Abstract

Traditional laparoscopic optical systems consisting of about 30 lenses have low optical magnification. To magnify tissue during surgical operations, one must change from one laparoscope to another or use a magnifying adapter between the laparoscope and the sensor. Our work focuses on how to change the sag of a liquid lens while zooming from 1 × zoom, to 2 × , and 4 × in an optical design for a laparoscope. The design includes several lenses and two liquid lenses with variable focal lengths. A pair of laparoscopes for 3-D stereoscopy is placed within a tube 11 mm in diameter. The predicted depth resolution of tissue is 0.5 mm without interpolation at 4 × zoom.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Multiresolution foveated laparoscope with high resolvability

Yi Qin, Hong Hua, and Mike Nguyen
Opt. Lett. 38(13) 2191-2193 (2013)

Integrated fluidic adaptive zoom lens

De-Ying Zhang, Nicole Justis, and Yu-Hwa Lo
Opt. Lett. 29(24) 2855-2857 (2004)

Optical zoom module based on two deformable mirrors for mobile device applications

Yu-Hung Lin, Yen-Liang Liu, and Guo-Dung J. Su
Appl. Opt. 51(11) 1804-1810 (2012)

References

  • View by:
  • |
  • |
  • |

  1. F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15(3), 030504 (2010).
    [Crossref] [PubMed]
  2. N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
    [Crossref] [PubMed]
  3. W. B. Verwey, S. Stroomer, R. Lammens, S. N. Schulz, and W. H. Ehrenstein, “Comparing endoscopic systems on two simulated tasks,” Ergonomics 48(3), 270–287 (2005).
    [Crossref] [PubMed]
  4. C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
    [PubMed]
  5. J. P. O. Evens, M. Robinson, S. X. Godber, and R. S. Petty, “The development of 3-D (stereoscopic) imaging systems for security applications,” in International Carnahan Conference on Security Technology (Sanderstead, England, 1995), 505–511.
  6. W. Yao, H. Bjurstroem, and F. Setterwall, “Surface tension of lithium bromide solutions with heat-transfer additives,” J. Chem. Eng. Data 36(1), 96–98 (1991).
    [Crossref]
  7. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
    [Crossref] [PubMed]
  8. J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis 23(20), 3461–3473 (2002).
    [Crossref] [PubMed]
  9. J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O, 82520O-6 (2012).
    [Crossref]
  10. P. Muller, N. Spengler, H. Zappe, and W. Monch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
    [Crossref]

2012 (1)

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O, 82520O-6 (2012).
[Crossref]

2010 (2)

P. Muller, N. Spengler, H. Zappe, and W. Monch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15(3), 030504 (2010).
[Crossref] [PubMed]

2005 (1)

W. B. Verwey, S. Stroomer, R. Lammens, S. N. Schulz, and W. H. Ehrenstein, “Comparing endoscopic systems on two simulated tasks,” Ergonomics 48(3), 270–287 (2005).
[Crossref] [PubMed]

2002 (1)

J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis 23(20), 3461–3473 (2002).
[Crossref] [PubMed]

2000 (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

1999 (1)

N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
[Crossref] [PubMed]

1998 (1)

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

1991 (1)

W. Yao, H. Bjurstroem, and F. Setterwall, “Surface tension of lithium bromide solutions with heat-transfer additives,” J. Chem. Eng. Data 36(1), 96–98 (1991).
[Crossref]

Anderson, J. R.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Arianpour, A.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15(3), 030504 (2010).
[Crossref] [PubMed]

Bjurstroem, H.

W. Yao, H. Bjurstroem, and F. Setterwall, “Surface tension of lithium bromide solutions with heat-transfer additives,” J. Chem. Eng. Data 36(1), 96–98 (1991).
[Crossref]

Bouma, B. E.

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

Brezinski, M. E.

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

Chang, J.-H.

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O, 82520O-6 (2012).
[Crossref]

Chiu, D. T.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Cho, S. H.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15(3), 030504 (2010).
[Crossref] [PubMed]

Choi, M.

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O, 82520O-6 (2012).
[Crossref]

Darzi, A.

N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
[Crossref] [PubMed]

Duffy, D. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Ehrenstein, W. H.

W. B. Verwey, S. Stroomer, R. Lammens, S. N. Schulz, and W. H. Ehrenstein, “Comparing endoscopic systems on two simulated tasks,” Ergonomics 48(3), 270–287 (2005).
[Crossref] [PubMed]

Francis, C. S.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15(3), 030504 (2010).
[Crossref] [PubMed]

Fujimoto, J. G.

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

Gitlin, I.

J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis 23(20), 3461–3473 (2002).
[Crossref] [PubMed]

Horgan, S.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15(3), 030504 (2010).
[Crossref] [PubMed]

Huber, J.

N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
[Crossref] [PubMed]

Johnson, D.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15(3), 030504 (2010).
[Crossref] [PubMed]

Jung, K.-D.

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O, 82520O-6 (2012).
[Crossref]

Lammens, R.

W. B. Verwey, S. Stroomer, R. Lammens, S. N. Schulz, and W. H. Ehrenstein, “Comparing endoscopic systems on two simulated tasks,” Ergonomics 48(3), 270–287 (2005).
[Crossref] [PubMed]

Lee, E.

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O, 82520O-6 (2012).
[Crossref]

Lee, S.

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O, 82520O-6 (2012).
[Crossref]

Lo, Y.-H.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15(3), 030504 (2010).
[Crossref] [PubMed]

McDonald, J. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Mintz, Y.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15(3), 030504 (2010).
[Crossref] [PubMed]

Monch, W.

P. Muller, N. Spengler, H. Zappe, and W. Monch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Muller, P.

P. Muller, N. Spengler, H. Zappe, and W. Monch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Ng, J. M. K.

J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis 23(20), 3461–3473 (2002).
[Crossref] [PubMed]

Pitris, C.

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

Qiao, W.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15(3), 030504 (2010).
[Crossref] [PubMed]

Russell, R. C. G.

N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
[Crossref] [PubMed]

Schueller, O. J. A.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Schulz, S. N.

W. B. Verwey, S. Stroomer, R. Lammens, S. N. Schulz, and W. H. Ehrenstein, “Comparing endoscopic systems on two simulated tasks,” Ergonomics 48(3), 270–287 (2005).
[Crossref] [PubMed]

Setterwall, F.

W. Yao, H. Bjurstroem, and F. Setterwall, “Surface tension of lithium bromide solutions with heat-transfer additives,” J. Chem. Eng. Data 36(1), 96–98 (1991).
[Crossref]

Smith, S. G. T.

N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
[Crossref] [PubMed]

Southern, J. F.

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

Spengler, N.

P. Muller, N. Spengler, H. Zappe, and W. Monch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Stroock, A. D.

J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis 23(20), 3461–3473 (2002).
[Crossref] [PubMed]

Stroomer, S.

W. B. Verwey, S. Stroomer, R. Lammens, S. N. Schulz, and W. H. Ehrenstein, “Comparing endoscopic systems on two simulated tasks,” Ergonomics 48(3), 270–287 (2005).
[Crossref] [PubMed]

Taffinder, N.

N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
[Crossref] [PubMed]

Talamini, M.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15(3), 030504 (2010).
[Crossref] [PubMed]

Tearney, G. J.

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

Tsai, F. S.

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15(3), 030504 (2010).
[Crossref] [PubMed]

Verwey, W. B.

W. B. Verwey, S. Stroomer, R. Lammens, S. N. Schulz, and W. H. Ehrenstein, “Comparing endoscopic systems on two simulated tasks,” Ergonomics 48(3), 270–287 (2005).
[Crossref] [PubMed]

Whitesides, G. M.

J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis 23(20), 3461–3473 (2002).
[Crossref] [PubMed]

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Wu, H.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Yao, W.

W. Yao, H. Bjurstroem, and F. Setterwall, “Surface tension of lithium bromide solutions with heat-transfer additives,” J. Chem. Eng. Data 36(1), 96–98 (1991).
[Crossref]

Zappe, H.

P. Muller, N. Spengler, H. Zappe, and W. Monch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Am. J. Respir. Crit. Care Med. (1)

C. Pitris, M. E. Brezinski, B. E. Bouma, G. J. Tearney, J. F. Southern, and J. G. Fujimoto, “High resolution imaging of the upper respiratory tract with optical coherence tomography: a feasibility study,” Am. J. Respir. Crit. Care Med. 157(5 Pt 1), 1640–1644 (1998).
[PubMed]

Electrophoresis (2)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

J. M. K. Ng, I. Gitlin, A. D. Stroock, and G. M. Whitesides, “Components for integrated poly(dimethylsiloxane) microfluidic systems,” Electrophoresis 23(20), 3461–3473 (2002).
[Crossref] [PubMed]

Ergonomics (1)

W. B. Verwey, S. Stroomer, R. Lammens, S. N. Schulz, and W. H. Ehrenstein, “Comparing endoscopic systems on two simulated tasks,” Ergonomics 48(3), 270–287 (2005).
[Crossref] [PubMed]

J. Biomed. Opt. (1)

F. S. Tsai, D. Johnson, C. S. Francis, S. H. Cho, W. Qiao, A. Arianpour, Y. Mintz, S. Horgan, M. Talamini, and Y.-H. Lo, “Fluidic lens laparoscopic zoom camera for minimally invasive surgery,” J. Biomed. Opt. 15(3), 030504 (2010).
[Crossref] [PubMed]

J. Chem. Eng. Data (1)

W. Yao, H. Bjurstroem, and F. Setterwall, “Surface tension of lithium bromide solutions with heat-transfer additives,” J. Chem. Eng. Data 36(1), 96–98 (1991).
[Crossref]

J. Microelectromech. Syst. (1)

P. Muller, N. Spengler, H. Zappe, and W. Monch, “An optofluidic concept for a tunable micro-iris,” J. Microelectromech. Syst. 19(6), 1477–1484 (2010).
[Crossref]

Proc. SPIE (1)

J.-H. Chang, K.-D. Jung, E. Lee, M. Choi, and S. Lee, “Microelectrofluidic iris for variable aperture,” Proc. SPIE 8252, 82520O, 82520O-6 (2012).
[Crossref]

Surg. Endosc. (1)

N. Taffinder, S. G. T. Smith, J. Huber, R. C. G. Russell, and A. Darzi, “The effect of a second-generation 3D endoscope on the laparoscopic precision of novices and experienced surgeons,” Surg. Endosc. 13(11), 1087–1092 (1999).
[Crossref] [PubMed]

Other (1)

J. P. O. Evens, M. Robinson, S. X. Godber, and R. S. Petty, “The development of 3-D (stereoscopic) imaging systems for security applications,” in International Carnahan Conference on Security Technology (Sanderstead, England, 1995), 505–511.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Optical lens configuration using two liquids.

Fig. 2
Fig. 2

(a) Effective focal length as a function of changes in the sag of two liquid lenses, (b) ray tracing of liquid lens.

Fig. 3
Fig. 3

(a) Refractive index vs. salt concentration; (b) Abbe number vs. salt concentration.

Fig. 4
Fig. 4

(a) Schematic of lens module; (b) structure of IRIS; (c) Ray tracing and liquid lens shape at wide angle, middle angle, and tele angle.

Fig. 5
Fig. 5

Change in lens sag vs. focal length.

Fig. 6
Fig. 6

The image resolution by the IRIS aperture diameter.

Fig. 7
Fig. 7

Phase profile of DOE.

Fig. 8
Fig. 8

Design result; MTF (a),(b) Wide angle mode 1 × , (left 0–0.5F, right 0.6F–1.0F). (c),(d) Middle angle zoom 2 × ; (c), (d) Tele angle, zoom 4 ×.

Fig. 9
Fig. 9

Design result; Optical distortion.

Fig. 10
Fig. 10

Image simulation result using USAF1951 chart; (a) zoom 1 × , (b) zoom 2 × ,(c) zoom 4 ×.

Tables (5)

Tables Icon

Table 1 Design conditions and goals for optical lens

Tables Icon

Table 2 Summary of design result

Tables Icon

Table 3 Optical lens parameters

Tables Icon

Table 4 Lens parameters of liquid lens and iris

Tables Icon

Table 5 Lens parameters of aspheric polymer lens

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

δz= Z 2 δ P 1 Bf
1 f =( n 1 1 )( n 2 1 )( 1 R 1 ( n 2 1) 1 R 2 ( n 1 1) +( d 1 n 1 + d 2 n 2 ) 1 R 1 R 2 )
1 f =( n 1 1 )( 1 R 1 1 R 2 + ( d 1 + d 2 )( n 1 1) R 1 R 2 n 1 )
z(r)=( c r 2 1+ (1(1+k) c 2 r 2 ) 0.5 )+ A 2 r 4 + A 4 r 6 +A r 8 8 ......
z(r)=( c r 2 1+ (1 c 2 r 2 ) 0.5 )
R 1 =( ( b 1 2 +z ( b 1 ) 2 ) 2z( b 1 ) )
φ(r)= 2π λ o n=1 10 C n r 2n
height= λ o n 2 ( λ o ) n 1 ( λ o ) = 0.572μm 1.49231 =1.17μm
f= 0.5 Qudratic_Phase_Coefficient = 0.5 C 1 =2735.6

Metrics