Abstract

We have developed a technique to perform optical two-dimensional Fourier-transform (2DFT) spectroscopy in a reflection geometry. Various reflection 2DFT spectra are obtained for an atomic vapor. The technique is useful for the cases where optical 2DFT spectroscopy cannot be performed in the transmission geometry.

© 2013 OSA

Full Article  |  PDF Article
Related Articles
Femtosecond phase spectroscopy by use of frequency-domain interference

Eiji Tokunaga, Akira Terasaki, and Takayoshi Kobayashi
J. Opt. Soc. Am. B 12(5) 753-771 (1995)

Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy

L. Lepetit, G. Chériaux, and M. Joffre
J. Opt. Soc. Am. B 12(12) 2467-2474 (1995)

Heterodyne detection of the complete electric field of femtosecond four-wave mixing signals

Sarah M. Gallagher, Allison W. Albrecht, John D. Hybl, Brett L. Landin, Bhavani Rajaram, and David M. Jonas
J. Opt. Soc. Am. B 15(8) 2338-2345 (1998)

References

  • View by:
  • |
  • |
  • |

  1. P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, “The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure,” Proc. Nat. Acad. Sci. (USA) 96, 2036–2041 (1999).
    [Crossref]
  2. C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, “Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water,” Science 301, 1698–1702 (2003).
    [Crossref] [PubMed]
  3. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
    [Crossref] [PubMed]
  4. X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
    [Crossref] [PubMed]
  5. X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
    [Crossref] [PubMed]
  6. P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
    [Crossref]
  7. J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
    [Crossref]
  8. M. Cowan, J. Ogilvie, and R. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
    [Crossref]
  9. T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29, 884–886 (2004).
    [Crossref] [PubMed]
  10. U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33, 2851–2853 (2008).
    [Crossref] [PubMed]
  11. V. Volkov, R. Schanz, and P. Hamm, “Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 30, 2010–2012 (2005).
    [Crossref] [PubMed]
  12. A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Inst. 80, 073108 (2009).
    [Crossref]
  13. D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
    [Crossref] [PubMed]
  14. P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
    [Crossref] [PubMed]
  15. D. B. Turner, D. J. Howey, E. J. Sutor, R. A. Hendrickson, M. W. Gealy, and D. J. Ulness, “Two-dimensional electronic spectroscopy using incoherent light: Theoretical analysis,” J. Phys. Chem. A (Article ASAP, DOI: ).
    [Crossref] [PubMed]
  16. A. Honold, L. Schultheis, J. Kuhl, and C. W. Tu, “Reflected degenerate 4-wave mixing on GaAs single quantum wells,” Appl. Phys. Lett. 52, 2105–2107 (1988).
    [Crossref]
  17. V. O. Lorenz and S. T. Cundiff, “Non-Markovian dynamics in a dense potassium vapor,” Phys. Rev. Lett. 95, 163601 (2005).
    [Crossref] [PubMed]
  18. V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cundiff, “Ultrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor,” Phys. Rev. Lett. 100, 013603 (2008).
    [Crossref] [PubMed]
  19. H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathwyas using optical 3D Fourier-transform spectroscopy,” Nat. Commun. (to be published, doi: ).
    [Crossref]
  20. L. Lepetit, G. Chriaux, and M. Joffre, “Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy,” J. Opt. Soc. Am. B 12, 2467–2474 (1995).
    [Crossref]
  21. X. Dai, A. D. Bristow, D. Karaiskaj, and S. T. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010).
    [Crossref]
  22. V. O. Lorenz, X. Dai, H. Green, T. R. Asnicar, and S. T. Cundiff, “High-density, high-temperature alkali vapor cell,” Rev. Sci. Inst. 79, 123104 (2008).
    [Crossref]
  23. W. Wagner, C. Li, J. Semmlow, and W. Warren, “Rapid phase-cycled two-dimensional optical spectroscopy in fluorescence and transmission mode,” Opt. Express 13, 3697–3706 (2005).
    [Crossref] [PubMed]
  24. S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2d IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. (USA) 104, 14197–14202 (2007).
    [Crossref]
  25. K. Lazonder, M. S. Pshenichnikov, and D. A. Wiersma, “Easy interpretation of optical two-dimensional correlation spectra,” Opt. Lett. 31, 3354–3356 (2006).
    [Crossref] [PubMed]

2012 (1)

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref] [PubMed]

2011 (1)

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref] [PubMed]

2010 (1)

X. Dai, A. D. Bristow, D. Karaiskaj, and S. T. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010).
[Crossref]

2009 (1)

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Inst. 80, 073108 (2009).
[Crossref]

2008 (3)

V. O. Lorenz, X. Dai, H. Green, T. R. Asnicar, and S. T. Cundiff, “High-density, high-temperature alkali vapor cell,” Rev. Sci. Inst. 79, 123104 (2008).
[Crossref]

V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cundiff, “Ultrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor,” Phys. Rev. Lett. 100, 013603 (2008).
[Crossref] [PubMed]

U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, “Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics,” Opt. Lett. 33, 2851–2853 (2008).
[Crossref] [PubMed]

2007 (2)

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref] [PubMed]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2d IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. (USA) 104, 14197–14202 (2007).
[Crossref]

2006 (2)

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref] [PubMed]

K. Lazonder, M. S. Pshenichnikov, and D. A. Wiersma, “Easy interpretation of optical two-dimensional correlation spectra,” Opt. Lett. 31, 3354–3356 (2006).
[Crossref] [PubMed]

2005 (4)

W. Wagner, C. Li, J. Semmlow, and W. Warren, “Rapid phase-cycled two-dimensional optical spectroscopy in fluorescence and transmission mode,” Opt. Express 13, 3697–3706 (2005).
[Crossref] [PubMed]

V. Volkov, R. Schanz, and P. Hamm, “Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 30, 2010–2012 (2005).
[Crossref] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

V. O. Lorenz and S. T. Cundiff, “Non-Markovian dynamics in a dense potassium vapor,” Phys. Rev. Lett. 95, 163601 (2005).
[Crossref] [PubMed]

2004 (2)

M. Cowan, J. Ogilvie, and R. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29, 884–886 (2004).
[Crossref] [PubMed]

2003 (1)

C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, “Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water,” Science 301, 1698–1702 (2003).
[Crossref] [PubMed]

1999 (1)

P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, “The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure,” Proc. Nat. Acad. Sci. (USA) 96, 2036–2041 (1999).
[Crossref]

1998 (2)

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[Crossref]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

1995 (1)

1988 (1)

A. Honold, L. Schultheis, J. Kuhl, and C. W. Tu, “Reflected degenerate 4-wave mixing on GaAs single quantum wells,” Appl. Phys. Lett. 52, 2105–2107 (1988).
[Crossref]

Albrecht, A. W.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

Asnicar, T. R.

V. O. Lorenz, X. Dai, H. Green, T. R. Asnicar, and S. T. Cundiff, “High-density, high-temperature alkali vapor cell,” Rev. Sci. Inst. 79, 123104 (2008).
[Crossref]

Blankenship, R. E.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

Borca, C. N.

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref] [PubMed]

Bristow, A. D.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref] [PubMed]

X. Dai, A. D. Bristow, D. Karaiskaj, and S. T. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010).
[Crossref]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Inst. 80, 073108 (2009).
[Crossref]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathwyas using optical 3D Fourier-transform spectroscopy,” Nat. Commun. (to be published, doi: ).
[Crossref]

Brixner, T.

Carlsson, C.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Inst. 80, 073108 (2009).
[Crossref]

Cho, M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

Chriaux, G.

Cowan, M.

M. Cowan, J. Ogilvie, and R. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

Cundiff, S. T.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref] [PubMed]

X. Dai, A. D. Bristow, D. Karaiskaj, and S. T. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010).
[Crossref]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Inst. 80, 073108 (2009).
[Crossref]

V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cundiff, “Ultrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor,” Phys. Rev. Lett. 100, 013603 (2008).
[Crossref] [PubMed]

V. O. Lorenz, X. Dai, H. Green, T. R. Asnicar, and S. T. Cundiff, “High-density, high-temperature alkali vapor cell,” Rev. Sci. Inst. 79, 123104 (2008).
[Crossref]

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref] [PubMed]

V. O. Lorenz and S. T. Cundiff, “Non-Markovian dynamics in a dense potassium vapor,” Phys. Rev. Lett. 95, 163601 (2005).
[Crossref] [PubMed]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathwyas using optical 3D Fourier-transform spectroscopy,” Nat. Commun. (to be published, doi: ).
[Crossref]

Dai, X.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref] [PubMed]

X. Dai, A. D. Bristow, D. Karaiskaj, and S. T. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010).
[Crossref]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Inst. 80, 073108 (2009).
[Crossref]

V. O. Lorenz, X. Dai, H. Green, T. R. Asnicar, and S. T. Cundiff, “High-density, high-temperature alkali vapor cell,” Rev. Sci. Inst. 79, 123104 (2008).
[Crossref]

DeGrado, W. F.

P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, “The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure,” Proc. Nat. Acad. Sci. (USA) 96, 2036–2041 (1999).
[Crossref]

Dimler, F.

Eaves, J. D.

C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, “Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water,” Science 301, 1698–1702 (2003).
[Crossref] [PubMed]

Faeder, S. M. G.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

Falvo, C.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref] [PubMed]

Fecko, C. J.

C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, “Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water,” Science 301, 1698–1702 (2003).
[Crossref] [PubMed]

Fleming, G. R.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, “Tunable two-dimensional femtosecond spectroscopy,” Opt. Lett. 29, 884–886 (2004).
[Crossref] [PubMed]

Gealy, M. W.

D. B. Turner, D. J. Howey, E. J. Sutor, R. A. Hendrickson, M. W. Gealy, and D. J. Ulness, “Two-dimensional electronic spectroscopy using incoherent light: Theoretical analysis,” J. Phys. Chem. A (Article ASAP, DOI: ).
[Crossref] [PubMed]

Geissler, P. L.

C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, “Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water,” Science 301, 1698–1702 (2003).
[Crossref] [PubMed]

Gieseking, B.

Green, H.

V. O. Lorenz, X. Dai, H. Green, T. R. Asnicar, and S. T. Cundiff, “High-density, high-temperature alkali vapor cell,” Rev. Sci. Inst. 79, 123104 (2008).
[Crossref]

Gundogdu, K.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref] [PubMed]

Hagen, K. R.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Inst. 80, 073108 (2009).
[Crossref]

Hamm, P.

V. Volkov, R. Schanz, and P. Hamm, “Active phase stabilization in Fourier-transform two-dimensional infrared spectroscopy,” Opt. Lett. 30, 2010–2012 (2005).
[Crossref] [PubMed]

P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, “The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure,” Proc. Nat. Acad. Sci. (USA) 96, 2036–2041 (1999).
[Crossref]

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[Crossref]

Hendrickson, R. A.

D. B. Turner, D. J. Howey, E. J. Sutor, R. A. Hendrickson, M. W. Gealy, and D. J. Ulness, “Two-dimensional electronic spectroscopy using incoherent light: Theoretical analysis,” J. Phys. Chem. A (Article ASAP, DOI: ).
[Crossref] [PubMed]

Hochstrasser, R. M.

P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, “The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure,” Proc. Nat. Acad. Sci. (USA) 96, 2036–2041 (1999).
[Crossref]

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[Crossref]

Honold, A.

A. Honold, L. Schultheis, J. Kuhl, and C. W. Tu, “Reflected degenerate 4-wave mixing on GaAs single quantum wells,” Appl. Phys. Lett. 52, 2105–2107 (1988).
[Crossref]

Howey, D. J.

D. B. Turner, D. J. Howey, E. J. Sutor, R. A. Hendrickson, M. W. Gealy, and D. J. Ulness, “Two-dimensional electronic spectroscopy using incoherent light: Theoretical analysis,” J. Phys. Chem. A (Article ASAP, DOI: ).
[Crossref] [PubMed]

Hybl, J. D.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

Jimenez, R.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Inst. 80, 073108 (2009).
[Crossref]

Joffre, M.

Jonas, D. M.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

Karaiskaj, D.

X. Dai, A. D. Bristow, D. Karaiskaj, and S. T. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010).
[Crossref]

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Inst. 80, 073108 (2009).
[Crossref]

Kuhl, J.

A. Honold, L. Schultheis, J. Kuhl, and C. W. Tu, “Reflected degenerate 4-wave mixing on GaAs single quantum wells,” Appl. Phys. Lett. 52, 2105–2107 (1988).
[Crossref]

Langhojer, F.

Lazonder, K.

Lepetit, L.

Li, C.

Li, H.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref] [PubMed]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathwyas using optical 3D Fourier-transform spectroscopy,” Nat. Commun. (to be published, doi: ).
[Crossref]

Li, X.

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref] [PubMed]

Lim, M.

P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, “The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure,” Proc. Nat. Acad. Sci. (USA) 96, 2036–2041 (1999).
[Crossref]

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[Crossref]

Ling, Y. L.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2d IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. (USA) 104, 14197–14202 (2007).
[Crossref]

Löhrig, T.

Loparo, J. J.

C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, “Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water,” Science 301, 1698–1702 (2003).
[Crossref] [PubMed]

Lorenz, V. O.

V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cundiff, “Ultrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor,” Phys. Rev. Lett. 100, 013603 (2008).
[Crossref] [PubMed]

V. O. Lorenz, X. Dai, H. Green, T. R. Asnicar, and S. T. Cundiff, “High-density, high-temperature alkali vapor cell,” Rev. Sci. Inst. 79, 123104 (2008).
[Crossref]

V. O. Lorenz and S. T. Cundiff, “Non-Markovian dynamics in a dense potassium vapor,” Phys. Rev. Lett. 95, 163601 (2005).
[Crossref] [PubMed]

Lott, G. A.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref] [PubMed]

Marcus, A. H.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref] [PubMed]

Miller, R.

M. Cowan, J. Ogilvie, and R. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

Moody, G.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathwyas using optical 3D Fourier-transform spectroscopy,” Nat. Commun. (to be published, doi: ).
[Crossref]

Mukamel, S.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref] [PubMed]

V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cundiff, “Ultrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor,” Phys. Rev. Lett. 100, 013603 (2008).
[Crossref] [PubMed]

Nelson, K. A.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref] [PubMed]

Ogilvie, J.

M. Cowan, J. Ogilvie, and R. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

Pshenichnikov, M. S.

Richter, M.

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref] [PubMed]

Schanz, R.

Schultheis, L.

A. Honold, L. Schultheis, J. Kuhl, and C. W. Tu, “Reflected degenerate 4-wave mixing on GaAs single quantum wells,” Appl. Phys. Lett. 52, 2105–2107 (1988).
[Crossref]

Schwarz, C.

Selig, U.

Semmlow, J.

Shim, S.-H.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2d IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. (USA) 104, 14197–14202 (2007).
[Crossref]

Siemens, M. E.

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathwyas using optical 3D Fourier-transform spectroscopy,” Nat. Commun. (to be published, doi: ).
[Crossref]

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

Stiopkin, I. V.

Stone, K. W.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref] [PubMed]

Strasfeld, D. B.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2d IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. (USA) 104, 14197–14202 (2007).
[Crossref]

Sutor, E. J.

D. B. Turner, D. J. Howey, E. J. Sutor, R. A. Hendrickson, M. W. Gealy, and D. J. Ulness, “Two-dimensional electronic spectroscopy using incoherent light: Theoretical analysis,” J. Phys. Chem. A (Article ASAP, DOI: ).
[Crossref] [PubMed]

Tekavec, P. F.

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref] [PubMed]

Tokmakoff, A.

C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, “Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water,” Science 301, 1698–1702 (2003).
[Crossref] [PubMed]

Tu, C. W.

A. Honold, L. Schultheis, J. Kuhl, and C. W. Tu, “Reflected degenerate 4-wave mixing on GaAs single quantum wells,” Appl. Phys. Lett. 52, 2105–2107 (1988).
[Crossref]

Turner, D. B.

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref] [PubMed]

D. B. Turner, D. J. Howey, E. J. Sutor, R. A. Hendrickson, M. W. Gealy, and D. J. Ulness, “Two-dimensional electronic spectroscopy using incoherent light: Theoretical analysis,” J. Phys. Chem. A (Article ASAP, DOI: ).
[Crossref] [PubMed]

Ulness, D. J.

D. B. Turner, D. J. Howey, E. J. Sutor, R. A. Hendrickson, M. W. Gealy, and D. J. Ulness, “Two-dimensional electronic spectroscopy using incoherent light: Theoretical analysis,” J. Phys. Chem. A (Article ASAP, DOI: ).
[Crossref] [PubMed]

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

Volkov, V.

Wagner, W.

Warren, W.

Wiersma, D. A.

Zanni, M. T.

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2d IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. (USA) 104, 14197–14202 (2007).
[Crossref]

Zhang, T.

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Inst. 80, 073108 (2009).
[Crossref]

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref] [PubMed]

Zhuang, W.

V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cundiff, “Ultrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor,” Phys. Rev. Lett. 100, 013603 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

A. Honold, L. Schultheis, J. Kuhl, and C. W. Tu, “Reflected degenerate 4-wave mixing on GaAs single quantum wells,” Appl. Phys. Lett. 52, 2105–2107 (1988).
[Crossref]

Chem. Phys. Lett. (2)

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, “Two-dimensional electronic spectroscopy,” Chem. Phys. Lett. 297, 307–313 (1998).
[Crossref]

M. Cowan, J. Ogilvie, and R. Miller, “Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes,” Chem. Phys. Lett. 386, 184–189 (2004).
[Crossref]

J. Chem. Phys. (1)

P. F. Tekavec, G. A. Lott, and A. H. Marcus, “Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation,” J. Chem. Phys. 127, 214307 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

P. Hamm, M. Lim, and R. M. Hochstrasser, “Structure of the amide I band of peptides measured by femtosecond nonlinear-infrared spectroscopy,” J. Phys. Chem. B 102, 6123–6138 (1998).
[Crossref]

Nature (1)

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, “Two-dimensional spectroscopy of electronic couplings in photosynthesis,” Nature 434, 625–628 (2005).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

X. Dai, A. D. Bristow, D. Karaiskaj, and S. T. Cundiff, “Two-dimensional Fourier-transform spectroscopy of potassium vapor,” Phys. Rev. A 82, 052503 (2010).
[Crossref]

Phys. Rev. Lett. (4)

V. O. Lorenz and S. T. Cundiff, “Non-Markovian dynamics in a dense potassium vapor,” Phys. Rev. Lett. 95, 163601 (2005).
[Crossref] [PubMed]

V. O. Lorenz, S. Mukamel, W. Zhuang, and S. T. Cundiff, “Ultrafast optical spectroscopy of spectral fluctuations in a dense atomic vapor,” Phys. Rev. Lett. 100, 013603 (2008).
[Crossref] [PubMed]

X. Li, T. Zhang, C. N. Borca, and S. T. Cundiff, “Many-body interactions in semiconductors probed by optical two-dimensional Fourier transform spectroscopy,” Phys. Rev. Lett. 96, 057406 (2006).
[Crossref] [PubMed]

X. Dai, M. Richter, H. Li, A. D. Bristow, C. Falvo, S. Mukamel, and S. T. Cundiff, “Two-dimensional double-quantum spectra reveal collective resonances in an atomic vapor,” Phys. Rev. Lett. 108, 193201 (2012).
[Crossref] [PubMed]

Proc. Nat. Acad. Sci. (USA) (2)

P. Hamm, M. Lim, W. F. DeGrado, and R. M. Hochstrasser, “The two-dimensional IR nonlinear spectroscopy of a cyclic penta-peptide in relation to its three-dimensional structure,” Proc. Nat. Acad. Sci. (USA) 96, 2036–2041 (1999).
[Crossref]

S.-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, “Automated 2d IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide,” Proc. Nat. Acad. Sci. (USA) 104, 14197–14202 (2007).
[Crossref]

Rev. Sci. Inst. (2)

A. D. Bristow, D. Karaiskaj, X. Dai, T. Zhang, C. Carlsson, K. R. Hagen, R. Jimenez, and S. T. Cundiff, “A versatile ultrastable platform for optical multidimensional Fourier-transform spectroscopy,” Rev. Sci. Inst. 80, 073108 (2009).
[Crossref]

V. O. Lorenz, X. Dai, H. Green, T. R. Asnicar, and S. T. Cundiff, “High-density, high-temperature alkali vapor cell,” Rev. Sci. Inst. 79, 123104 (2008).
[Crossref]

Rev. Sci. Instrum. (1)

D. B. Turner, K. W. Stone, K. Gundogdu, and K. A. Nelson, “Invited article: The coherent optical laser beam recombination technique (COLBERT) spectrometer: Coherent multidimensional spectroscopy made easier,” Rev. Sci. Instrum. 82, 081301 (2011).
[Crossref] [PubMed]

Science (1)

C. J. Fecko, J. D. Eaves, J. J. Loparo, A. Tokmakoff, and P. L. Geissler, “Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water,” Science 301, 1698–1702 (2003).
[Crossref] [PubMed]

Other (2)

D. B. Turner, D. J. Howey, E. J. Sutor, R. A. Hendrickson, M. W. Gealy, and D. J. Ulness, “Two-dimensional electronic spectroscopy using incoherent light: Theoretical analysis,” J. Phys. Chem. A (Article ASAP, DOI: ).
[Crossref] [PubMed]

H. Li, A. D. Bristow, M. E. Siemens, G. Moody, and S. T. Cundiff, “Unraveling quantum pathwyas using optical 3D Fourier-transform spectroscopy,” Nat. Commun. (to be published, doi: ).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental schematic. (b) Time ordering of the pulses. (c) Energy level scheme of the potassium atom.

Fig. 2
Fig. 2

Dashed line shows the laser spectrum. Blue line is the spectrum of the reflected reference. Red line is the phase of the reflected reference.

Fig. 3
Fig. 3

Time-resolved FWM signal retrieved from interferograms. (a) The reference phase is not corrected. (b) The reference phase is corrected. (c) Truncated signal for generating 2DFT spectrum.

Fig. 4
Fig. 4

Reflection 2DFT spectra showing the absolute value. (a) rephasing spectrum. (b) non-rephasing spectrum. (c) correlation spectrum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I S I ( ω ) = | E ^ S + E ^ R | 2 = | E ^ S | 2 + | E ^ R | 2 + E ^ S E ^ R * + E ^ S * E ^ R .
E ^ S E ^ R * = E ˜ S E ˜ R e i ϕ S ( ω ) e i ϕ R ( ω ) e i ω ( τ S τ R ) .

Metrics