Abstract

Cholesteric liquid crystals (CLCs) are selectively reflective optical materials, the color of which can be tuned via electrical, thermal, mechanical, or optical stimuli. In this work, we show that self-regulation of the transmission of a circularly polarized incident beam can occur upon phototuning of the selective reflection peak of a photosensitive CLC mixture towards the pump wavelength. The autonomous behavior occurs as the red-shifting selective reflection peak approaches the wavelength of the incident laser light. Once the red-edge of the CLC bandgap and incident laser wavelength overlap, the rate of tuning dramatically slows. The dwell time (i.e., duration of the overlap of stimulus wavelength with CLC bandgap) is shown to depend on the radiation wavelength, polarization, and intensity. Necessary conditions for substantial dwell time of the CLC reflection peak at the pump beam wavelength include irradiation with low intensity light (~1mW/cm2) and the utilization of circularly polarized light of the same handedness as the helical structure within the CLC. Monitoring the optical properties in both reflection and transmission geometries elucidates differences associated with attenuation of the light through the thickness of the CLC film.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Haas, J. Adams, and J. Wysocki, “Interaction between UV radiation and cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)7(1), 371–379 (1969).
    [CrossRef]
  2. E. Sackmann, “Photochemically induced reversible color changes in cholesteric liquid crystals,” J. Am. Chem. Soc.93(25), 7088–7090 (1971).
    [CrossRef]
  3. N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. (Deerfield Beach Fla.)13(15), 1135–1147 (2001).
    [CrossRef]
  4. T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli responsive cholesteric liquid crystals,” J. Mater. Chem.20(44), 9832–9847 (2010).
    [CrossRef]
  5. N. Tamaoki and T. Kamei, “Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds,” J. Photochem. Photobiol. Chem.11(2-3), 47–61 (2010).
    [CrossRef]
  6. B. Fan, S. Vartak, J. N. Eakin, and S. M. Faris, “Surface anchoring effects on spectral broadening of cholesteric liquid crystal films,” J. Appl. Phys.104(2), 023108 (2008).
    [CrossRef]
  7. J. P. Vernon, U. A. Hrozhyk, S. V. Serak, V. P. Tondiglia, T. J. White, N. V. Tabiryan, and T. J. Bunning, “Optically reconfigurable reflective/scattering states enabled with photosensitive cholesteric liquid crystal cells,” Adv. Opt. Mater., (2013).
    [CrossRef]
  8. T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science268(5219), 1873–1875 (1995).
    [CrossRef] [PubMed]
  9. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007).
    [CrossRef]
  10. A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light induced effects in cholesteric mixtures with a photosensitive nematic host,” Mol. Crys. Liq. Cryst.409(1), 209–218 (2004).
    [CrossRef]
  11. T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature485(7398), 347–349 (2012).
    [CrossRef] [PubMed]
  12. Y. Yokoyama and T. Sagisaka, “Reversible control of pitch of induced cholesteric liquid crystal by optically active photochromic fulgide derivatives,” Chem. Lett.26(8), 687–688 (1997).
    [CrossRef]
  13. R. Eelkema, “Photo-responsive doped cholesteric liquid crystals,” Liq. Crys.38(11-12), 1641–1652 (2011).
    [CrossRef]
  14. V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced charge of cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).
  15. B. L. Feringa, R. A. van Delden, N. Koumura, and E. M. Geertsema, “Chiroptical molecular switches,” Chem. Rev.100(5), 1789–1816 (2000).
    [CrossRef] [PubMed]
  16. G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)453(1), 123–140 (2006).
    [CrossRef]
  17. T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystal with 2000 nm range,” Adv. Funct. Mater.19(21), 3848 (2009).
    [CrossRef]
  18. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008).
    [CrossRef]
  19. I. Gvozdovskyy, O. Yaroshchuk, and M. Serbina, “Photoinduced nematic-cholesteric structural transitions in liquid crystal cells with homeotropic anchoring,” Mol. Cryst. Liq. Cryst.546, 1672–1678 (2011).
  20. I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express20(4), 3499–3508 (2012).
    [CrossRef] [PubMed]
  21. U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010).
    [CrossRef] [PubMed]
  22. J. C. Bhatt, S. S. Keast, M. E. Neubert, and R. G. Petschek, “Synthesis of highly chiral multisubstituted binaphthyl compounds as potential new biaxial nematic and NLO materials,” Liq. Cryst.18(3), 367–380 (1995).
    [CrossRef]
  23. Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
    [CrossRef] [PubMed]
  24. S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Nonlinear transimission of photosensitive cholesteric liquid crystals due to spectral bandwidth auto-tuning or restoration,” J. Nonlinear Opt. Phys. Mater.16(04), 471–483 (2007).
    [CrossRef]
  25. Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. (Deerfield Beach Fla.)23(43), 5069–5073 (2011).
    [CrossRef] [PubMed]
  26. T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys.107(7), 073110 (2010).
    [CrossRef]
  27. N. I. Shkolnikova, L. A. Kutulya, N. S. Pivnenko, R. I. Zubatyuk, and O. V. Shishkin, “Relationship between the temperature dependence of the induced helical pitch and the anisometry of molecules of chiral dopants,” Crys. Rep.50(6), 1005–1011 (2005).
    [CrossRef]
  28. C. Ruslim and K. Ichimura, “Conformational effect on macroscopic chirality modification of cholesteric mesophases by photochromic azobenzene dopants,” J. Phys. Chem. B104(28), 6529–6535 (2000).
    [CrossRef]
  29. M. Kawamoto, N. Shiga, T. Aoki, and T. Wada, “Dynamic control of liquid-crystalline helical structures with the aid of light- and temperature-driven multistable chiral materials,” Liquid Crystals XIII ed. I.C. Khoo,Proc. SPIE7414, 74140E, 74140E-9 (2009).
    [CrossRef]
  30. Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express14(3), 1236–1242 (2006).
    [CrossRef] [PubMed]

2013

J. P. Vernon, U. A. Hrozhyk, S. V. Serak, V. P. Tondiglia, T. J. White, N. V. Tabiryan, and T. J. Bunning, “Optically reconfigurable reflective/scattering states enabled with photosensitive cholesteric liquid crystal cells,” Adv. Opt. Mater., (2013).
[CrossRef]

2012

2011

I. Gvozdovskyy, O. Yaroshchuk, and M. Serbina, “Photoinduced nematic-cholesteric structural transitions in liquid crystal cells with homeotropic anchoring,” Mol. Cryst. Liq. Cryst.546, 1672–1678 (2011).

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. (Deerfield Beach Fla.)23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

R. Eelkema, “Photo-responsive doped cholesteric liquid crystals,” Liq. Crys.38(11-12), 1641–1652 (2011).
[CrossRef]

2010

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli responsive cholesteric liquid crystals,” J. Mater. Chem.20(44), 9832–9847 (2010).
[CrossRef]

N. Tamaoki and T. Kamei, “Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds,” J. Photochem. Photobiol. Chem.11(2-3), 47–61 (2010).
[CrossRef]

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys.107(7), 073110 (2010).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

2009

M. Kawamoto, N. Shiga, T. Aoki, and T. Wada, “Dynamic control of liquid-crystalline helical structures with the aid of light- and temperature-driven multistable chiral materials,” Liquid Crystals XIII ed. I.C. Khoo,Proc. SPIE7414, 74140E, 74140E-9 (2009).
[CrossRef]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystal with 2000 nm range,” Adv. Funct. Mater.19(21), 3848 (2009).
[CrossRef]

2008

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008).
[CrossRef]

B. Fan, S. Vartak, J. N. Eakin, and S. M. Faris, “Surface anchoring effects on spectral broadening of cholesteric liquid crystal films,” J. Appl. Phys.104(2), 023108 (2008).
[CrossRef]

2007

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007).
[CrossRef]

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Nonlinear transimission of photosensitive cholesteric liquid crystals due to spectral bandwidth auto-tuning or restoration,” J. Nonlinear Opt. Phys. Mater.16(04), 471–483 (2007).
[CrossRef]

2006

Y. Huang, Y. Zhou, C. Doyle, and S.-T. Wu, “Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility,” Opt. Express14(3), 1236–1242 (2006).
[CrossRef] [PubMed]

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)453(1), 123–140 (2006).
[CrossRef]

2005

N. I. Shkolnikova, L. A. Kutulya, N. S. Pivnenko, R. I. Zubatyuk, and O. V. Shishkin, “Relationship between the temperature dependence of the induced helical pitch and the anisometry of molecules of chiral dopants,” Crys. Rep.50(6), 1005–1011 (2005).
[CrossRef]

2004

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light induced effects in cholesteric mixtures with a photosensitive nematic host,” Mol. Crys. Liq. Cryst.409(1), 209–218 (2004).
[CrossRef]

2001

N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. (Deerfield Beach Fla.)13(15), 1135–1147 (2001).
[CrossRef]

2000

B. L. Feringa, R. A. van Delden, N. Koumura, and E. M. Geertsema, “Chiroptical molecular switches,” Chem. Rev.100(5), 1789–1816 (2000).
[CrossRef] [PubMed]

C. Ruslim and K. Ichimura, “Conformational effect on macroscopic chirality modification of cholesteric mesophases by photochromic azobenzene dopants,” J. Phys. Chem. B104(28), 6529–6535 (2000).
[CrossRef]

1997

Y. Yokoyama and T. Sagisaka, “Reversible control of pitch of induced cholesteric liquid crystal by optically active photochromic fulgide derivatives,” Chem. Lett.26(8), 687–688 (1997).
[CrossRef]

1995

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

J. C. Bhatt, S. S. Keast, M. E. Neubert, and R. G. Petschek, “Synthesis of highly chiral multisubstituted binaphthyl compounds as potential new biaxial nematic and NLO materials,” Liq. Cryst.18(3), 367–380 (1995).
[CrossRef]

1990

V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced charge of cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).

1971

E. Sackmann, “Photochemically induced reversible color changes in cholesteric liquid crystals,” J. Am. Chem. Soc.93(25), 7088–7090 (1971).
[CrossRef]

1969

W. Haas, J. Adams, and J. Wysocki, “Interaction between UV radiation and cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)7(1), 371–379 (1969).
[CrossRef]

Adams, J.

W. Haas, J. Adams, and J. Wysocki, “Interaction between UV radiation and cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)7(1), 371–379 (1969).
[CrossRef]

Aoki, T.

M. Kawamoto, N. Shiga, T. Aoki, and T. Wada, “Dynamic control of liquid-crystalline helical structures with the aid of light- and temperature-driven multistable chiral materials,” Liquid Crystals XIII ed. I.C. Khoo,Proc. SPIE7414, 74140E, 74140E-9 (2009).
[CrossRef]

Barberi, R.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)453(1), 123–140 (2006).
[CrossRef]

Bartolino, R.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)453(1), 123–140 (2006).
[CrossRef]

Bhatt, J. C.

J. C. Bhatt, S. S. Keast, M. E. Neubert, and R. G. Petschek, “Synthesis of highly chiral multisubstituted binaphthyl compounds as potential new biaxial nematic and NLO materials,” Liq. Cryst.18(3), 367–380 (1995).
[CrossRef]

Bricker, R. L.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystal with 2000 nm range,” Adv. Funct. Mater.19(21), 3848 (2009).
[CrossRef]

Bunning, T. J.

J. P. Vernon, U. A. Hrozhyk, S. V. Serak, V. P. Tondiglia, T. J. White, N. V. Tabiryan, and T. J. Bunning, “Optically reconfigurable reflective/scattering states enabled with photosensitive cholesteric liquid crystal cells,” Adv. Opt. Mater., (2013).
[CrossRef]

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature485(7398), 347–349 (2012).
[CrossRef] [PubMed]

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. (Deerfield Beach Fla.)23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys.107(7), 073110 (2010).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli responsive cholesteric liquid crystals,” J. Mater. Chem.20(44), 9832–9847 (2010).
[CrossRef]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystal with 2000 nm range,” Adv. Funct. Mater.19(21), 3848 (2009).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007).
[CrossRef]

S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Nonlinear transimission of photosensitive cholesteric liquid crystals due to spectral bandwidth auto-tuning or restoration,” J. Nonlinear Opt. Phys. Mater.16(04), 471–483 (2007).
[CrossRef]

Chanishvili, A.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)453(1), 123–140 (2006).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light induced effects in cholesteric mixtures with a photosensitive nematic host,” Mol. Crys. Liq. Cryst.409(1), 209–218 (2004).
[CrossRef]

Chilaya, G.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)453(1), 123–140 (2006).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light induced effects in cholesteric mixtures with a photosensitive nematic host,” Mol. Crys. Liq. Cryst.409(1), 209–218 (2004).
[CrossRef]

Collings, P.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)453(1), 123–140 (2006).
[CrossRef]

De Santo, M. P.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)453(1), 123–140 (2006).
[CrossRef]

Doane, J. W.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

Doyle, C.

Eakin, J. N.

B. Fan, S. Vartak, J. N. Eakin, and S. M. Faris, “Surface anchoring effects on spectral broadening of cholesteric liquid crystal films,” J. Appl. Phys.104(2), 023108 (2008).
[CrossRef]

Eelkema, R.

R. Eelkema, “Photo-responsive doped cholesteric liquid crystals,” Liq. Crys.38(11-12), 1641–1652 (2011).
[CrossRef]

Fan, B.

B. Fan, S. Vartak, J. N. Eakin, and S. M. Faris, “Surface anchoring effects on spectral broadening of cholesteric liquid crystal films,” J. Appl. Phys.104(2), 023108 (2008).
[CrossRef]

Faris, S. M.

B. Fan, S. Vartak, J. N. Eakin, and S. M. Faris, “Surface anchoring effects on spectral broadening of cholesteric liquid crystal films,” J. Appl. Phys.104(2), 023108 (2008).
[CrossRef]

Feringa, B. L.

B. L. Feringa, R. A. van Delden, N. Koumura, and E. M. Geertsema, “Chiroptical molecular switches,” Chem. Rev.100(5), 1789–1816 (2000).
[CrossRef] [PubMed]

Freer, A. S.

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys.107(7), 073110 (2010).
[CrossRef]

Geertsema, E. M.

B. L. Feringa, R. A. van Delden, N. Koumura, and E. M. Geertsema, “Chiroptical molecular switches,” Chem. Rev.100(5), 1789–1816 (2000).
[CrossRef] [PubMed]

Green, L.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystal with 2000 nm range,” Adv. Funct. Mater.19(21), 3848 (2009).
[CrossRef]

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

Gvozdovskyy, I.

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express20(4), 3499–3508 (2012).
[CrossRef] [PubMed]

I. Gvozdovskyy, O. Yaroshchuk, and M. Serbina, “Photoinduced nematic-cholesteric structural transitions in liquid crystal cells with homeotropic anchoring,” Mol. Cryst. Liq. Cryst.546, 1672–1678 (2011).

Haas, W.

W. Haas, J. Adams, and J. Wysocki, “Interaction between UV radiation and cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)7(1), 371–379 (1969).
[CrossRef]

Hrozhyk, U. A.

J. P. Vernon, U. A. Hrozhyk, S. V. Serak, V. P. Tondiglia, T. J. White, N. V. Tabiryan, and T. J. Bunning, “Optically reconfigurable reflective/scattering states enabled with photosensitive cholesteric liquid crystal cells,” Adv. Opt. Mater., (2013).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007).
[CrossRef]

Huang, Y.

Ichimura, K.

C. Ruslim and K. Ichimura, “Conformational effect on macroscopic chirality modification of cholesteric mesophases by photochromic azobenzene dopants,” J. Phys. Chem. B104(28), 6529–6535 (2000).
[CrossRef]

Ikeda, T.

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Kamei, T.

N. Tamaoki and T. Kamei, “Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds,” J. Photochem. Photobiol. Chem.11(2-3), 47–61 (2010).
[CrossRef]

Kawamoto, M.

M. Kawamoto, N. Shiga, T. Aoki, and T. Wada, “Dynamic control of liquid-crystalline helical structures with the aid of light- and temperature-driven multistable chiral materials,” Liquid Crystals XIII ed. I.C. Khoo,Proc. SPIE7414, 74140E, 74140E-9 (2009).
[CrossRef]

Keast, S. S.

J. C. Bhatt, S. S. Keast, M. E. Neubert, and R. G. Petschek, “Synthesis of highly chiral multisubstituted binaphthyl compounds as potential new biaxial nematic and NLO materials,” Liq. Cryst.18(3), 367–380 (1995).
[CrossRef]

Khan, A.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

Khizhnyak, A.

V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced charge of cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).

Kosa, T.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature485(7398), 347–349 (2012).
[CrossRef] [PubMed]

Koumura, N.

B. L. Feringa, R. A. van Delden, N. Koumura, and E. M. Geertsema, “Chiroptical molecular switches,” Chem. Rev.100(5), 1789–1816 (2000).
[CrossRef] [PubMed]

Kutulya, L.

V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced charge of cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).

Kutulya, L. A.

N. I. Shkolnikova, L. A. Kutulya, N. S. Pivnenko, R. I. Zubatyuk, and O. V. Shishkin, “Relationship between the temperature dependence of the induced helical pitch and the anisometry of molecules of chiral dopants,” Crys. Rep.50(6), 1005–1011 (2005).
[CrossRef]

Li, Q.

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. (Deerfield Beach Fla.)23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystal with 2000 nm range,” Adv. Funct. Mater.19(21), 3848 (2009).
[CrossRef]

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

Li, Y.

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. (Deerfield Beach Fla.)23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

Ma, J.

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. (Deerfield Beach Fla.)23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

Matranga, M. A.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)453(1), 123–140 (2006).
[CrossRef]

McConney, M. E.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli responsive cholesteric liquid crystals,” J. Mater. Chem.20(44), 9832–9847 (2010).
[CrossRef]

Natarajan, L. V.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystal with 2000 nm range,” Adv. Funct. Mater.19(21), 3848 (2009).
[CrossRef]

Neubert, M. E.

J. C. Bhatt, S. S. Keast, M. E. Neubert, and R. G. Petschek, “Synthesis of highly chiral multisubstituted binaphthyl compounds as potential new biaxial nematic and NLO materials,” Liq. Cryst.18(3), 367–380 (1995).
[CrossRef]

Petriashvili, G.

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)453(1), 123–140 (2006).
[CrossRef]

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light induced effects in cholesteric mixtures with a photosensitive nematic host,” Mol. Crys. Liq. Cryst.409(1), 209–218 (2004).
[CrossRef]

Petschek, R. G.

J. C. Bhatt, S. S. Keast, M. E. Neubert, and R. G. Petschek, “Synthesis of highly chiral multisubstituted binaphthyl compounds as potential new biaxial nematic and NLO materials,” Liq. Cryst.18(3), 367–380 (1995).
[CrossRef]

Pivnenko, N. S.

N. I. Shkolnikova, L. A. Kutulya, N. S. Pivnenko, R. I. Zubatyuk, and O. V. Shishkin, “Relationship between the temperature dependence of the induced helical pitch and the anisometry of molecules of chiral dopants,” Crys. Rep.50(6), 1005–1011 (2005).
[CrossRef]

Reshetnyak, V.

V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced charge of cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).

Reznikov, Y.

V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced charge of cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).

Ruslim, C.

C. Ruslim and K. Ichimura, “Conformational effect on macroscopic chirality modification of cholesteric mesophases by photochromic azobenzene dopants,” J. Phys. Chem. B104(28), 6529–6535 (2000).
[CrossRef]

Sackmann, E.

E. Sackmann, “Photochemically induced reversible color changes in cholesteric liquid crystals,” J. Am. Chem. Soc.93(25), 7088–7090 (1971).
[CrossRef]

Sagisaka, T.

Y. Yokoyama and T. Sagisaka, “Reversible control of pitch of induced cholesteric liquid crystal by optically active photochromic fulgide derivatives,” Chem. Lett.26(8), 687–688 (1997).
[CrossRef]

Serak, S. V.

J. P. Vernon, U. A. Hrozhyk, S. V. Serak, V. P. Tondiglia, T. J. White, N. V. Tabiryan, and T. J. Bunning, “Optically reconfigurable reflective/scattering states enabled with photosensitive cholesteric liquid crystal cells,” Adv. Opt. Mater., (2013).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007).
[CrossRef]

S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Nonlinear transimission of photosensitive cholesteric liquid crystals due to spectral bandwidth auto-tuning or restoration,” J. Nonlinear Opt. Phys. Mater.16(04), 471–483 (2007).
[CrossRef]

Serbina, M.

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express20(4), 3499–3508 (2012).
[CrossRef] [PubMed]

I. Gvozdovskyy, O. Yaroshchuk, and M. Serbina, “Photoinduced nematic-cholesteric structural transitions in liquid crystal cells with homeotropic anchoring,” Mol. Cryst. Liq. Cryst.546, 1672–1678 (2011).

Shiga, N.

M. Kawamoto, N. Shiga, T. Aoki, and T. Wada, “Dynamic control of liquid-crystalline helical structures with the aid of light- and temperature-driven multistable chiral materials,” Liquid Crystals XIII ed. I.C. Khoo,Proc. SPIE7414, 74140E, 74140E-9 (2009).
[CrossRef]

Shishkin, O. V.

N. I. Shkolnikova, L. A. Kutulya, N. S. Pivnenko, R. I. Zubatyuk, and O. V. Shishkin, “Relationship between the temperature dependence of the induced helical pitch and the anisometry of molecules of chiral dopants,” Crys. Rep.50(6), 1005–1011 (2005).
[CrossRef]

Shiyanovskaya, I.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

Shkolnikova, N. I.

N. I. Shkolnikova, L. A. Kutulya, N. S. Pivnenko, R. I. Zubatyuk, and O. V. Shishkin, “Relationship between the temperature dependence of the induced helical pitch and the anisometry of molecules of chiral dopants,” Crys. Rep.50(6), 1005–1011 (2005).
[CrossRef]

Sikharulidze, D.

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light induced effects in cholesteric mixtures with a photosensitive nematic host,” Mol. Crys. Liq. Cryst.409(1), 209–218 (2004).
[CrossRef]

Su, L.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature485(7398), 347–349 (2012).
[CrossRef] [PubMed]

Sukhomlinova, L.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature485(7398), 347–349 (2012).
[CrossRef] [PubMed]

Tabiryan, N. V.

J. P. Vernon, U. A. Hrozhyk, S. V. Serak, V. P. Tondiglia, T. J. White, N. V. Tabiryan, and T. J. Bunning, “Optically reconfigurable reflective/scattering states enabled with photosensitive cholesteric liquid crystal cells,” Adv. Opt. Mater., (2013).
[CrossRef]

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys.107(7), 073110 (2010).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystal with 2000 nm range,” Adv. Funct. Mater.19(21), 3848 (2009).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007).
[CrossRef]

S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Nonlinear transimission of photosensitive cholesteric liquid crystals due to spectral bandwidth auto-tuning or restoration,” J. Nonlinear Opt. Phys. Mater.16(04), 471–483 (2007).
[CrossRef]

Taheri, B.

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature485(7398), 347–349 (2012).
[CrossRef] [PubMed]

Tamaoki, N.

N. Tamaoki and T. Kamei, “Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds,” J. Photochem. Photobiol. Chem.11(2-3), 47–61 (2010).
[CrossRef]

N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. (Deerfield Beach Fla.)13(15), 1135–1147 (2001).
[CrossRef]

Tondiglia, V. P.

J. P. Vernon, U. A. Hrozhyk, S. V. Serak, V. P. Tondiglia, T. J. White, N. V. Tabiryan, and T. J. Bunning, “Optically reconfigurable reflective/scattering states enabled with photosensitive cholesteric liquid crystal cells,” Adv. Opt. Mater., (2013).
[CrossRef]

Tsutsumi, O.

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Urbas, A.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

van Delden, R. A.

B. L. Feringa, R. A. van Delden, N. Koumura, and E. M. Geertsema, “Chiroptical molecular switches,” Chem. Rev.100(5), 1789–1816 (2000).
[CrossRef] [PubMed]

Vartak, S.

B. Fan, S. Vartak, J. N. Eakin, and S. M. Faris, “Surface anchoring effects on spectral broadening of cholesteric liquid crystal films,” J. Appl. Phys.104(2), 023108 (2008).
[CrossRef]

Venkataraman, N.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

Vernon, J. P.

J. P. Vernon, U. A. Hrozhyk, S. V. Serak, V. P. Tondiglia, T. J. White, N. V. Tabiryan, and T. J. Bunning, “Optically reconfigurable reflective/scattering states enabled with photosensitive cholesteric liquid crystal cells,” Adv. Opt. Mater., (2013).
[CrossRef]

Vinogradov, V.

V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced charge of cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).

Wada, T.

M. Kawamoto, N. Shiga, T. Aoki, and T. Wada, “Dynamic control of liquid-crystalline helical structures with the aid of light- and temperature-driven multistable chiral materials,” Liquid Crystals XIII ed. I.C. Khoo,Proc. SPIE7414, 74140E, 74140E-9 (2009).
[CrossRef]

White, T. J.

J. P. Vernon, U. A. Hrozhyk, S. V. Serak, V. P. Tondiglia, T. J. White, N. V. Tabiryan, and T. J. Bunning, “Optically reconfigurable reflective/scattering states enabled with photosensitive cholesteric liquid crystal cells,” Adv. Opt. Mater., (2013).
[CrossRef]

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature485(7398), 347–349 (2012).
[CrossRef] [PubMed]

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. (Deerfield Beach Fla.)23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys.107(7), 073110 (2010).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, T. J. White, and T. J. Bunning, “Optically switchable, rapidly relaxing cholesteric liquid crystal reflectors,” Opt. Express18(9), 9651–9657 (2010).
[CrossRef] [PubMed]

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli responsive cholesteric liquid crystals,” J. Mater. Chem.20(44), 9832–9847 (2010).
[CrossRef]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystal with 2000 nm range,” Adv. Funct. Mater.19(21), 3848 (2009).
[CrossRef]

Wu, S.-T.

Wysocki, J.

W. Haas, J. Adams, and J. Wysocki, “Interaction between UV radiation and cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)7(1), 371–379 (1969).
[CrossRef]

Yamaguchi, R.

Yang, D.-K.

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. (Deerfield Beach Fla.)23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

Yaroshchuk, O.

I. Gvozdovskyy, O. Yaroshchuk, M. Serbina, and R. Yamaguchi, “Photoinduced helical inversion in cholesteric liquid crystal cells with homeotropic anchoring,” Opt. Express20(4), 3499–3508 (2012).
[CrossRef] [PubMed]

I. Gvozdovskyy, O. Yaroshchuk, and M. Serbina, “Photoinduced nematic-cholesteric structural transitions in liquid crystal cells with homeotropic anchoring,” Mol. Cryst. Liq. Cryst.546, 1672–1678 (2011).

Yokoyama, Y.

Y. Yokoyama and T. Sagisaka, “Reversible control of pitch of induced cholesteric liquid crystal by optically active photochromic fulgide derivatives,” Chem. Lett.26(8), 687–688 (1997).
[CrossRef]

Zhou, Y.

Zubatyuk, R. I.

N. I. Shkolnikova, L. A. Kutulya, N. S. Pivnenko, R. I. Zubatyuk, and O. V. Shishkin, “Relationship between the temperature dependence of the induced helical pitch and the anisometry of molecules of chiral dopants,” Crys. Rep.50(6), 1005–1011 (2005).
[CrossRef]

Adv. Funct. Mater.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable azobenzene cholesteric liquid crystal with 2000 nm range,” Adv. Funct. Mater.19(21), 3848 (2009).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.)

N. Tamaoki, “Cholesteric liquid crystals for color information technology,” Adv. Mater. (Deerfield Beach Fla.)13(15), 1135–1147 (2001).
[CrossRef]

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Photoinduced isotropic state of cholesteric liquid crystals: novel dynamic photonic materials,” Adv. Mater. (Deerfield Beach Fla.)19(20), 3244–3247 (2007).
[CrossRef]

Q. Li, Y. Li, J. Ma, D.-K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater. (Deerfield Beach Fla.)23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

Adv. Opt. Mater.

J. P. Vernon, U. A. Hrozhyk, S. V. Serak, V. P. Tondiglia, T. J. White, N. V. Tabiryan, and T. J. Bunning, “Optically reconfigurable reflective/scattering states enabled with photosensitive cholesteric liquid crystal cells,” Adv. Opt. Mater., (2013).
[CrossRef]

Chem. Lett.

Y. Yokoyama and T. Sagisaka, “Reversible control of pitch of induced cholesteric liquid crystal by optically active photochromic fulgide derivatives,” Chem. Lett.26(8), 687–688 (1997).
[CrossRef]

Chem. Rev.

B. L. Feringa, R. A. van Delden, N. Koumura, and E. M. Geertsema, “Chiroptical molecular switches,” Chem. Rev.100(5), 1789–1816 (2000).
[CrossRef] [PubMed]

Crys. Rep.

N. I. Shkolnikova, L. A. Kutulya, N. S. Pivnenko, R. I. Zubatyuk, and O. V. Shishkin, “Relationship between the temperature dependence of the induced helical pitch and the anisometry of molecules of chiral dopants,” Crys. Rep.50(6), 1005–1011 (2005).
[CrossRef]

J. Am. Chem. Soc.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

E. Sackmann, “Photochemically induced reversible color changes in cholesteric liquid crystals,” J. Am. Chem. Soc.93(25), 7088–7090 (1971).
[CrossRef]

J. Appl. Phys.

U. A. Hrozhyk, S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Phototunable reflection notches of cholesteric liquid crystals,” J. Appl. Phys.104(6), 063102 (2008).
[CrossRef]

B. Fan, S. Vartak, J. N. Eakin, and S. M. Faris, “Surface anchoring effects on spectral broadening of cholesteric liquid crystal films,” J. Appl. Phys.104(2), 023108 (2008).
[CrossRef]

T. J. White, A. S. Freer, N. V. Tabiryan, and T. J. Bunning, “Photoinduced broadening of cholesteric liquid crystal reflectors,” J. Appl. Phys.107(7), 073110 (2010).
[CrossRef]

J. Mater. Chem.

T. J. White, M. E. McConney, and T. J. Bunning, “Dynamic color in stimuli responsive cholesteric liquid crystals,” J. Mater. Chem.20(44), 9832–9847 (2010).
[CrossRef]

J. Nonlinear Opt. Phys. Mater.

S. V. Serak, N. V. Tabiryan, and T. J. Bunning, “Nonlinear transimission of photosensitive cholesteric liquid crystals due to spectral bandwidth auto-tuning or restoration,” J. Nonlinear Opt. Phys. Mater.16(04), 471–483 (2007).
[CrossRef]

J. Photochem. Photobiol. Chem.

N. Tamaoki and T. Kamei, “Reversible photo-regulation of the properties of liquid crystals doped with photochromic compounds,” J. Photochem. Photobiol. Chem.11(2-3), 47–61 (2010).
[CrossRef]

J. Phys. Chem. B

C. Ruslim and K. Ichimura, “Conformational effect on macroscopic chirality modification of cholesteric mesophases by photochromic azobenzene dopants,” J. Phys. Chem. B104(28), 6529–6535 (2000).
[CrossRef]

Liq. Crys.

R. Eelkema, “Photo-responsive doped cholesteric liquid crystals,” Liq. Crys.38(11-12), 1641–1652 (2011).
[CrossRef]

Liq. Cryst.

J. C. Bhatt, S. S. Keast, M. E. Neubert, and R. G. Petschek, “Synthesis of highly chiral multisubstituted binaphthyl compounds as potential new biaxial nematic and NLO materials,” Liq. Cryst.18(3), 367–380 (1995).
[CrossRef]

Liquid Crystals XIII ed. I.C. Khoo,

M. Kawamoto, N. Shiga, T. Aoki, and T. Wada, “Dynamic control of liquid-crystalline helical structures with the aid of light- and temperature-driven multistable chiral materials,” Liquid Crystals XIII ed. I.C. Khoo,Proc. SPIE7414, 74140E, 74140E-9 (2009).
[CrossRef]

Mol. Crys. Liq. Cryst.

A. Chanishvili, G. Chilaya, G. Petriashvili, and D. Sikharulidze, “Light induced effects in cholesteric mixtures with a photosensitive nematic host,” Mol. Crys. Liq. Cryst.409(1), 209–218 (2004).
[CrossRef]

Mol. Cryst. Liq. Cryst.

I. Gvozdovskyy, O. Yaroshchuk, and M. Serbina, “Photoinduced nematic-cholesteric structural transitions in liquid crystal cells with homeotropic anchoring,” Mol. Cryst. Liq. Cryst.546, 1672–1678 (2011).

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

V. Vinogradov, A. Khizhnyak, L. Kutulya, Y. Reznikov, and V. Reshetnyak, “Photoinduced charge of cholesteric Lc-Pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).

G. Chilaya, A. Chanishvili, G. Petriashvili, R. Barberi, R. Bartolino, M. P. De Santo, M. A. Matranga, and P. Collings, “Light control of cholesteric liquid crystals using azoxy-based host materials,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)453(1), 123–140 (2006).
[CrossRef]

W. Haas, J. Adams, and J. Wysocki, “Interaction between UV radiation and cholesteric liquid crystals,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)7(1), 371–379 (1969).
[CrossRef]

Nature

T. Kosa, L. Sukhomlinova, L. Su, B. Taheri, T. J. White, and T. J. Bunning, “Light-induced liquid crystallinity,” Nature485(7398), 347–349 (2012).
[CrossRef] [PubMed]

Opt. Express

Science

T. Ikeda and O. Tsutsumi, “Optical switching and image storage by means of azobenzene liquid-crystal films,” Science268(5219), 1873–1875 (1995).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Skeletal formulas of (a) the bis(azobenzene) chiral dopant (QL76) and (b) the non-photosensitive chiral dopant (MSB-10). (c) Schematic illustration of experimental set-up utilized to simultaneously collect transmission and reflection spectra from CLC cells irradiated with either RHCP light or LHCP laser light.

Fig. 2
Fig. 2

Reflection spectra taken as a function of exposure time of a LH CLC mixture with (a) RHCP 514 nm light and (b) LHCP 514 nm light. Plots of (c) the spectral position of the reflection peak central wavelength position as a function of time irradiated with LHCP and RHCP light and (d) the center, blue-edge, and red-edge of the reflection peak as a function of LHCP 514 nm light irradiation time. A horizontal line indicating position of radiation wavelength is included on (c) and (d) for reference. The same 8 µm LH CLC (5.7% QL76) cell was utilized to generate this data and the 514 nm LHCP/RHCP light intensity was 1.0 mW/cm2.

Fig. 3
Fig. 3

Plots of (a) the spectral position of the reflection peak central wavelength of LH CLC (4.0 wt% QL76, 8 µm) as a function of time irradiated with LHCP 514 nm light of 1.0, 2.0, and 3.0 mW/cm2 intensity. (b) Laser line/bandgap overlap duration (dwell time) of LH CLC cells (8 µm) composed with various concentrations of QL76 and irradiation with LHCP 514 nm light of 1, 2, and 3 mW/cm2 intensity. (c) The mean bandgap shift of various compositions of LH CLC cells irradiated with 3.0 mW RHCP 457, 488, and 514 nm light. (d) Plots of the spectral position of the LH CLC (5.7 wt% QL76, 8 µm) reflection peak central wavelength as a function of time irradiated with 1 mW LHCP 457, 488, and 514 nm light. Horizontal lines without symbols indicate wavelength position of the three stimulus wavelengths. Note: only the wavelength indicated in the legend was used for a particular curve.

Fig. 4
Fig. 4

(a) Mean bandgap shift as a function of temperature. (b) Duration of bandgap overlap with incident laser wavelength as a function of temperature. All experiments conducted with 4 wt% QL76 mixture in 8 µm cells exposed to 514 nm laser with an intensity of 1.0 mW/cm2. Error bars represent range of three independent measurements. Linear regression fits for data in graphs (a) and (b) had R2 values of 0.988 and 0.964 respectively.

Fig. 5
Fig. 5

(a) Reflection and transmission spectra taken from a LH CLC after increasing irradiation time with LHCP 3.0 mW/cm2 488 nm laser line. Note: data points around laser line eliminated for clarity. (b) A schematic of symmetrical tuning proposed to occur upon irradiation with transmitted RHCP light vs. asymmetrical tuning within LH CLC observed when overlap of the CLC bandgap and wavelength of LHCP light occurs. Note: Red-shift in color indicates increase in pitch length and bandgap/pump wavelength overlap occurs at Time 1.

Tables (1)

Tables Icon

Table 1 Composition and Properties of CLC Mixtures

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ B =<n>/( HTP*c )

Metrics