Abstract

We experimentally demonstrate efficient electro-optical control in an active nano-structured plasmonic metamaterial hybridised with a liquid-crystal cell. The hybridisation was achieved by simultaneously replacing the polarizer, transparent electrode and molecular alignment layer of the liquid-crystal cell with the metamaterial nano-structure. With the control signal of only 7 V we have achieved a fivefold hysteresis-free modulation of metamaterial transmission at the wavelength of 1.55 µm.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ozbay, “The magical world of photonic metamaterials,” Opt. Photon. News19(11), 22–26 (2008).
    [CrossRef]
  2. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–528 (2011).
  3. N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater.11(11), 917–924 (2012).
    [CrossRef] [PubMed]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
    [CrossRef] [PubMed]
  5. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
    [CrossRef] [PubMed]
  6. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
    [CrossRef] [PubMed]
  7. J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
    [CrossRef] [PubMed]
  8. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
    [CrossRef] [PubMed]
  9. V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett.88(9), 091119 (2006).
    [CrossRef]
  10. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
    [CrossRef] [PubMed]
  11. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517–521 (2011).
    [CrossRef] [PubMed]
  12. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
    [CrossRef] [PubMed]
  13. C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
    [CrossRef] [PubMed]
  14. A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B86(7), 075138 (2012).
    [CrossRef]
  15. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  16. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
    [CrossRef] [PubMed]
  17. H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater.9(5), 387–396 (2010).
    [CrossRef] [PubMed]
  18. K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
    [CrossRef] [PubMed]
  19. N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photon. News20(10), 22–25 (2009).
    [CrossRef]
  20. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
    [CrossRef]
  21. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater.11(7), 573–584 (2012).
    [CrossRef] [PubMed]
  22. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
    [CrossRef] [PubMed]
  23. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870–873 (2012).
    [CrossRef] [PubMed]
  24. N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
    [CrossRef]
  25. J. Zhao, Ch. Zhang, P. V. Braun, and H. Giessen, “Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing,” Adv. Mater. (Deerfield Beach Fla.)24(35), OP247–OP252 (2012).
    [CrossRef] [PubMed]
  26. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, Z. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
    [CrossRef]
  27. F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19(2), 1563–1568 (2011).
    [CrossRef] [PubMed]
  28. A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100(12), 121113 (2012).
    [CrossRef]
  29. P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
    [CrossRef]
  30. W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
    [CrossRef] [PubMed]
  31. Sh. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95(3), 033115 (2009).
    [CrossRef]
  32. B. Kang, J. H. Woo, E. Choi, H. H. Lee, E. S. Kim, J. Kim, T.-J. Hwang, Y.-S. Park, D. H. Kim, and J. W. Wu, “Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure,” Opt. Express18(16), 16492–16498 (2010).
    [CrossRef] [PubMed]
  33. Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. (Deerfield Beach Fla.)24(23), OP131–OP135 (2012).
    [CrossRef] [PubMed]
  34. J. Zhang, J.-Y. Ou, N. Papasimakis, Y. Chen, K. F. Macdonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express19(23), 23279–23285 (2011).
    [CrossRef] [PubMed]
  35. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A. Pure Appl. Opt.9(1), L1–L2 (2007).
    [CrossRef]
  36. A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett.8(9), 2940–2943 (2008).
    [CrossRef] [PubMed]
  37. F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett.8(8), 2469–2472 (2008).
    [CrossRef] [PubMed]
  38. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-Ph. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
    [CrossRef] [PubMed]
  39. F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
    [CrossRef] [PubMed]

2012 (8)

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B86(7), 075138 (2012).
[CrossRef]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater.11(7), 573–584 (2012).
[CrossRef] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870–873 (2012).
[CrossRef] [PubMed]

J. Zhao, Ch. Zhang, P. V. Braun, and H. Giessen, “Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing,” Adv. Mater. (Deerfield Beach Fla.)24(35), OP247–OP252 (2012).
[CrossRef] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater.11(11), 917–924 (2012).
[CrossRef] [PubMed]

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100(12), 121113 (2012).
[CrossRef]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. (Deerfield Beach Fla.)24(23), OP131–OP135 (2012).
[CrossRef] [PubMed]

2011 (6)

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19(2), 1563–1568 (2011).
[CrossRef] [PubMed]

J. Zhang, J.-Y. Ou, N. Papasimakis, Y. Chen, K. F. Macdonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express19(23), 23279–23285 (2011).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-Ph. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–528 (2011).

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517–521 (2011).
[CrossRef] [PubMed]

2010 (4)

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater.9(5), 387–396 (2010).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

B. Kang, J. H. Woo, E. Choi, H. H. Lee, E. S. Kim, J. Kim, T.-J. Hwang, Y.-S. Park, D. H. Kim, and J. W. Wu, “Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure,” Opt. Express18(16), 16492–16498 (2010).
[CrossRef] [PubMed]

2009 (4)

Sh. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95(3), 033115 (2009).
[CrossRef]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photon. News20(10), 22–25 (2009).
[CrossRef]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

2008 (6)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
[CrossRef] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett.8(9), 2940–2943 (2008).
[CrossRef] [PubMed]

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett.8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

E. Ozbay, “The magical world of photonic metamaterials,” Opt. Photon. News19(11), 22–26 (2008).
[CrossRef]

2007 (6)

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, Z. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A. Pure Appl. Opt.9(1), L1–L2 (2007).
[CrossRef]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
[CrossRef] [PubMed]

2006 (4)

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett.88(9), 091119 (2006).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Aieta, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-Ph. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870–873 (2012).
[CrossRef] [PubMed]

Atkinson, R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

Atwater, H. A.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517–521 (2011).
[CrossRef] [PubMed]

Aydin, K.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517–521 (2011).
[CrossRef] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870–873 (2012).
[CrossRef] [PubMed]

Blanchard, R.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

Boardman, A. D.

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Braun, P. V.

J. Zhao, Ch. Zhang, P. V. Braun, and H. Giessen, “Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing,” Adv. Mater. (Deerfield Beach Fla.)24(35), OP247–OP252 (2012).
[CrossRef] [PubMed]

Brenner, P.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Briggs, R. M.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517–521 (2011).
[CrossRef] [PubMed]

Capasso, F.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-Ph. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Chan, C. T.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater.9(5), 387–396 (2010).
[CrossRef] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Chen, H.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater.9(5), 387–396 (2010).
[CrossRef] [PubMed]

Chen, Y.

J. Zhang, J.-Y. Ou, N. Papasimakis, Y. Chen, K. F. Macdonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express19(23), 23279–23285 (2011).
[CrossRef] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett.8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett.8(9), 2940–2943 (2008).
[CrossRef] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A. Pure Appl. Opt.9(1), L1–L2 (2007).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Chettiar, U. K.

Sh. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95(3), 033115 (2009).
[CrossRef]

Choi, E.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Danner, A. J.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. (Deerfield Beach Fla.)24(23), OP131–OP135 (2012).
[CrossRef] [PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
[CrossRef] [PubMed]

Dickson, W.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

Drachev, V.

Sh. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95(3), 033115 (2009).
[CrossRef]

Du, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, Z. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Ergin, T.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Evans, P. R.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

Farnell, J.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100(12), 121113 (2012).
[CrossRef]

Fedotov, V. A.

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett.8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett.8(9), 2940–2943 (2008).
[CrossRef] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A. Pure Appl. Opt.9(1), L1–L2 (2007).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett.88(9), 091119 (2006).
[CrossRef]

Ferry, V. E.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517–521 (2011).
[CrossRef] [PubMed]

Gaburro, Z.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-Ph. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Galynsky, V. M.

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B86(7), 075138 (2012).
[CrossRef]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Genevet, P.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-Ph. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Giessen, H.

J. Zhao, Ch. Zhang, P. V. Braun, and H. Giessen, “Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing,” Adv. Mater. (Deerfield Beach Fla.)24(35), OP247–OP252 (2012).
[CrossRef] [PubMed]

Hamm, J. M.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater.11(7), 573–584 (2012).
[CrossRef] [PubMed]

Hao, J.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Hendren, W. R.

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

Hess, O.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater.11(7), 573–584 (2012).
[CrossRef] [PubMed]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Huang, F. M.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett.8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Hwang, T.-J.

Jagadish, C.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100(12), 121113 (2012).
[CrossRef]

Jiang, T.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kang, B.

Kang, L.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, Z. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Kao, T. S.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett.8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Karouta, F.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100(12), 121113 (2012).
[CrossRef]

Kats, M. A.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-Ph. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Khardikov, V. V.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett.8(9), 2940–2943 (2008).
[CrossRef] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A. Pure Appl. Opt.9(1), L1–L2 (2007).
[CrossRef]

Khoo, I. C.

Sh. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95(3), 033115 (2009).
[CrossRef]

Kildishev, A. V.

Sh. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95(3), 033115 (2009).
[CrossRef]

Kim, D. H.

Kim, E. S.

Kim, J.

Kivshar, Y. S.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater.11(11), 917–924 (2012).
[CrossRef] [PubMed]

Kivshar, Yu. S.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100(12), 121113 (2012).
[CrossRef]

Klein, M. W.

Kley, E.-B.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Kong, J. A.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Lee, H. H.

Leong, E. S. P.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. (Deerfield Beach Fla.)24(23), OP131–OP135 (2012).
[CrossRef] [PubMed]

Li, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, Z. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Liang, Z.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, Z. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
[CrossRef] [PubMed]

Lippens, D.

Liu, X. X.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

Liu, Y. J.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. (Deerfield Beach Fla.)24(23), OP131–OP135 (2012).
[CrossRef] [PubMed]

Macdonald, K. F.

Maier, S. A.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater.11(7), 573–584 (2012).
[CrossRef] [PubMed]

McKerracher, I.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100(12), 121113 (2012).
[CrossRef]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Minovich, A.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100(12), 121113 (2012).
[CrossRef]

Mladyonov, P. L.

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett.88(9), 091119 (2006).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Neshev, D. N.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100(12), 121113 (2012).
[CrossRef]

Novitsky, A. V.

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B86(7), 075138 (2012).
[CrossRef]

Ou, J.-Y.

Oulton, R. F.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater.11(7), 573–584 (2012).
[CrossRef] [PubMed]

Ozbay, E.

E. Ozbay, “The magical world of photonic metamaterials,” Opt. Photon. News19(11), 22–26 (2008).
[CrossRef]

Padilla, W. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Papasimakis, N.

J. Zhang, J.-Y. Ou, N. Papasimakis, Y. Chen, K. F. Macdonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express19(23), 23279–23285 (2011).
[CrossRef] [PubMed]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photon. News20(10), 22–25 (2009).
[CrossRef]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

Park, Y.-S.

Pendry, J. B.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater.11(7), 573–584 (2012).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Plum, E.

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

Pollard, R. J.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

Powell, D. A.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100(12), 121113 (2012).
[CrossRef]

Prosvirnin, S. L.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett.8(9), 2940–2943 (2008).
[CrossRef] [PubMed]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A. Pure Appl. Opt.9(1), L1–L2 (2007).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett.88(9), 091119 (2006).
[CrossRef]

Qiu, K.

Ran, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett.88(9), 091119 (2006).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Schwanecke, A. S.

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett.8(9), 2940–2943 (2008).
[CrossRef] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A. Pure Appl. Opt.9(1), L1–L2 (2007).
[CrossRef]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

Shadrivov, I. V.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100(12), 121113 (2012).
[CrossRef]

Shalaev, V. M.

Sh. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95(3), 033115 (2009).
[CrossRef]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Sheng, P.

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater.9(5), 387–396 (2010).
[CrossRef] [PubMed]

Si, G. Y.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. (Deerfield Beach Fla.)24(23), OP131–OP135 (2012).
[CrossRef] [PubMed]

Smith, D. R.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–528 (2011).

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Stenger, N.

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

Sun, J.

Tan, H. H.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100(12), 121113 (2012).
[CrossRef]

Tang, H.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, Z. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Teng, J. H.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. (Deerfield Beach Fla.)24(23), OP131–OP135 (2012).
[CrossRef] [PubMed]

Tetienne, J.-Ph.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-Ph. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Tian, J.

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100(12), 121113 (2012).
[CrossRef]

Tsai, D. P.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

Tsakmakidis, K. L.

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater.11(7), 573–584 (2012).
[CrossRef] [PubMed]

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–528 (2011).

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
[CrossRef] [PubMed]

Woo, J. H.

Wu, J. W.

Wurtz, G. A.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

Xiang, N.

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. (Deerfield Beach Fla.)24(23), OP131–OP135 (2012).
[CrossRef] [PubMed]

Xiao, Sh.

Sh. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95(3), 033115 (2009).
[CrossRef]

Yu, N.

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-Ph. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

Yuan, Y.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Zayats, A. V.

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
[CrossRef] [PubMed]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

Zhang, B.

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, Z. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Zhang, Ch.

J. Zhao, Ch. Zhang, P. V. Braun, and H. Giessen, “Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing,” Adv. Mater. (Deerfield Beach Fla.)24(35), OP247–OP252 (2012).
[CrossRef] [PubMed]

Zhang, F.

Zhang, J.

Zhang, W.

Zhao, J.

J. Zhao, Ch. Zhang, P. V. Braun, and H. Giessen, “Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing,” Adv. Mater. (Deerfield Beach Fla.)24(35), OP247–OP252 (2012).
[CrossRef] [PubMed]

Zhao, Q.

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19(2), 1563–1568 (2011).
[CrossRef] [PubMed]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, Z. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870–873 (2012).
[CrossRef] [PubMed]

Zheludev, N. I.

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater.11(11), 917–924 (2012).
[CrossRef] [PubMed]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

J. Zhang, J.-Y. Ou, N. Papasimakis, Y. Chen, K. F. Macdonald, and N. I. Zheludev, “Continuous metal plasmonic frequency selective surfaces,” Opt. Express19(23), 23279–23285 (2011).
[CrossRef] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photon. News20(10), 22–25 (2009).
[CrossRef]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett.8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett.8(9), 2940–2943 (2008).
[CrossRef] [PubMed]

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A. Pure Appl. Opt.9(1), L1–L2 (2007).
[CrossRef]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett.88(9), 091119 (2006).
[CrossRef]

Zhou, J.

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19(2), 1563–1568 (2011).
[CrossRef] [PubMed]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, Z. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

Zhou, L.

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

Zhukovsky, S. V.

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B86(7), 075138 (2012).
[CrossRef]

Adv. Mater. (Deerfield Beach Fla.) (2)

J. Zhao, Ch. Zhang, P. V. Braun, and H. Giessen, “Large-area low-cost plasmonic nanostructures in the NIR for Fano resonant sensing,” Adv. Mater. (Deerfield Beach Fla.)24(35), OP247–OP252 (2012).
[CrossRef] [PubMed]

Y. J. Liu, G. Y. Si, E. S. P. Leong, N. Xiang, A. J. Danner, and J. H. Teng, “Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays,” Adv. Mater. (Deerfield Beach Fla.)24(23), OP131–OP135 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (6)

A. Minovich, J. Farnell, D. N. Neshev, I. McKerracher, F. Karouta, J. Tian, D. A. Powell, I. V. Shadrivov, H. H. Tan, C. Jagadish, and Yu. S. Kivshar, “Liquid crystal based nonlinear fishnet metamaterials,” Appl. Phys. Lett.100(12), 121113 (2012).
[CrossRef]

P. R. Evans, G. A. Wurtz, W. R. Hendren, R. Atkinson, W. Dickson, A. V. Zayats, and R. J. Pollard, “Electrically switchable nonreciprocal transmission of plasmonic nanorods with liquid crystal,” Appl. Phys. Lett.91(4), 043101 (2007).
[CrossRef]

N. I. Zheludev, E. Plum, and V. A. Fedotov, “Metamaterial polarization spectral filter: isolated transmission line at any prescribed wavelength,” Appl. Phys. Lett.99(17), 171915 (2011).
[CrossRef]

Sh. Xiao, U. K. Chettiar, A. V. Kildishev, V. Drachev, I. C. Khoo, and V. M. Shalaev, “Tunable magnetic response of metamaterials,” Appl. Phys. Lett.95(3), 033115 (2009).
[CrossRef]

Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, Z. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett.90(1), 011112 (2007).
[CrossRef]

V. A. Fedotov, A. V. Rogacheva, N. I. Zheludev, P. L. Mladyonov, and S. L. Prosvirnin, “Mirror that does not change the phase of reflected waves,” Appl. Phys. Lett.88(9), 091119 (2006).
[CrossRef]

J. Opt. A. Pure Appl. Opt. (1)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Optical magnetic mirrors,” J. Opt. A. Pure Appl. Opt.9(1), L1–L2 (2007).
[CrossRef]

Nano Lett. (4)

A. S. Schwanecke, V. A. Fedotov, V. V. Khardikov, S. L. Prosvirnin, Y. Chen, and N. I. Zheludev, “Nanostructured metal film with asymmetric optical transmission,” Nano Lett.8(9), 2940–2943 (2008).
[CrossRef] [PubMed]

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett.8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

W. Dickson, G. A. Wurtz, P. R. Evans, R. J. Pollard, and A. V. Zayats, “Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal,” Nano Lett.8(1), 281–286 (2008).
[CrossRef] [PubMed]

F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, “Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces,” Nano Lett.12(9), 4932–4936 (2012).
[CrossRef] [PubMed]

Nat Commun (2)

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun2, 517–521 (2011).
[CrossRef] [PubMed]

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun3, 870–873 (2012).
[CrossRef] [PubMed]

Nat. Mater. (3)

H. Chen, C. T. Chan, and P. Sheng, “Transformation optics and metamaterials,” Nat. Mater.9(5), 387–396 (2010).
[CrossRef] [PubMed]

O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, and K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater.11(7), 573–584 (2012).
[CrossRef] [PubMed]

N. I. Zheludev and Y. S. Kivshar, “From metamaterials to metadevices,” Nat. Mater.11(11), 917–924 (2012).
[CrossRef] [PubMed]

Nat. Photonics (2)

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics5, 523–528 (2011).

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics2(6), 351–354 (2008).
[CrossRef]

Nature (1)

K. L. Tsakmakidis, A. D. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature450(7168), 397–401 (2007).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Opt. Photon. News (2)

N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency,” Opt. Photon. News20(10), 22–25 (2009).
[CrossRef]

E. Ozbay, “The magical world of photonic metamaterials,” Opt. Photon. News19(11), 22–26 (2008).
[CrossRef]

Phys. Rev. B (1)

A. V. Novitsky, V. M. Galynsky, and S. V. Zhukovsky, “Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach,” Phys. Rev. B86(7), 075138 (2012).
[CrossRef]

Phys. Rev. Lett. (6)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006).
[CrossRef] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010).
[CrossRef] [PubMed]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008).
[CrossRef] [PubMed]

J. Hao, Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, “Manipulating electromagnetic wave polarizations by anisotropic metamaterials,” Phys. Rev. Lett.99(6), 063908 (2007).
[CrossRef] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett.102(11), 113902 (2009).
[CrossRef] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett.97(17), 177401 (2006).
[CrossRef] [PubMed]

Science (5)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science292(5514), 77–79 (2001).
[CrossRef] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-Ph. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science334(6054), 333–337 (2011).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science328(5976), 337–339 (2010).
[CrossRef] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Design and operational principle of a hybrid metamaterial-based liquid-crystal optical cell. Panels (a) and (b) show the hybrid cell in the OFF (twisted) and ON (homeotropic) states correspondingly.

Fig. 2
Fig. 2

(a) SEM micrograph of the fabricated metamaterial array taken at 52° to the array’s normal. Dashed box indicates a square unit cell of the periodic pattern. Panels (b) and (c) show images of the hybrid liquid-crystal cell made with polarization optical microscope, where arrows indicate mutual orientations of polarizer P and analyzer A. Dashed boxes indicate the area of gold film occupied by the plasmonic metamaterial. The triangular spot at the top of the box corresponds to a nano-fabrication defect.

Fig. 3
Fig. 3

(a) Transmission spectra of bare metamaterial. Insets show orientations of resonant and non-resonant polarizations with respect to metamaterial structure, and maps of corresponding near-field distributions calculated at 1.2 µm (same colour scale). (b) Transmission spectra of the metamaterial hybridized with a liquid-crystal cell measured for resonant incident polarization at various levels of control signal. (c) Transmission of the metamaterial-liquid-crystal hybrid cell as a function of applied voltage at selected wavelength indicated by dash arrows on the panel (b).

Metrics