Abstract

We present an overview of several microwave photonic processing functionalities based on combinations of Mach-Zehnder and ring resonator filters using the high index contrast silicon nitride (TriPleXTM) waveguide technology. All functionalities are built using the same basic building blocks, namely straight waveguides, phase tuning elements and directional couplers. We recall previously shown measurements on high spurious free dynamic range microwave photonic (MWP) link, ultra-wideband pulse generation, instantaneous frequency measurements, Hilbert transformers, microwave polarization networks and demonstrate new measurements and functionalities on a 16 channel optical beamforming network and modulation format transformer as well as an outlook on future microwave photonic platform integration, which will lead to a significantly reduced footprint and thereby enables the path to commercially viable MWP systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
    [CrossRef]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
    [CrossRef]
  3. D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(1), 1–33 (2013).
  4. M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt.51(7), 789–802 (2012).
    [CrossRef] [PubMed]
  5. M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control,” IEEE Photon. Technol. Lett.25(12), 1145–1148 (2013).
    [CrossRef]
  6. A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part I: design and performance analysis,” J. Lightwave Technol.28(1), 3–18 (2010).
    [CrossRef]
  7. L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol.28(1), 19–31 (2010).
    [CrossRef]
  8. L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1x8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett.19(15), 1130–1132 (2007).
    [CrossRef]
  9. M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011).
    [CrossRef] [PubMed]
  10. L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011).
    [CrossRef] [PubMed]
  11. D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18(26), 27359–27370 (2010).
    [CrossRef] [PubMed]
  12. D. A. I. Marpaung, L. Chevalier, M. Burla, and C. G. H. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19(25), 24838–24848 (2011).
    [CrossRef] [PubMed]
  13. D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett.25(9), 837–840 (2013).
    [CrossRef]
  14. L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express21(3), 3114–3124 (2013).
    [CrossRef] [PubMed]
  15. L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express20(24), 26499–26510 (2012).
    [CrossRef] [PubMed]
  16. C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach. (Wiley-Interscience, 1999).
  17. A. V. Oppenheim, and R. W. Schafer, Digital Signal Processing (Prentice-Hall, 1975).
  18. R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol.12(8), 1369–1372 (1994).
    [CrossRef]
  19. B. Larsen, L. Nielsen, K. Zenth, L. Leick, C. Laurent-Lund, L. Andersen, and K. Mattsson, “A low-loss, silicon-oxynitride process for compact optical devices,” in Proceedings of ECOC (Rimini, Italy, 2003).
  20. J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011).
    [CrossRef] [PubMed]
  21. A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol.34(4), 421–437 (2009).
    [CrossRef]
  22. F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol.25(9), 2579–2589 (2007).
    [CrossRef]
  23. M. Asghari, “Silicon Photonics: A low cost integration platform for datacom and telecom applications,” in Proc. OFC/NFOEC (San Diego, Calif., USA, 2008).
    [CrossRef]
  24. R. G. Heideman, M. Hoekman, and F. Schreuder, “TriPleX™-based integrated optical ring resonators for lab-on-a-chip- and environmental detection,” IEEE J. Sel. Top. Quantum Electron.18(5), 1583–1596 (2012).
    [CrossRef]
  25. A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
    [CrossRef]
  26. R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10(1), 015804–015812 (2013).
    [CrossRef]
  27. M. Smit, J. Van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6(1), 1–13 (2011).
  28. C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express21(1), 556–564 (2013).
    [CrossRef] [PubMed]
  29. M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low los InP waveguide using CH4/H2 chemistry,” J. Electrochem. Soc.158(3), H281–H284 (2011).
    [CrossRef]
  30. R. M. Oldenbeuving, “Spectral control of diode lasers using external waveguide circuits,” PhD-thesis (Universiteit Twente, 2013).
  31. Website of Eutelsat, a satellite operator, www.eutelsat.com/en/satellites/the-fleet/EUTELSAT-KA-SAT.html , visited May 28 2013.
  32. S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE7618, 76180E (2010).
    [CrossRef]
  33. D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).
  34. R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett.25(12), 1165–1168 (2013).
    [CrossRef]
  35. W. Li, W. Zhang, and J. Yao, “An ultra-wideband 360° photonic-assisted microwave phase shifter,” in Proc. of OFC/NFOEC (Anaheim, Calif., USA, 2013).
  36. P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett.21(22), 1686–1688 (2009).
    [CrossRef]
  37. S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express18(21), 22599–22613 (2010).
    [CrossRef] [PubMed]
  38. R. Won, “On-chip signal processing,” Nat. Photonics5(12), 725 (2011), doi:.
    [CrossRef]

2013 (7)

M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control,” IEEE Photon. Technol. Lett.25(12), 1145–1148 (2013).
[CrossRef]

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett.25(9), 837–840 (2013).
[CrossRef]

L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express21(3), 3114–3124 (2013).
[CrossRef] [PubMed]

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10(1), 015804–015812 (2013).
[CrossRef]

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express21(1), 556–564 (2013).
[CrossRef] [PubMed]

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett.25(12), 1165–1168 (2013).
[CrossRef]

2012 (3)

2011 (6)

2010 (5)

2009 (3)

J. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
[CrossRef]

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol.34(4), 421–437 (2009).
[CrossRef]

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett.21(22), 1686–1688 (2009).
[CrossRef]

2007 (3)

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol.25(9), 2579–2589 (2007).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1x8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett.19(15), 1130–1132 (2007).
[CrossRef]

1994 (1)

R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol.12(8), 1369–1372 (1994).
[CrossRef]

Adar, R.

R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol.12(8), 1369–1372 (1994).
[CrossRef]

Andersen, L.

B. Larsen, L. Nielsen, K. Zenth, L. Leick, C. Laurent-Lund, L. Andersen, and K. Mattsson, “A low-loss, silicon-oxynitride process for compact optical devices,” in Proceedings of ECOC (Rimini, Italy, 2003).

Anderson, M. H.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE7618, 76180E (2010).
[CrossRef]

Armenise, M. N.

Asghari, M.

M. Asghari, “Silicon Photonics: A low cost integration platform for datacom and telecom applications,” in Proc. OFC/NFOEC (San Diego, Calif., USA, 2008).
[CrossRef]

Baggen, R.

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

Barton, J. S.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett.25(12), 1165–1168 (2013).
[CrossRef]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011).
[CrossRef] [PubMed]

Bauters, J.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett.25(12), 1165–1168 (2013).
[CrossRef]

Bauters, J. F.

Beeker, W. P.

Bentum, M. J.

Berger, P.

Blumenthal, D. J.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett.25(12), 1165–1168 (2013).
[CrossRef]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011).
[CrossRef] [PubMed]

Boller, K.-J.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10(1), 015804–015812 (2013).
[CrossRef]

Borreman, A.

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1x8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett.19(15), 1130–1132 (2007).
[CrossRef]

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol.25(9), 2579–2589 (2007).
[CrossRef]

Bourderionnet, J.

Bowers, J. E.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett.25(12), 1165–1168 (2013).
[CrossRef]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011).
[CrossRef] [PubMed]

Burla, M.

M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control,” IEEE Photon. Technol. Lett.25(12), 1145–1148 (2013).
[CrossRef]

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt.51(7), 789–802 (2012).
[CrossRef] [PubMed]

D. A. I. Marpaung, L. Chevalier, M. Burla, and C. G. H. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19(25), 24838–24848 (2011).
[CrossRef] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011).
[CrossRef] [PubMed]

L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011).
[CrossRef] [PubMed]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol.28(1), 19–31 (2010).
[CrossRef]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part I: design and performance analysis,” J. Lightwave Technol.28(1), 3–18 (2010).
[CrossRef]

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

Capmany, J.

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express18(21), 22599–22613 (2010).
[CrossRef] [PubMed]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(1), 1–33 (2013).

Chevalier, L.

Chin, S.

Ciminelli, C.

Costa, R.

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol.34(4), 421–437 (2009).
[CrossRef]

Cusmai, G.

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol.34(4), 421–437 (2009).
[CrossRef]

Dai, D.

Davis, S. R.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE7618, 76180E (2010).
[CrossRef]

Dekker, R.

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

Dell’Olio, F.

Dijkstra, K.

Dolfi, D.

Falke, F.

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

Farca, G.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE7618, 76180E (2010).
[CrossRef]

Garcia, J.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett.25(12), 1165–1168 (2013).
[CrossRef]

Geuzebroek, D. H.

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol.25(9), 2579–2589 (2007).
[CrossRef]

Heck, M. J. R.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett.25(12), 1165–1168 (2013).
[CrossRef]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011).
[CrossRef] [PubMed]

Heideman, R.

M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control,” IEEE Photon. Technol. Lett.25(12), 1145–1148 (2013).
[CrossRef]

M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt.51(7), 789–802 (2012).
[CrossRef] [PubMed]

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

Heideman, R. G.

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express21(3), 3114–3124 (2013).
[CrossRef] [PubMed]

L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express20(24), 26499–26510 (2012).
[CrossRef] [PubMed]

R. G. Heideman, M. Hoekman, and F. Schreuder, “TriPleX™-based integrated optical ring resonators for lab-on-a-chip- and environmental detection,” IEEE J. Sel. Top. Quantum Electron.18(5), 1583–1596 (2012).
[CrossRef]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011).
[CrossRef] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011).
[CrossRef] [PubMed]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol.28(1), 19–31 (2010).
[CrossRef]

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol.25(9), 2579–2589 (2007).
[CrossRef]

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1x8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett.19(15), 1130–1132 (2007).
[CrossRef]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(1), 1–33 (2013).

Hill, M.

M. Smit, J. Van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6(1), 1–13 (2011).

Hoekman, M.

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control,” IEEE Photon. Technol. Lett.25(12), 1145–1148 (2013).
[CrossRef]

R. G. Heideman, M. Hoekman, and F. Schreuder, “TriPleX™-based integrated optical ring resonators for lab-on-a-chip- and environmental detection,” IEEE J. Sel. Top. Quantum Electron.18(5), 1583–1596 (2012).
[CrossRef]

M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt.51(7), 789–802 (2012).
[CrossRef] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011).
[CrossRef] [PubMed]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol.28(1), 19–31 (2010).
[CrossRef]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18(26), 27359–27370 (2010).
[CrossRef] [PubMed]

Hulzinga, A.

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part I: design and performance analysis,” J. Lightwave Technol.28(1), 3–18 (2010).
[CrossRef]

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

Jagadish, C.

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low los InP waveguide using CH4/H2 chemistry,” J. Electrochem. Soc.158(3), H281–H284 (2011).
[CrossRef]

John, D.

Johnson, S.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE7618, 76180E (2010).
[CrossRef]

Jorna, P.

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part I: design and performance analysis,” J. Lightwave Technol.28(1), 3–18 (2010).
[CrossRef]

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

Karouta, F.

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low los InP waveguide using CH4/H2 chemistry,” J. Electrochem. Soc.158(3), H281–H284 (2011).
[CrossRef]

Khan, M. R.

Khurgin, J. B.

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett.21(22), 1686–1688 (2009).
[CrossRef]

Klein, E. J.

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10(1), 015804–015812 (2013).
[CrossRef]

Larsen, B.

B. Larsen, L. Nielsen, K. Zenth, L. Leick, C. Laurent-Lund, L. Andersen, and K. Mattsson, “A low-loss, silicon-oxynitride process for compact optical devices,” in Proceedings of ECOC (Rimini, Italy, 2003).

Laurent-Lund, C.

B. Larsen, L. Nielsen, K. Zenth, L. Leick, C. Laurent-Lund, L. Andersen, and K. Mattsson, “A low-loss, silicon-oxynitride process for compact optical devices,” in Proceedings of ECOC (Rimini, Italy, 2003).

Lee, C. J.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10(1), 015804–015812 (2013).
[CrossRef]

Leick, L.

B. Larsen, L. Nielsen, K. Zenth, L. Leick, C. Laurent-Lund, L. Andersen, and K. Mattsson, “A low-loss, silicon-oxynitride process for compact optical devices,” in Proceedings of ECOC (Rimini, Italy, 2003).

Leinse, A.

M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control,” IEEE Photon. Technol. Lett.25(12), 1145–1148 (2013).
[CrossRef]

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express21(3), 3114–3124 (2013).
[CrossRef] [PubMed]

M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt.51(7), 789–802 (2012).
[CrossRef] [PubMed]

L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express20(24), 26499–26510 (2012).
[CrossRef] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011).
[CrossRef] [PubMed]

L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011).
[CrossRef] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011).
[CrossRef] [PubMed]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18(26), 27359–27370 (2010).
[CrossRef] [PubMed]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol.28(1), 19–31 (2010).
[CrossRef]

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol.25(9), 2579–2589 (2007).
[CrossRef]

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(1), 1–33 (2013).

Li, W.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett.25(12), 1165–1168 (2013).
[CrossRef]

W. Li, W. Zhang, and J. Yao, “An ultra-wideband 360° photonic-assisted microwave phase shifter,” in Proc. of OFC/NFOEC (Anaheim, Calif., USA, 2013).

Lysevych, M.

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low los InP waveguide using CH4/H2 chemistry,” J. Electrochem. Soc.158(3), H281–H284 (2011).
[CrossRef]

Maat, P.

Marpaung, D.

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control,” IEEE Photon. Technol. Lett.25(12), 1145–1148 (2013).
[CrossRef]

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett.25(9), 837–840 (2013).
[CrossRef]

M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt.51(7), 789–802 (2012).
[CrossRef] [PubMed]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18(26), 27359–27370 (2010).
[CrossRef] [PubMed]

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

Marpaung, D. A. I.

D. A. I. Marpaung, L. Chevalier, M. Burla, and C. G. H. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19(25), 24838–24848 (2011).
[CrossRef] [PubMed]

L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011).
[CrossRef] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011).
[CrossRef] [PubMed]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part I: design and performance analysis,” J. Lightwave Technol.28(1), 3–18 (2010).
[CrossRef]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol.28(1), 19–31 (2010).
[CrossRef]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(1), 1–33 (2013).

Martinelli, M.

Mattsson, K.

B. Larsen, L. Nielsen, K. Zenth, L. Leick, C. Laurent-Lund, L. Andersen, and K. Mattsson, “A low-loss, silicon-oxynitride process for compact optical devices,” in Proceedings of ECOC (Rimini, Italy, 2003).

Meijerink, A.

Meijerink, R.

Melloni, A.

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol.34(4), 421–437 (2009).
[CrossRef]

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol.25(9), 2579–2589 (2007).
[CrossRef]

Mizrahi, V.

R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol.12(8), 1369–1372 (1994).
[CrossRef]

Moreira, R. L.

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett.25(12), 1165–1168 (2013).
[CrossRef]

Morichetti, F.

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol.34(4), 421–437 (2009).
[CrossRef]

F. Morichetti, A. Melloni, M. Martinelli, R. G. Heideman, A. Leinse, D. H. Geuzebroek, and A. Borreman, “Box-shaped dielectric waveguides: A new concept in integrated optics?” J. Lightwave Technol.25(9), 2579–2589 (2007).
[CrossRef]

Morton, P. A.

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett.21(22), 1686–1688 (2009).
[CrossRef]

Nielsen, L.

B. Larsen, L. Nielsen, K. Zenth, L. Leick, C. Laurent-Lund, L. Andersen, and K. Mattsson, “A low-loss, silicon-oxynitride process for compact optical devices,” in Proceedings of ECOC (Rimini, Italy, 2003).

Noharet, B.

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Offerhaus, H. L.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10(1), 015804–015812 (2013).
[CrossRef]

Oldenbeuving, R. M.

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10(1), 015804–015812 (2013).
[CrossRef]

Passenberg, W.

Roeloffzen, C.

L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express21(3), 3114–3124 (2013).
[CrossRef] [PubMed]

M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control,” IEEE Photon. Technol. Lett.25(12), 1145–1148 (2013).
[CrossRef]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18(26), 27359–27370 (2010).
[CrossRef] [PubMed]

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

Roeloffzen, C. G. H.

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express20(24), 26499–26510 (2012).
[CrossRef] [PubMed]

M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt.51(7), 789–802 (2012).
[CrossRef] [PubMed]

D. A. I. Marpaung, L. Chevalier, M. Burla, and C. G. H. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19(25), 24838–24848 (2011).
[CrossRef] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011).
[CrossRef] [PubMed]

L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011).
[CrossRef] [PubMed]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part I: design and performance analysis,” J. Lightwave Technol.28(1), 3–18 (2010).
[CrossRef]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol.28(1), 19–31 (2010).
[CrossRef]

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1x8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett.19(15), 1130–1132 (2007).
[CrossRef]

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(1), 1–33 (2013).

Rommel, S. D.

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE7618, 76180E (2010).
[CrossRef]

Sales, S.

Sanadgol, B.

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

Sancho, J.

Schippers, H.

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

Schreuder, F.

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

R. G. Heideman, M. Hoekman, and F. Schreuder, “TriPleX™-based integrated optical ring resonators for lab-on-a-chip- and environmental detection,” IEEE J. Sel. Top. Quantum Electron.18(5), 1583–1596 (2012).
[CrossRef]

Serbin, M.

R. Adar, M. Serbin, and V. Mizrahi, “Less than 1 dB per meter propagation loss of silica waveguides measured using a ring resonator,” J. Lightwave Technol.12(8), 1369–1372 (1994).
[CrossRef]

Smit, M.

M. Smit, J. Van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6(1), 1–13 (2011).

Soares, F. M.

Song, H.

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10(1), 015804–015812 (2013).
[CrossRef]

Tan, H. H.

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low los InP waveguide using CH4/H2 chemistry,” J. Electrochem. Soc.158(3), H281–H284 (2011).
[CrossRef]

Thévenaz, L.

Tien, M. C.

Van der Tol, J.

M. Smit, J. Van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6(1), 1–13 (2011).

van Dijk, P.

van Dijk, P. W. L.

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

van Etten, W.

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1x8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett.19(15), 1130–1132 (2007).
[CrossRef]

van Etten, W. C.

Verpoorte, J.

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part I: design and performance analysis,” J. Lightwave Technol.28(1), 3–18 (2010).
[CrossRef]

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

Wang, Q.

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

Won, R.

R. Won, “On-chip signal processing,” Nat. Photonics5(12), 725 (2011), doi:.
[CrossRef]

Yao, J.

J. Yao, “Microwave photonics,” J. Lightwave Technol.27(3), 314–335 (2009).
[CrossRef]

W. Li, W. Zhang, and J. Yao, “An ultra-wideband 360° photonic-assisted microwave phase shifter,” in Proc. of OFC/NFOEC (Anaheim, Calif., USA, 2013).

Zenth, K.

B. Larsen, L. Nielsen, K. Zenth, L. Leick, C. Laurent-Lund, L. Andersen, and K. Mattsson, “A low-loss, silicon-oxynitride process for compact optical devices,” in Proceedings of ECOC (Rimini, Italy, 2003).

Zhang, W.

W. Li, W. Zhang, and J. Yao, “An ultra-wideband 360° photonic-assisted microwave phase shifter,” in Proc. of OFC/NFOEC (Anaheim, Calif., USA, 2013).

Zhuang, L.

M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control,” IEEE Photon. Technol. Lett.25(12), 1145–1148 (2013).
[CrossRef]

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express21(3), 3114–3124 (2013).
[CrossRef] [PubMed]

M. Burla, C. G. H. Roeloffzen, L. Zhuang, D. Marpaung, M. R. Khan, P. Maat, K. Dijkstra, A. Leinse, M. Hoekman, and R. Heideman, “System integration and radiation pattern measurements of a phased array antenna employing an integrated photonic beamformer for radio astronomy applications,” Appl. Opt.51(7), 789–802 (2012).
[CrossRef] [PubMed]

L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express20(24), 26499–26510 (2012).
[CrossRef] [PubMed]

L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011).
[CrossRef] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011).
[CrossRef] [PubMed]

L. Zhuang, C. G. H. Roeloffzen, A. Meijerink, M. Burla, D. A. I. Marpaung, A. Leinse, M. Hoekman, R. G. Heideman, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part II: experimental prototype,” J. Lightwave Technol.28(1), 19–31 (2010).
[CrossRef]

A. Meijerink, C. G. H. Roeloffzen, R. Meijerink, L. Zhuang, D. A. I. Marpaung, M. J. Bentum, M. Burla, J. Verpoorte, P. Jorna, A. Hulzinga, and W. C. van Etten, “Novel ring resonator-based integrated photonic beamformer for broadband phased-array antennas-Part I: design and performance analysis,” J. Lightwave Technol.28(1), 3–18 (2010).
[CrossRef]

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1x8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett.19(15), 1130–1132 (2007).
[CrossRef]

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

R. G. Heideman, M. Hoekman, and F. Schreuder, “TriPleX™-based integrated optical ring resonators for lab-on-a-chip- and environmental detection,” IEEE J. Sel. Top. Quantum Electron.18(5), 1583–1596 (2012).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

M. Burla, D. Marpaung, L. Zhuang, A. Leinse, M. Hoekman, R. Heideman, and C. Roeloffzen, “Integrated photonic Ku-band beamformer chip with continuous amplitude and delay control,” IEEE Photon. Technol. Lett.25(12), 1145–1148 (2013).
[CrossRef]

L. Zhuang, C. G. H. Roeloffzen, R. G. Heideman, A. Borreman, A. Meijerink, and W. van Etten, “Single-chip ring resonator-based 1x8 optical beam forming network in CMOS-compatible waveguide technology,” IEEE Photon. Technol. Lett.19(15), 1130–1132 (2007).
[CrossRef]

D. Marpaung, “On-chip photonic-assisted instantaneous microwave frequency measurement system,” IEEE Photon. Technol. Lett.25(9), 837–840 (2013).
[CrossRef]

R. L. Moreira, J. Garcia, W. Li, J. Bauters, J. S. Barton, M. J. R. Heck, J. E. Bowers, and D. J. Blumenthal, “Integrated ultra-low-loss 4-bit tunable delay for broadband phased array antenna applications,” IEEE Photon. Technol. Lett.25(12), 1165–1168 (2013).
[CrossRef]

P. A. Morton and J. B. Khurgin, “Microwave photonic delay line with separate tuning of the optical carrier,” IEEE Photon. Technol. Lett.21(22), 1686–1688 (2009).
[CrossRef]

Int. J. Mater. Prod. Technol. (1)

A. Melloni, R. Costa, G. Cusmai, and F. Morichetti, “The role of index contrast in dielectric optical waveguides,” Int. J. Mater. Prod. Technol.34(4), 421–437 (2009).
[CrossRef]

J. Electrochem. Soc. (1)

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, “Single-step RIE fabrication process of low los InP waveguide using CH4/H2 chemistry,” J. Electrochem. Soc.158(3), H281–H284 (2011).
[CrossRef]

J. Lightwave Technol. (5)

Laser Phys. Lett. (1)

R. M. Oldenbeuving, E. J. Klein, H. L. Offerhaus, C. J. Lee, H. Song, and K.-J. Boller, “25 kHz narrow spectral bandwidth of a wavelength tunable diode laser with a short waveguide-based external cavity,” Laser Phys. Lett.10(1), 015804–015812 (2013).
[CrossRef]

Nat. Photonics (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

R. Won, “On-chip signal processing,” Nat. Photonics5(12), 725 (2011), doi:.
[CrossRef]

Opt. Express (9)

S. Chin, L. Thévenaz, J. Sancho, S. Sales, J. Capmany, P. Berger, J. Bourderionnet, and D. Dolfi, “Broadband true time delay for microwave signal processing, using slow light based on stimulated Brillouin scattering in optical fibers,” Opt. Express18(21), 22599–22613 (2010).
[CrossRef] [PubMed]

D. Marpaung, C. Roeloffzen, A. Leinse, and M. Hoekman, “A photonic chip based frequency discriminator for a high performance microwave photonic link,” Opt. Express18(26), 27359–27370 (2010).
[CrossRef] [PubMed]

J. F. Bauters, M. J. R. Heck, D. John, D. Dai, M. C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express19(4), 3163–3174 (2011).
[CrossRef] [PubMed]

M. Burla, D. A. I. Marpaung, L. Zhuang, C. G. H. Roeloffzen, M. R. Khan, A. Leinse, M. Hoekman, and R. G. Heideman, “On-chip CMOS compatible reconfigurable optical delay line with separate carrier tuning for microwave photonic signal processing,” Opt. Express19(22), 21475–21484 (2011).
[CrossRef] [PubMed]

L. Zhuang, D. A. I. Marpaung, M. Burla, W. P. Beeker, A. Leinse, and C. G. H. Roeloffzen, “Low-loss, high-index-contrast Si₃N₄/SiO₂ optical waveguides for optical delay lines in microwave photonics signal processing,” Opt. Express19(23), 23162–23170 (2011).
[CrossRef] [PubMed]

D. A. I. Marpaung, L. Chevalier, M. Burla, and C. G. H. Roeloffzen, “Impulse radio ultrawideband pulse shaper based on a programmable photonic chip frequency discriminator,” Opt. Express19(25), 24838–24848 (2011).
[CrossRef] [PubMed]

L. Zhuang, M. R. Khan, W. P. Beeker, A. Leinse, R. G. Heideman, and C. G. H. Roeloffzen, “Novel microwave photonic fractional Hilbert transformer using a ring resonator-based optical all-pass filter,” Opt. Express20(24), 26499–26510 (2012).
[CrossRef] [PubMed]

C. Ciminelli, F. Dell’Olio, M. N. Armenise, F. M. Soares, and W. Passenberg, “High performance InP ring resonator for new generation monolithically integrated optical gyroscopes,” Opt. Express21(1), 556–564 (2013).
[CrossRef] [PubMed]

L. Zhuang, W. P. Beeker, A. Leinse, R. G. Heideman, P. van Dijk, and C. Roeloffzen, “Novel wideband microwave polarization network using a fully-reconfigurable photonic waveguide interleaver with a two-ring resonator-assisted asymmetric Mach-Zehnder structure,” Opt. Express21(3), 3114–3124 (2013).
[CrossRef] [PubMed]

Proc. SPIE (2)

S. R. Davis, G. Farca, S. D. Rommel, S. Johnson, and M. H. Anderson, “Liquid crystal waveguides: new devices enabled by > 1000 waves of optical phase control,” Proc. SPIE7618, 76180E (2010).
[CrossRef]

A. Leinse, R. G. Heideman, M. Hoekman, F. Schreuder, F. Falke, C. G. H. Roeloffzen, L. Zhuang, M. Burla, D. Marpaung, D. H. Geuzebroek, R. Dekker, E. J. Klein, P. W. L. van Dijk, and R. M. Oldenbeuving, “TriPleX waveguide platform: low-loss technology over a wide wavelength range,” Proc. SPIE8767, 87670E (2013), doi:.
[CrossRef]

Other (10)

M. Asghari, “Silicon Photonics: A low cost integration platform for datacom and telecom applications,” in Proc. OFC/NFOEC (San Diego, Calif., USA, 2008).
[CrossRef]

M. Smit, J. Van der Tol, and M. Hill, “Moore’s law in photonics,” Laser Photon. Rev. 6(1), 1–13 (2011).

R. M. Oldenbeuving, “Spectral control of diode lasers using external waveguide circuits,” PhD-thesis (Universiteit Twente, 2013).

Website of Eutelsat, a satellite operator, www.eutelsat.com/en/satellites/the-fleet/EUTELSAT-KA-SAT.html , visited May 28 2013.

D. A. I. Marpaung, C. G. H. Roeloffzen, R. G. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser Photon. Rev.7(1), 1–33 (2013).

B. Larsen, L. Nielsen, K. Zenth, L. Leick, C. Laurent-Lund, L. Andersen, and K. Mattsson, “A low-loss, silicon-oxynitride process for compact optical devices,” in Proceedings of ECOC (Rimini, Italy, 2003).

C. K. Madsen and J. H. Zhao, Optical Filter Design and Analysis: A Signal Processing Approach. (Wiley-Interscience, 1999).

A. V. Oppenheim, and R. W. Schafer, Digital Signal Processing (Prentice-Hall, 1975).

D. Marpaung, L. Zhuang, M. Burla, C. Roeloffzen, J. Verpoorte, H. Schippers, A. Hulzinga, P. Jorna, W. P. Beeker, A. Leinse, R. Heideman, B. Noharet, Q. Wang, B. Sanadgol, and R. Baggen, “Towards a broadband and squint-free Ku-band phased array antenna system for airborne satellite communications,” in Proc. of the Fifth European Conference on Antennas and Propagation EuCAP (Rome, Italy, 2011).

W. Li, W. Zhang, and J. Yao, “An ultra-wideband 360° photonic-assisted microwave phase shifter,” in Proc. of OFC/NFOEC (Anaheim, Calif., USA, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Fig. 1
Fig. 1

(a) Magnitude response for the asymmetric Mach-Zehnder interferometer filter with differential loss of 0, 0.5 and 1 dB respectively. (b) Group delay transfer of the MZI for various coupling constants.

Fig. 2
Fig. 2

Frequency responses of a ring resonator with one input and one output for different values of κ and PL: (a) phase responses, (b) group delay and power transmissions.

Fig. 3
Fig. 3

Frequency responses of a ring resonator with two couplers for different settings of coupling coefficients: (a) power transmissions, (b) phase responses.

Fig. 4
Fig. 4

Schematic cross-sectional view of a TriPleX process flow and corresponding SEM images of realized structures (bottom row) of three typical single-mode channel layouts: a box-shaped layout with minimal modal birefringence (left column), a double-stripe layout with strongly reduced modal birefringence (center column), and a single-stripe layout with large modal birefringence (right column). Legend of colors: = substrate, = bottom cladding, = waveguide, / = (different types of) cover layer. This figure is partially adapted from [24] and partially from [25].

Fig. 5
Fig. 5

Measurement setup for the characterizations of the fabricated optical chips. MZM is Mach-Zehnder modulator, PMF is polarization maintaining fiber, SMF is single mode fiber.

Fig. 6
Fig. 6

(a) device layout and (b) measured systematic propagation loss of ring resonator-based delay lines in TriPleXTM technology (from [10]).

Fig. 7
Fig. 7

(a) schematic and (b) measurements of a 4 × 1 combiner constructed using three times 2 × 2 MZI-based tunable couplers, where modulated optical signals with equal amplitude and synchronized phase are applied to the four inputs, and all the couplers are set to 50/50 status (from [7]).

Fig. 8
Fig. 8

(a) schematic of a delay line circuit with a 1 × 8 port configuration, (b)-(d) measured group delay responses of different output ports, where the ring resonators (RRs) are set such that incremental delays of different ports are aligned to a common center frequency (from [8]).

Fig. 9
Fig. 9

(a) schematic of the designed 16 × 1 optical beamforming network (OBFN) chip; (b) chip mask layout using waveguide bend radius of 125 µm; (c) a photo of a processed wafer; (d) a photo of a packaged chip with electrical connections and fiber pigtailing.

Fig. 10
Fig. 10

Measured group delay responses of a cascade of (a) 2 RRs, (b) 3 RRs, (c) 4 RRs and (d) 6 RRs

Fig. 11
Fig. 11

Schematic layout of the separate carrier tuning (SCT) unit (top) and principle of operation (bottom) (from [9]).

Fig. 12
Fig. 12

Generation of tunable group delay (a) and of full-360° phase shift (b) using the integrated photonic processor (from [9]).

Fig. 13
Fig. 13

Schematic of the microwave photonics filter (MPF) based on separate carrier tuning (SCT) (from [9]).

Fig. 14
Fig. 14

Demonstration of the full tunability of the microwave photonics filter (MPF) based on separate carrier tuning (SCT). (a) shift of the resonance frequency. (b) Tuning of the FSR. (c) Simultaneous tuning of notch frequency and FSR (from [9]).

Fig. 15
Fig. 15

(a) Schematics of waveguide implementations of 3-order and 5-order Chebyshev II filters using MZI-single-RR and MZI-double-RR architecture, respectively. (b) Comparison between the optimized filter transmissions. (c)-(d) Measured complementary outputs, phase and group delay responses of the MZI-double-RR filter (from [14] and [10]).

Fig. 16
Fig. 16

(a) Layout of the frequency discriminator chip; (b) the realization (right) (from [11]).

Fig. 17
Fig. 17

(a) Two tone test measurement results depicting signal and intermodulation distortion (IMD) powers and the photocurrent as functions of the laser bias current for a balanced response from Ring 1, 3 and 5. (b) The measured spurious-free dynamic range (SFDR) for the balanced response. (from [11]).

Fig. 18
Fig. 18

(a) Schematic of the measurement setup used to demonstrate the pulse shaping. The discriminator chip is configured to shape the Gaussian pulses modulated onto the phase of the optical carrier into a monocycle or a doublet. (b) Simulated (left) and measured (right) ring responses for modified doublet generation. (c) Waveforms (left) and power spectrum (right) of the modified doublets (from [12]).

Fig. 19
Fig. 19

(a) Schematic of the proposed on-chip IFM system. (b) Measured RR responses, and (c) one of the amplitude comparison functions (ACFs) of the instantaneous frequency measurement (IFM) system. (d) (a) The measured microwave frequency as function of the input frequency for various input power levels, with the frequency error shown in the inset (from [13]).

Fig. 20
Fig. 20

(a) Measured RF phase response of a waveguide realization of a RR for different values of power coupling coefficient κ and the curve-fittings to the target fractional Hilbert transformer (FHT) specifications; (b) demonstration of the resulting FHT phase shift by removing the delay effect (linear phase) from the measured phase responses (from [15]).

Fig. 21
Fig. 21

Setup for experimental demonstration of on-chip phase control of microwave signals generated by optical heterodyning, and simultaneous generation of in-phase and quadrature microwave signals (from [15]).

Fig. 22
Fig. 22

Demonstrations of two functionalities achieved using the fractional Hilbert transformer (FHT) for optical generation of microwave signals by means of optical heterodyning: (a) microwave phase control with a full 2π phase changing range and (b) simultaneous generation of in-phase and quadrature microwave signals for a wide frequency range (from [15]).

Fig. 23
Fig. 23

System schemes for dual-linear-polarization antennas for simultaneous reception of two orthogonal polarization-multiplexed RF signals, using the described MWP polarization network: (a) linear polarization scenario and (b) circular polarization scenario (from [14]).

Fig. 24
Fig. 24

(a) principle illustration of PM-IM conversion; (b) phase responses of a RR in contrast to the ideal response for PM-IM conversion; (c) measured phase response of a cascade of two RRs; and (d) the measured output RF signals using direct detection after the PM-IM conversion, which are achieved for two cases where the optical carrier is aligned to the “left” and “right” phase points, respectively.

Fig. 25
Fig. 25

InP and SiN platform solution for complex microwave photonic processing. Example of an optical beamformer chip for transmit phased array antennas.

Tables (1)

Tables Icon

Table 1 Basic building blocks and their transfer functions (back scattering, non-linearity’s, common path lengths and non-idealities are neglected)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H wg = e αL e j k 0 n eff ( ω )L e jφ =γ e jωτ e jφ ,
τ= L n g c ,
n g = n eff ( ω )+ω n eff ( ω ) ω .
e j ω = z 1 ,
H wg =γ z 1 e jφ .
τ g ( ω )= dθ( ω ) dω = d dω arg(H(z)) | z= e jω .
τ g ( ω )= τ g τ u = dθ( ω ) d ω = d d ω arg(H(z)) | z= e i ω .

Metrics