Abstract

A maximal enhancement of ~6.5 times of the external quantum efficiency (EQE) for SiNx-based light-emitting devices (LEDs) is achieved by magnetron sputtering a silver nanostructures layer onto the active matrix. The enhancement of EQE is affected by the dimension and morphology of silver nanostructures, which can be controlled by the sputtering time and the post treatment of rapid thermal annealing. The optimal size of silver nanostructures is about 100 nm in diameter by comparing the integrated electroluminescence intensity under the same input power. The optimization of EQE for SiNx-based LEDs is discussed by considering the contributions of the enhancement of light-extraction efficiency induced by the surface roughening of the front electrode, internal quantum efficiency due to the coupling between excitons and localized surface plasmons, and carrier injection efficiency. Our work may provide an alternative approach for the fabrication of Si-based light sources with promising luminescence efficiency.

© 2013 OSA

Full Article  |  PDF Article
Related Articles
Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons

Dongsheng Li, Feng Wang, Changrui Ren, and Deren Yang
Opt. Mater. Express 2(6) 872-877 (2012)

Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios

Feng Wang, Minghua Wang, Dongsheng Li, and Deren Yang
Opt. Mater. Express 2(10) 1437-1448 (2012)

Dependence of efficiencies in GaN-based vertical blue light-emitting diodes on the thickness and doping concentration of the n-GaN layer

Han-Youl Ryu, Ki-Seong Jeon, Min-Goo Kang, Yunho Choi, and Jeong-Soo Lee
Opt. Express 21(S1) A190-A200 (2013)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Stein, “Thermally annealed silicon nitride films: Electrical characteristics and radiation effects,” J. Appl. Phys. 57(6), 2040–2047 (1985).
    [Crossref]
  2. G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
    [Crossref]
  3. P. Doshi, G. E. Jellison, and A. Rohatgi, “Characterization and optimization of absorbing plasma-enhanced chemical vapor deposited antireflection coatings for silicon photovoltaics,” Appl. Opt. 36(30), 7826–7837 (1997).
    [Crossref] [PubMed]
  4. L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
    [Crossref] [PubMed]
  5. M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX film. II. Defect states electroluminescence,” J. Appl. Phys. 104(8), 083505 (2008).
    [Crossref]
  6. Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu, and W. P. Goh, “Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film,” Opt. Express 18(19), 20439–20444 (2010).
    [Crossref] [PubMed]
  7. B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
    [Crossref]
  8. N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001).
    [Crossref] [PubMed]
  9. M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room temperature band tail states photoluminescence,” J. Appl. Phys. 104(8), 083504 (2008).
    [Crossref]
  10. G.-R. Lin, C.-J. Lin, and C.-K. Lin, “Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids,” Opt. Express 15(5), 2555–2563 (2007).
    [Crossref] [PubMed]
  11. T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Pulsed pumping of silicon nanocrystal light emitting devices,” Opt. Express 18(11), 10924–10930 (2010).
    [Crossref] [PubMed]
  12. C.-H. Cheng, C.-L. Wu, C.-C. Chen, L.-H. Tsai, Y.-H. Lin, and G.-R. Lin, “Si-rich SixC1-x light-emitting diodes with buried Si quantum dots,” IEEE Photon. J 4(5), 1762–1775 (2012).
    [Crossref]
  13. J. Liu, X. Sun, L. C. Kimerling, and J. Michel, “Direct-gap optical gain of Ge on Si at room temperature,” Opt. Lett. 34(11), 1738–1740 (2009).
    [Crossref] [PubMed]
  14. B. Dutt, D. S. Sukhdeo, D. Nam, B. M. Vulovic, Ze Yuan, and K. C. Saraswat, “Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping,” IEEE Photon. J 4(5), 2002–2009 (2012).
    [Crossref]
  15. R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
    [Crossref] [PubMed]
  16. G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
    [Crossref]
  17. C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5058–5062 (2010).
    [Crossref] [PubMed]
  18. B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett. 89(6), 063509 (2006).
    [Crossref]
  19. K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett. 89(19), 191120 (2006).
    [Crossref]
  20. D. Li, J. Huang, and D. Yang, “Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment,” Physica E 41(6), 920–922 (2009).
    [Crossref]
  21. J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005).
    [Crossref] [PubMed]
  22. R. T. Tung, “Electron transport at metal-semiconductor interfaces: General theory,” Phys. Rev. B Condens. Matter 45(23), 13509–13523 (1992).
    [Crossref] [PubMed]
  23. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
    [Crossref] [PubMed]
  24. H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
    [Crossref]
  25. C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
    [Crossref]
  26. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [Crossref]
  27. J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
    [Crossref]
  28. F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett. 100(3), 031113 (2012).
    [Crossref]
  29. D. Li, F. Wang, C. Ren, and D. Yang, “Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons,” Opt. Mater. Express 2(6), 872–877 (2012).
    [Crossref]
  30. F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of orange-yellow electroluminescence extraction from SiNx light-emitting devices by silver nanostructures,” Opt. Express. in progress.
  31. F. Wang, M. Wang, D. Li, and D. Yang, “Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios,” Opt. Mater. Express 2(10), 1437–1448 (2012).
    [Crossref]
  32. F. Wang, D. Li, D. Yang, and D. Que, “The coupling between localized surface plasmons and excitons via Purcell effect,” Nanoscale Res. Lett. 7(1), 669 (2012).
    [Crossref] [PubMed]
  33. T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys. 43(18), 183001 (2010).
    [Crossref]
  34. G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
    [Crossref] [PubMed]
  35. Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
    [Crossref]
  36. Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express 17(16), 13747–13757 (2009).
    [Crossref] [PubMed]
  37. X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
    [Crossref]
  38. J. Robertson and M. J. Powell, “Gap states in silicon-nitride,” Appl. Phys. Lett. 44(4), 415–417 (1984).
    [Crossref]
  39. D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express 20(16), 17359–17366 (2012).
    [Crossref] [PubMed]
  40. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  41. Y. Liu, J. Xu, H. Sun, S. Sun, W. Xu, L. Xu, and K. Chen, “Depth-dependent anti-reflection and enhancement of luminescence from Si quantum dots-based multilayer on nano-patterned Si substrates,” Opt. Express 19(4), 3347–3352 (2011).
    [Crossref] [PubMed]
  42. A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep. 498(4–5), 189–241 (2011).
    [Crossref]
  43. A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett. 98(20), 201103 (2011).
    [Crossref]

2012 (7)

B. Dutt, D. S. Sukhdeo, D. Nam, B. M. Vulovic, Ze Yuan, and K. C. Saraswat, “Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping,” IEEE Photon. J 4(5), 2002–2009 (2012).
[Crossref]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett. 100(3), 031113 (2012).
[Crossref]

C.-H. Cheng, C.-L. Wu, C.-C. Chen, L.-H. Tsai, Y.-H. Lin, and G.-R. Lin, “Si-rich SixC1-x light-emitting diodes with buried Si quantum dots,” IEEE Photon. J 4(5), 1762–1775 (2012).
[Crossref]

F. Wang, D. Li, D. Yang, and D. Que, “The coupling between localized surface plasmons and excitons via Purcell effect,” Nanoscale Res. Lett. 7(1), 669 (2012).
[Crossref] [PubMed]

D. Li, F. Wang, C. Ren, and D. Yang, “Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons,” Opt. Mater. Express 2(6), 872–877 (2012).
[Crossref]

D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express 20(16), 17359–17366 (2012).
[Crossref] [PubMed]

F. Wang, M. Wang, D. Li, and D. Yang, “Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios,” Opt. Mater. Express 2(10), 1437–1448 (2012).
[Crossref]

2011 (8)

Y. Liu, J. Xu, H. Sun, S. Sun, W. Xu, L. Xu, and K. Chen, “Depth-dependent anti-reflection and enhancement of luminescence from Si quantum dots-based multilayer on nano-patterned Si substrates,” Opt. Express 19(4), 3347–3352 (2011).
[Crossref] [PubMed]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
[Crossref] [PubMed]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep. 498(4–5), 189–241 (2011).
[Crossref]

A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett. 98(20), 201103 (2011).
[Crossref]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[Crossref]

C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
[Crossref]

2010 (5)

G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5058–5062 (2010).
[Crossref] [PubMed]

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys. 43(18), 183001 (2010).
[Crossref]

T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Pulsed pumping of silicon nanocrystal light emitting devices,” Opt. Express 18(11), 10924–10930 (2010).
[Crossref] [PubMed]

Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu, and W. P. Goh, “Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film,” Opt. Express 18(19), 20439–20444 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (3)

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[Crossref]

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room temperature band tail states photoluminescence,” J. Appl. Phys. 104(8), 083504 (2008).
[Crossref]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX film. II. Defect states electroluminescence,” J. Appl. Phys. 104(8), 083505 (2008).
[Crossref]

2007 (3)

Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
[Crossref]

G.-R. Lin, C.-J. Lin, and C.-K. Lin, “Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids,” Opt. Express 15(5), 2555–2563 (2007).
[Crossref] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

2006 (3)

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[Crossref]

B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett. 89(6), 063509 (2006).
[Crossref]

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett. 89(19), 191120 (2006).
[Crossref]

2005 (2)

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005).
[Crossref] [PubMed]

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[Crossref] [PubMed]

2004 (1)

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2001 (1)

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001).
[Crossref] [PubMed]

2000 (1)

G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
[Crossref]

1997 (1)

1992 (1)

R. T. Tung, “Electron transport at metal-semiconductor interfaces: General theory,” Phys. Rev. B Condens. Matter 45(23), 13509–13523 (1992).
[Crossref] [PubMed]

1985 (1)

H. J. Stein, “Thermally annealed silicon nitride films: Electrical characteristics and radiation effects,” J. Appl. Phys. 57(6), 2040–2047 (1985).
[Crossref]

1984 (1)

J. Robertson and M. J. Powell, “Gap states in silicon-nitride,” Appl. Phys. Lett. 44(4), 415–417 (1984).
[Crossref]

Aberle, G.

G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
[Crossref]

Anopchenko, A.

A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett. 98(20), 201103 (2011).
[Crossref]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX film. II. Defect states electroluminescence,” J. Appl. Phys. 104(8), 083505 (2008).
[Crossref]

Arif, R. A.

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express 17(16), 13747–13757 (2009).
[Crossref] [PubMed]

Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
[Crossref]

Atwater, H. A.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[Crossref]

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005).
[Crossref] [PubMed]

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Beeker, W.

Biteen, J. S.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[Crossref]

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005).
[Crossref] [PubMed]

Bourianoff, G. I.

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[Crossref] [PubMed]

Burla, M.

Byeon, C.-C.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[Crossref]

Catchpole, K. R.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Cen, Z. H.

Chen, C. C.

G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

Chen, C.-C.

C.-H. Cheng, C.-L. Wu, C.-C. Chen, L.-H. Tsai, Y.-H. Lin, and G.-R. Lin, “Si-rich SixC1-x light-emitting diodes with buried Si quantum dots,” IEEE Photon. J 4(5), 1762–1775 (2012).
[Crossref]

Chen, K.

Chen, T. P.

Cheng, C.-H.

C.-H. Cheng, C.-L. Wu, C.-C. Chen, L.-H. Tsai, Y.-H. Lin, and G.-R. Lin, “Si-rich SixC1-x light-emitting diodes with buried Si quantum dots,” IEEE Photon. J 4(5), 1762–1775 (2012).
[Crossref]

Cho, C.-H.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[Crossref]

B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett. 89(6), 063509 (2006).
[Crossref]

Cho, K.-S.

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett. 89(19), 191120 (2006).
[Crossref]

Choi, C.-J.

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5058–5062 (2010).
[Crossref] [PubMed]

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001).
[Crossref] [PubMed]

Creazzo, T.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ding, L.

Doshi, P.

Dutt, B.

B. Dutt, D. S. Sukhdeo, D. Nam, B. M. Vulovic, Ze Yuan, and K. C. Saraswat, “Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping,” IEEE Photon. J 4(5), 2002–2009 (2012).
[Crossref]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Ee, Y. K.

Ee, Y.-K.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
[Crossref]

Ferraioli, L.

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room temperature band tail states photoluminescence,” J. Appl. Phys. 104(8), 083504 (2008).
[Crossref]

Gilchrist, J. F.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express 17(16), 13747–13757 (2009).
[Crossref] [PubMed]

Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
[Crossref]

Goh, W. P.

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Hong, J. C.

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett. 89(19), 191120 (2006).
[Crossref]

Huang, J.

D. Li, J. Huang, and D. Yang, “Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment,” Physica E 41(6), 920–922 (2009).
[Crossref]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX film. II. Defect states electroluminescence,” J. Appl. Phys. 104(8), 083505 (2008).
[Crossref]

Huh, C.

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5058–5062 (2010).
[Crossref] [PubMed]

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett. 89(19), 191120 (2006).
[Crossref]

Jellison, G. E.

Kim, B. K.

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5058–5062 (2010).
[Crossref] [PubMed]

Kim, B.-H.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[Crossref]

B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett. 89(6), 063509 (2006).
[Crossref]

Kim, J.-S.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[Crossref]

Kim, K.-H.

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5058–5062 (2010).
[Crossref] [PubMed]

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett. 89(19), 191120 (2006).
[Crossref]

Kim, T.-Y.

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett. 89(19), 191120 (2006).
[Crossref]

Kim, W.

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5058–5062 (2010).
[Crossref] [PubMed]

Kimerling, L. C.

Ko, H.

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5058–5062 (2010).
[Crossref] [PubMed]

Kuech, T. F.

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys. 43(18), 183001 (2010).
[Crossref]

Kumnorkaew, P.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express 17(16), 13747–13757 (2009).
[Crossref] [PubMed]

Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
[Crossref]

Kwon, M.-K.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[Crossref]

Lai, Y.-L.

C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
[Crossref]

Lan, C.-C.

C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
[Crossref]

Lee, J.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[Crossref]

Leinse, A.

Lewis, N. S.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[Crossref]

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005).
[Crossref] [PubMed]

Li, D.

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett. 100(3), 031113 (2012).
[Crossref]

F. Wang, D. Li, D. Yang, and D. Que, “The coupling between localized surface plasmons and excitons via Purcell effect,” Nanoscale Res. Lett. 7(1), 669 (2012).
[Crossref] [PubMed]

D. Li, F. Wang, C. Ren, and D. Yang, “Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons,” Opt. Mater. Express 2(6), 872–877 (2012).
[Crossref]

D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express 20(16), 17359–17366 (2012).
[Crossref] [PubMed]

F. Wang, M. Wang, D. Li, and D. Yang, “Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios,” Opt. Mater. Express 2(10), 1437–1448 (2012).
[Crossref]

D. Li, J. Huang, and D. Yang, “Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment,” Physica E 41(6), 920–922 (2009).
[Crossref]

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room temperature band tail states photoluminescence,” J. Appl. Phys. 104(8), 083504 (2008).
[Crossref]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX film. II. Defect states electroluminescence,” J. Appl. Phys. 104(8), 083505 (2008).
[Crossref]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of orange-yellow electroluminescence extraction from SiNx light-emitting devices by silver nanostructures,” Opt. Express. in progress.

Li, X.-H.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

Li, Y.-L.

C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
[Crossref]

Lin, C. T.

G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

Lin, C.-J.

Lin, C.-K.

Lin, G. R.

G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

Lin, G.-R.

C.-H. Cheng, C.-L. Wu, C.-C. Chen, L.-H. Tsai, Y.-H. Lin, and G.-R. Lin, “Si-rich SixC1-x light-emitting diodes with buried Si quantum dots,” IEEE Photon. J 4(5), 1762–1775 (2012).
[Crossref]

G.-R. Lin, C.-J. Lin, and C.-K. Lin, “Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids,” Opt. Express 15(5), 2555–2563 (2007).
[Crossref] [PubMed]

Lin, Y.-H.

C.-H. Cheng, C.-L. Wu, C.-C. Chen, L.-H. Tsai, Y.-H. Lin, and G.-R. Lin, “Si-rich SixC1-x light-emitting diodes with buried Si quantum dots,” IEEE Photon. J 4(5), 1762–1775 (2012).
[Crossref]

Liu, C.-P.

C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
[Crossref]

Liu, G.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[Crossref]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

Liu, J.

Liu, Y.

Liu, Z.

Lu, C.-H.

C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
[Crossref]

Marchena, E.

Marconi, A.

A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett. 98(20), 201103 (2011).
[Crossref]

Marpaung, D.

Mawst, L. J.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys. 43(18), 183001 (2010).
[Crossref]

Mertens, H.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[Crossref]

Michel, J.

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Mun, J.-S.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[Crossref]

Murakowski, J.

Nam, D.

B. Dutt, D. S. Sukhdeo, D. Nam, B. M. Vulovic, Ze Yuan, and K. C. Saraswat, “Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping,” IEEE Photon. J 4(5), 2002–2009 (2012).
[Crossref]

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Pacifici, D.

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005).
[Crossref] [PubMed]

Pai, Y. H.

G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

Park, J. H.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

Park, N.-M.

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett. 89(19), 191120 (2006).
[Crossref]

B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett. 89(6), 063509 (2006).
[Crossref]

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001).
[Crossref] [PubMed]

Park, S.-J.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[Crossref]

B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett. 89(6), 063509 (2006).
[Crossref]

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001).
[Crossref] [PubMed]

Park, T.-Y.

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[Crossref]

Pavesi, L.

A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett. 98(20), 201103 (2011).
[Crossref]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX film. II. Defect states electroluminescence,” J. Appl. Phys. 104(8), 083505 (2008).
[Crossref]

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room temperature band tail states photoluminescence,” J. Appl. Phys. 104(8), 083504 (2008).
[Crossref]

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Polman, A.

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[Crossref]

Powell, M. J.

J. Robertson and M. J. Powell, “Gap states in silicon-nitride,” Appl. Phys. Lett. 44(4), 415–417 (1984).
[Crossref]

Prather, D. W.

Pucker, G.

A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett. 98(20), 201103 (2011).
[Crossref]

Que, D.

D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express 20(16), 17359–17366 (2012).
[Crossref] [PubMed]

F. Wang, D. Li, D. Yang, and D. Que, “The coupling between localized surface plasmons and excitons via Purcell effect,” Nanoscale Res. Lett. 7(1), 669 (2012).
[Crossref] [PubMed]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett. 100(3), 031113 (2012).
[Crossref]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of orange-yellow electroluminescence extraction from SiNx light-emitting devices by silver nanostructures,” Opt. Express. in progress.

Redding, B.

Ren, C.

Robertson, J.

J. Robertson and M. J. Powell, “Gap states in silicon-nitride,” Appl. Phys. Lett. 44(4), 415–417 (1984).
[Crossref]

Roeloffzen, C.

Rohatgi, A.

Saraswat, K. C.

B. Dutt, D. S. Sukhdeo, D. Nam, B. M. Vulovic, Ze Yuan, and K. C. Saraswat, “Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping,” IEEE Photon. J 4(5), 2002–2009 (2012).
[Crossref]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Seong, T.-Y.

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001).
[Crossref] [PubMed]

Shin, J.-H.

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett. 89(19), 191120 (2006).
[Crossref]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Song, R.

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

Stein, H. J.

H. J. Stein, “Thermally annealed silicon nitride films: Electrical characteristics and radiation effects,” J. Appl. Phys. 57(6), 2040–2047 (1985).
[Crossref]

Sukhdeo, D. S.

B. Dutt, D. S. Sukhdeo, D. Nam, B. M. Vulovic, Ze Yuan, and K. C. Saraswat, “Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping,” IEEE Photon. J 4(5), 2002–2009 (2012).
[Crossref]

Sun, H.

Sun, S.

Sun, X.

Sung, G. Y.

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5058–5062 (2010).
[Crossref] [PubMed]

B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett. 89(6), 063509 (2006).
[Crossref]

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett. 89(19), 191120 (2006).
[Crossref]

Tansu, N.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[Crossref]

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express 17(16), 13747–13757 (2009).
[Crossref] [PubMed]

Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
[Crossref]

Tong, H.

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Tsai, L.-H.

C.-H. Cheng, C.-L. Wu, C.-C. Chen, L.-H. Tsai, Y.-H. Lin, and G.-R. Lin, “Si-rich SixC1-x light-emitting diodes with buried Si quantum dots,” IEEE Photon. J 4(5), 1762–1775 (2012).
[Crossref]

Tung, R. T.

R. T. Tung, “Electron transport at metal-semiconductor interfaces: General theory,” Phys. Rev. B Condens. Matter 45(23), 13509–13523 (1992).
[Crossref] [PubMed]

Vulovic, B. M.

B. Dutt, D. S. Sukhdeo, D. Nam, B. M. Vulovic, Ze Yuan, and K. C. Saraswat, “Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping,” IEEE Photon. J 4(5), 2002–2009 (2012).
[Crossref]

Walters, R. J.

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[Crossref] [PubMed]

Wang, F.

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett. 100(3), 031113 (2012).
[Crossref]

F. Wang, D. Li, D. Yang, and D. Que, “The coupling between localized surface plasmons and excitons via Purcell effect,” Nanoscale Res. Lett. 7(1), 669 (2012).
[Crossref] [PubMed]

D. Li, F. Wang, C. Ren, and D. Yang, “Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons,” Opt. Mater. Express 2(6), 872–877 (2012).
[Crossref]

F. Wang, M. Wang, D. Li, and D. Yang, “Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios,” Opt. Mater. Express 2(10), 1437–1448 (2012).
[Crossref]

D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express 20(16), 17359–17366 (2012).
[Crossref] [PubMed]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of orange-yellow electroluminescence extraction from SiNx light-emitting devices by silver nanostructures,” Opt. Express. in progress.

Wang, M.

F. Wang, M. Wang, D. Li, and D. Yang, “Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios,” Opt. Mater. Express 2(10), 1437–1448 (2012).
[Crossref]

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room temperature band tail states photoluminescence,” J. Appl. Phys. 104(8), 083504 (2008).
[Crossref]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX film. II. Defect states electroluminescence,” J. Appl. Phys. 104(8), 083505 (2008).
[Crossref]

Wong, J. I.

Wu, C.-L.

C.-H. Cheng, C.-L. Wu, C.-C. Chen, L.-H. Tsai, Y.-H. Lin, and G.-R. Lin, “Si-rich SixC1-x light-emitting diodes with buried Si quantum dots,” IEEE Photon. J 4(5), 1762–1775 (2012).
[Crossref]

Xie, M.

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room temperature band tail states photoluminescence,” J. Appl. Phys. 104(8), 083504 (2008).
[Crossref]

Xu, J.

Xu, L.

Xu, W.

Yang, D.

D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express 20(16), 17359–17366 (2012).
[Crossref] [PubMed]

D. Li, F. Wang, C. Ren, and D. Yang, “Improved electroluminescence from silicon nitride light emitting devices by localized surface plasmons,” Opt. Mater. Express 2(6), 872–877 (2012).
[Crossref]

F. Wang, M. Wang, D. Li, and D. Yang, “Localized surface plasmon resonance enhanced photoluminescence from SiNx with different N/Si ratios,” Opt. Mater. Express 2(10), 1437–1448 (2012).
[Crossref]

F. Wang, D. Li, D. Yang, and D. Que, “The coupling between localized surface plasmons and excitons via Purcell effect,” Nanoscale Res. Lett. 7(1), 669 (2012).
[Crossref] [PubMed]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett. 100(3), 031113 (2012).
[Crossref]

D. Li, J. Huang, and D. Yang, “Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment,” Physica E 41(6), 920–922 (2009).
[Crossref]

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room temperature band tail states photoluminescence,” J. Appl. Phys. 104(8), 083504 (2008).
[Crossref]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX film. II. Defect states electroluminescence,” J. Appl. Phys. 104(8), 083505 (2008).
[Crossref]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of orange-yellow electroluminescence extraction from SiNx light-emitting devices by silver nanostructures,” Opt. Express. in progress.

Yang, M.

Yu, S. F.

Yuan, Z.

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX film. II. Defect states electroluminescence,” J. Appl. Phys. 104(8), 083505 (2008).
[Crossref]

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room temperature band tail states photoluminescence,” J. Appl. Phys. 104(8), 083504 (2008).
[Crossref]

Ze Yuan,

B. Dutt, D. S. Sukhdeo, D. Nam, B. M. Vulovic, Ze Yuan, and K. C. Saraswat, “Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping,” IEEE Photon. J 4(5), 2002–2009 (2012).
[Crossref]

Zhang, J.

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[Crossref]

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

Zhao, H.

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[Crossref]

Zhmakin, A. I.

A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep. 498(4–5), 189–241 (2011).
[Crossref]

Zhuang, L.

Adv. Funct. Mater. (1)

C.-H. Lu, C.-C. Lan, Y.-L. Lai, Y.-L. Li, and C.-P. Liu, “Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array,” Adv. Funct. Mater. 21(24), 4719–4723 (2011).
[Crossref]

Adv. Mater. (Deerfield Beach Fla.) (2)

B.-H. Kim, C.-H. Cho, J.-S. Mun, M.-K. Kwon, T.-Y. Park, J.-S. Kim, C.-C. Byeon, J. Lee, and S.-J. Park, “Enhancement of the external quantum efficiency of a silicon quantum dot light-emitting diode by localized surface plasmons,” Adv. Mater. (Deerfield Beach Fla.) 20(16), 3100–3104 (2008).
[Crossref]

C. Huh, K.-H. Kim, B. K. Kim, W. Kim, H. Ko, C.-J. Choi, and G. Y. Sung, “Enhancement in light emission efficiency of a silicon nanocrystal light-emitting diode by multiple-luminescent structures,” Adv. Mater. (Deerfield Beach Fla.) 22(44), 5058–5062 (2010).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (9)

B.-H. Kim, C.-H. Cho, S.-J. Park, N.-M. Park, and G. Y. Sung, “Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency,” Appl. Phys. Lett. 89(6), 063509 (2006).
[Crossref]

K.-H. Kim, J.-H. Shin, N.-M. Park, C. Huh, T.-Y. Kim, K.-S. Cho, J. C. Hong, and G. Y. Sung, “Enhancement of light extraction from a silicon quantum dot light-emitting diode containing a rugged surface pattern,” Appl. Phys. Lett. 89(19), 191120 (2006).
[Crossref]

G. R. Lin, Y. H. Pai, C. T. Lin, and C. C. Chen, “Comparison on the electroluminescence of Si-rich SiNx and SiOx based light-emitting diodes,” Appl. Phys. Lett. 96(26), 263514 (2010).
[Crossref]

J. S. Biteen, N. S. Lewis, H. A. Atwater, H. Mertens, and A. Polman, “Spectral tuning of plasmon-enhanced silicon quantum dot luminescence,” Appl. Phys. Lett. 88(13), 131109 (2006).
[Crossref]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of light-extraction efficiency of SiNx light emitting devices through a rough Ag island film,” Appl. Phys. Lett. 100(3), 031113 (2012).
[Crossref]

H. Zhao, J. Zhang, G. Liu, and N. Tansu, “Surface plasmon dispersion engineering via double-metallic Au/Ag layers for III-nitride based light-emitting diodes,” Appl. Phys. Lett. 98(15), 151115 (2011).
[Crossref]

Y.-K. Ee, R. A. Arif, N. Tansu, P. Kumnorkaew, and J. F. Gilchrist, “Enhancement of light extraction efficiency of InGaN quantum wells light emitting diodes using SiO2/polystyrene microlens arrays,” Appl. Phys. Lett. 91(22), 221107 (2007).
[Crossref]

J. Robertson and M. J. Powell, “Gap states in silicon-nitride,” Appl. Phys. Lett. 44(4), 415–417 (1984).
[Crossref]

A. Marconi, A. Anopchenko, G. Pucker, and L. Pavesi, “Power efficiency estimation of silicon nanocrystals based light emitting devices in alternating current regime,” Appl. Phys. Lett. 98(20), 201103 (2011).
[Crossref]

IEEE Photon. J (2)

B. Dutt, D. S. Sukhdeo, D. Nam, B. M. Vulovic, Ze Yuan, and K. C. Saraswat, “Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping,” IEEE Photon. J 4(5), 2002–2009 (2012).
[Crossref]

C.-H. Cheng, C.-L. Wu, C.-C. Chen, L.-H. Tsai, Y.-H. Lin, and G.-R. Lin, “Si-rich SixC1-x light-emitting diodes with buried Si quantum dots,” IEEE Photon. J 4(5), 1762–1775 (2012).
[Crossref]

IEEE Photon. J. (1)

X.-H. Li, R. Song, Y.-K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency and radiation patterns of III-nitride light-emitting diodes with colloidal microlens arrays with various aspect ratios,” IEEE Photon. J. 3(3), 489–499 (2011).
[Crossref]

J. Appl. Phys. (4)

M. Wang, M. Xie, L. Ferraioli, Z. Yuan, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX films. I. Room temperature band tail states photoluminescence,” J. Appl. Phys. 104(8), 083504 (2008).
[Crossref]

H. J. Stein, “Thermally annealed silicon nitride films: Electrical characteristics and radiation effects,” J. Appl. Phys. 57(6), 2040–2047 (1985).
[Crossref]

M. Wang, J. Huang, Z. Yuan, A. Anopchenko, D. Li, D. Yang, and L. Pavesi, “Light emission properties and mechanism of low-temperature prepared amorphous SiNX film. II. Defect states electroluminescence,” J. Appl. Phys. 104(8), 083505 (2008).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

J. Phys. D Appl. Phys. (1)

T. F. Kuech and L. J. Mawst, “Nanofabrication of III–V semiconductors employing diblock copolymer lithography,” J. Phys. D Appl. Phys. 43(18), 183001 (2010).
[Crossref]

Nano Lett. (1)

J. S. Biteen, D. Pacifici, N. S. Lewis, and H. A. Atwater, “Enhanced radiative emission rate and quantum efficiency in coupled silicon nanocrystal-nanostructured gold emitters,” Nano Lett. 5(9), 1768–1773 (2005).
[Crossref] [PubMed]

Nanoscale Res. Lett. (2)

G. Liu, H. Zhao, J. Zhang, J. H. Park, L. J. Mawst, and N. Tansu, “Selective area epitaxy of ultra-high density InGaN quantum dots by diblock copolymer lithography,” Nanoscale Res. Lett. 6(1), 342 (2011).
[Crossref] [PubMed]

F. Wang, D. Li, D. Yang, and D. Que, “The coupling between localized surface plasmons and excitons via Purcell effect,” Nanoscale Res. Lett. 7(1), 669 (2012).
[Crossref] [PubMed]

Nat. Mater. (2)

R. J. Walters, G. I. Bourianoff, and H. A. Atwater, “Field-effect electroluminescence in silicon nanocrystals,” Nat. Mater. 4(2), 143–146 (2005).
[Crossref] [PubMed]

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004).
[Crossref] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Express (8)

Y. Liu, J. Xu, H. Sun, S. Sun, W. Xu, L. Xu, and K. Chen, “Depth-dependent anti-reflection and enhancement of luminescence from Si quantum dots-based multilayer on nano-patterned Si substrates,” Opt. Express 19(4), 3347–3352 (2011).
[Crossref] [PubMed]

D. Li, F. Wang, D. Yang, and D. Que, “Electrically tunable electroluminescence from SiNx-based light-emitting devices,” Opt. Express 20(16), 17359–17366 (2012).
[Crossref] [PubMed]

Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, J. F. Gilchrist, and N. Tansu, “Light extraction efficiency enhancement of InGaN quantum wells light-emitting diodes with polydimethylsiloxane concave microstructures,” Opt. Express 17(16), 13747–13757 (2009).
[Crossref] [PubMed]

F. Wang, D. Li, D. Yang, and D. Que, “Enhancement of orange-yellow electroluminescence extraction from SiNx light-emitting devices by silver nanostructures,” Opt. Express. in progress.

Z. H. Cen, T. P. Chen, Z. Liu, Y. Liu, L. Ding, M. Yang, J. I. Wong, S. F. Yu, and W. P. Goh, “Electrically tunable white-color electroluminescence from Si-implanted silicon nitride thin film,” Opt. Express 18(19), 20439–20444 (2010).
[Crossref] [PubMed]

L. Zhuang, D. Marpaung, M. Burla, W. Beeker, A. Leinse, and C. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express 19(23), 23162–23170 (2011).
[Crossref] [PubMed]

G.-R. Lin, C.-J. Lin, and C.-K. Lin, “Enhanced Fowler-Nordheim tunneling effect in nanocrystallite Si based LED with interfacial Si nano-pyramids,” Opt. Express 15(5), 2555–2563 (2007).
[Crossref] [PubMed]

T. Creazzo, B. Redding, E. Marchena, J. Murakowski, and D. W. Prather, “Pulsed pumping of silicon nanocrystal light emitting devices,” Opt. Express 18(11), 10924–10930 (2010).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (2)

Phys. Rep. (1)

A. I. Zhmakin, “Enhancement of light extraction from light emitting diodes,” Phys. Rep. 498(4–5), 189–241 (2011).
[Crossref]

Phys. Rev. B Condens. Matter (1)

R. T. Tung, “Electron transport at metal-semiconductor interfaces: General theory,” Phys. Rev. B Condens. Matter 45(23), 13509–13523 (1992).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

N.-M. Park, C.-J. Choi, T.-Y. Seong, and S.-J. Park, “Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride,” Phys. Rev. Lett. 86(7), 1355–1357 (2001).
[Crossref] [PubMed]

Physica E (1)

D. Li, J. Huang, and D. Yang, “Enhanced electroluminescence of silicon-rich silicon nitride light-emitting devices by NH3 plasma and annealing treatment,” Physica E 41(6), 920–922 (2009).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

G. Aberle, “Surface passivation of crystalline silicon solar cells: a review,” Prog. Photovolt. Res. Appl. 8(5), 473–487 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fabrication process diagrams of the SiNx-based LEDs.

Fig. 2
Fig. 2

(a)-(d) SEM images and (e)-(h) the size distributions of Ag nanostructures with sputtering time (a) and (e) 20 s, (b) and (f) 40 s, (c) and (g) 60 s, and (d) and (h) 80 s.

Fig. 3
Fig. 3

Extinction spectra of Ag nanostructures with different sputtering time.

Fig. 4
Fig. 4

EL spectra of SiNx-based LEDs for (a) Ag0, (c) Ag40, and (e) Ag80 measured at different injected current. Their Gauss fittings are also provided on the right side, (b) for Ag0, (d) for Ag40, and (f) for Ag80.

Fig. 5
Fig. 5

Integrated EL intensity of the devices with different sputtering times of Ag nanostructures layer vs. the input power.

Fig. 6
Fig. 6

(a) Enhancement factor of the integrated PL intensity for Ag20-Ag80 comparing to Ag0, (b) EL and PL enhancement factor for Ag40, and (c) The surface coverage of Ag nanostructures (left axis) and the average distance between Ag nanostructures (right axis) for Ag20-Ag80 with the model for this calculation inset.

Fig. 7
Fig. 7

AFM images of ITO for (a) Ag0, (b) Ag40, and (c) Ag80.

Fig. 8
Fig. 8

Current density (J) vs. applied voltage (V) plot for Ag0-Ag80 with the values of J for Ag0, Ag60, and Ag80 multiplied by 10 times.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η s =π [ r/(d+2r) ] 2

Metrics