CrossRef]

Rochon, P.

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings in azoaromatic polymer films,” Appl. Phys. Lett.66(2), 136 (1995).
[CrossRef]

Roviello, A.

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat Commun3, 989 (2012).
[CrossRef] [PubMed]

Sánchez, C.

C. Sánchez, R. Alcalá, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett.78(25), 3944–3947 (2001).
[CrossRef]

Siesler, H. W.

C. Kulinna, S. Hvilsted, C. Hendann, H. W. Siesler, and P. S. Ramanujam, “Selectively deuterated liquid crystalline azobenzene side-chain polyesters. 3. Investigations of laser-induced segmental mobility by Fourier transform infrared spectroscopy,” Macromolecules31(7), 2141–2151 (1998).
[CrossRef]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyester architecture for reversible optical storage,” Macromolecules28(7), 2172–2183 (1995).
[CrossRef]

Sumpf, B.

Tidemand-Lichtenberg, P.

Todorov, T.

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett.77(5), 657–659 (2000).
[CrossRef]

Tomova, N.

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett.77(5), 657–659 (2000).
[CrossRef]

Tripathy, S. K.

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced surface-relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66(10), 1166–1168 (1995).
[CrossRef]

Virga, E. G.

S. Kralj and E. G. Virga, “Universal fine structure of nematic hedgehogs,” J. Phys. Math. Gen.34(4), 829–838 (2001).
[CrossRef]

Wang, S.

Wendorff, J. H.

M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem., Rapid. Commun.8(9), 467–471 (1987).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (1)

S. Lee, H. S. Kang, and J. K. Park, “Directional photofluidization lithography: micro/nanostructural evolution by photofluidic motions of azobenzene materials,” Adv. Mater. (Deerfield Beach Fla.)24(16), 2069–2103 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

L. Nedelchev, L. Nikolova, A. Matharu, and P. S. Ramanujam, “Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters,” Appl. Phys. B75(6-7), 671–676 (2002).
[CrossRef]

Appl. Phys. Lett. (6)

P. S. Ramanujam, S. Hvilsted, and F. Andruzzi, “Novel biphotonic holographic storage in a side-chain liquid crystalline polyester,” Appl. Phys. Lett.62(10), 1041–1043 (1993).
[CrossRef]

C. Sánchez, R. Alcalá, S. Hvilsted, and P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett.78(25), 3944–3947 (2001).
[CrossRef]

P. Rochon, E. Batalla, and A. Natansohn, “Optically induced surface gratings in azoaromatic polymer films,” Appl. Phys. Lett.66(2), 136 (1995).
[CrossRef]

D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, “Laser-induced surface-relief gratings on nonlinear optical polymer films,” Appl. Phys. Lett.66(10), 1166–1168 (1995).
[CrossRef]

L. Nikolova, L. Nedelchev, T. Todorov, T. Petrova, N. Tomova, V. Dragostinova, P. S. Ramanujam, and S. Hvilsted, “Self-induced light polarization rotation in azobenzene-containing polymers,” Appl. Phys. Lett.77(5), 657–659 (2000).
[CrossRef]

N. C. R. Holme, L. Nikolova, S. Hvilsted, P. H. Rasmussen, R. H. Berg, and P. S. Ramanujam, “Optically induced surface relief phenomena in azobenzene polymers,” Appl. Phys. Lett.74(4), 519–521 (1999).
[CrossRef]

J. Phys. Math. Gen. (1)

S. Kralj and E. G. Virga, “Universal fine structure of nematic hedgehogs,” J. Phys. Math. Gen.34(4), 829–838 (2001).
[CrossRef]

Macromolecules (2)

C. Kulinna, S. Hvilsted, C. Hendann, H. W. Siesler, and P. S. Ramanujam, “Selectively deuterated liquid crystalline azobenzene side-chain polyesters. 3. Investigations of laser-induced segmental mobility by Fourier transform infrared spectroscopy,” Macromolecules31(7), 2141–2151 (1998).
[CrossRef]

S. Hvilsted, F. Andruzzi, C. Kulinna, H. W. Siesler, and P. S. Ramanujam, “Novel side-chain liquid-crystalline polyester architecture for reversible optical storage,” Macromolecules28(7), 2172–2183 (1995).
[CrossRef]

Makromol. Chem., Rapid. Commun. (1)

M. Eich and J. H. Wendorff, “Erasable holograms in polymeric liquid crystals,” Makromol. Chem., Rapid. Commun.8(9), 467–471 (1987).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.) (1)

L. Nedelchev, A. Matharu, L. Nikolova, S. Hvilsted, and P. S. Ramanujam, “Propagation of polarized light through azobenzene polyester films,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)375, 563–575 (2002).
[CrossRef]

Nat Commun (1)

A. Ambrosio, L. Marrucci, F. Borbone, A. Roviello, and P. Maddalena, “Light-induced spiral mass transport in azo-polymer films under vortex-beam illumination,” Nat Commun3, 989 (2012).
[CrossRef] [PubMed]

Nature (1)

R. H. Berg, S. Hvilsted, and P. S. Ramanujam, “Peptide oligomers for holographic data storage,” Nature383(6600), 505–508 (1996).
[CrossRef]

Opt. Express (1)

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

C. Manzo, D. Paparo, and L. Marrucci, “Photoinduced random molecular reorientation by nonradiative energy relaxation: an experimental test,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.70(5), 051702 (2004).
[CrossRef] [PubMed]

SIAM J. Math. Anal. (1)

D. Henao and A. Majumdar, “Symmetry of uniaxial global Landau-de Gennes minimizers in the theory of nematic liquid crystals,” SIAM J. Math. Anal.44(5), 3217–3241 (2012).
[CrossRef]

Other (1)

L. Nikolova and P. S. Ramanujam, Polarization Holography (Cambridge University Press, 2009).

Supplementary Material (1)

» Media 1: AVI (4646 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Absorption spectra of the azobenzene polyester E1aP(0.25)12(0.75) before and after irradiation at 593 nm. The film thickness was approximately 2.5 μm. (a) Spectrum of the unirradiated film and (b) spectrum of film irradiated at 593 nm for 150 min., at a power density of approximately 5 mW/cm2.

Fig. 2
Fig. 2

Polarization microscope picture of E1aP(0.25)12(0.75) irradiated at 532 nm with horizontal polarization. The film was rotated by 45° to obtain the above image.

Fig. 3
Fig. 3

Polarization microscope picture of E1aP(0.25)12(0.75) irradiated at 593 nm with horizontal polarization. The polarization direction of irradiation coincides with the linear polarization direction of the microscope. The axis of the λ/4 plate does not coincide with axis of the polarizer, resulting in the orange-green color of the lobes.

Fig. 4
Fig. 4

A close up (200 x) view of the central area of Fig. 3. The white dots are dust on the film.

Fig. 5
Fig. 5

Same film as in Fig. 3 but rotated through + 45⁰ with the axis of the quarter wave plate exactly at the extinction axis of the analyzer.

Fig. 6
Fig. 6

A time series of the development of anisotropy in E1aP(0.25)12(0.75) as a function of time (top row followed by bottom row). The entire series takes approximately 4 mins.

Fig. 7
Fig. 7

A representative frame from the appended movie showing the temporal development of the anisotropy. [Media 1]

Fig. 8
Fig. 8

Polarized microscope image after the completion of the irradiation.

Fig. 9
Fig. 9

Image obtained when the film was irradiated with horizontally polarized light at 633 nm. The image was obtained on a screen placed after a crossed linear polarizer.

Fig. 10
Fig. 10

Polarization microscope picture of the area irradiated at 670 nm. The film is at 45° to the polarization direction.

Metrics