Abstract

We propose and experimentally demonstrate a potentially integrable optical scheme to generate high order UWB pulses. The technique is based on exploiting the cross phase modulation generated in an InGaAsP Mach-Zehnder interferometer containing integrated semiconductor optical amplifiers, and is also adaptable to different pulse modulation formats through an optical processing unit which allows to control of the amplitude, polarity and time delay of the generated taps.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yao, “Photonics for ultrawideband communications,” IEEE Microw. Mag.10(4), 82–95 (2009).
    [CrossRef]
  2. J. Zheng, N. Zu, L. Wang, J. Liu, and H. Liang, “Photonic generation of ultrawideband pulse with tunable notch- band behavior,” IEEE Photonics Journal4(3), 657–663 (2012).
  3. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
    [CrossRef]
  4. F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006).
    [CrossRef]
  5. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007).
    [CrossRef]
  6. J. Yao, “Photonics for ultrawideband communications,” IEEE Microw. Mag.10(4), 82–95 (2009).
    [CrossRef]
  7. F. Zeng and J. Yao, “All-optical bandpass microwave filter based on an electro-optic phase modulator,” Opt. Express12(16), 3814–3819 (2004).
    [CrossRef] [PubMed]
  8. E. Zhou, X. Xu, K. Lui, and K. K.-Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010).
    [CrossRef]
  9. I. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waeforms applicable to ultrawideband communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
    [CrossRef]
  10. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
    [CrossRef]
  11. J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
    [CrossRef]
  12. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
    [CrossRef]
  13. M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express17(7), 5023–5032 (2009).
    [CrossRef] [PubMed]
  14. J. Dong, X. Zhang, Y. Zhang, and D. Huang, “Optical UWB doublet pulse generation using multiple nonlinearities of single SOA,” Electron. Lett.44(18), 1083–1084 (2008).
    [CrossRef]
  15. F. Wang, J. Dong, E. Xu, and X. Zhang, “All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination,” Opt. Express18(24), 24588–24594 (2010).
    [CrossRef] [PubMed]
  16. B. Luo, J. Dong, and X. Zhang, “Photonic generation of UWB doublet pulse based on XPM in an SOA-based NOLM,” Opto-Electronics and Communications Conference, 717–718 (2012).
    [CrossRef]
  17. M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photon. Technol. Lett.20(7), 526–528 (2008).
    [CrossRef]
  18. D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.7(4), 506–538 (2013).
    [CrossRef]
  19. S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to microwave photonics using Semiconductor Optical Amplifiers,” IEEE Trans. Microw. Theory Tech.58(11), 3022–3038 (2010).
    [CrossRef]
  20. J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
    [CrossRef] [PubMed]
  21. H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
    [CrossRef]

2013

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

2012

J. Zheng, N. Zu, L. Wang, J. Liu, and H. Liang, “Photonic generation of ultrawideband pulse with tunable notch- band behavior,” IEEE Photonics Journal4(3), 657–663 (2012).

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

2010

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

E. Zhou, X. Xu, K. Lui, and K. K.-Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010).
[CrossRef]

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to microwave photonics using Semiconductor Optical Amplifiers,” IEEE Trans. Microw. Theory Tech.58(11), 3022–3038 (2010).
[CrossRef]

F. Wang, J. Dong, E. Xu, and X. Zhang, “All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination,” Opt. Express18(24), 24588–24594 (2010).
[CrossRef] [PubMed]

2009

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express17(7), 5023–5032 (2009).
[CrossRef] [PubMed]

J. Yao, “Photonics for ultrawideband communications,” IEEE Microw. Mag.10(4), 82–95 (2009).
[CrossRef]

J. Yao, “Photonics for ultrawideband communications,” IEEE Microw. Mag.10(4), 82–95 (2009).
[CrossRef]

2008

J. Dong, X. Zhang, Y. Zhang, and D. Huang, “Optical UWB doublet pulse generation using multiple nonlinearities of single SOA,” Electron. Lett.44(18), 1083–1084 (2008).
[CrossRef]

M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photon. Technol. Lett.20(7), 526–528 (2008).
[CrossRef]

2007

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

2006

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

2005

I. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waeforms applicable to ultrawideband communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

2004

2000

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

Bolea, M.

Bourderionnet, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Bovington, J.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Bowers, J. E.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Capmany, J.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express17(7), 5023–5032 (2009).
[CrossRef] [PubMed]

M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photon. Technol. Lett.20(7), 526–528 (2008).
[CrossRef]

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

J. Capmany, B. Ortega, and D. Pastor, “A tutorial on microwave photonic filters,” J. Lightwave Technol.24(1), 201–229 (2006).
[CrossRef]

Chen, H.-W.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Colman, P.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Combrié, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

De Rossi, A.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Dolfi, D.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Dong, J.

F. Wang, J. Dong, E. Xu, and X. Zhang, “All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination,” Opt. Express18(24), 24588–24594 (2010).
[CrossRef] [PubMed]

J. Dong, X. Zhang, Y. Zhang, and D. Huang, “Optical UWB doublet pulse generation using multiple nonlinearities of single SOA,” Electron. Lett.44(18), 1083–1084 (2008).
[CrossRef]

B. Luo, J. Dong, and X. Zhang, “Photonic generation of UWB doublet pulse based on XPM in an SOA-based NOLM,” Opto-Electronics and Communications Conference, 717–718 (2012).
[CrossRef]

Fang, A. W.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Gasulla, I.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to microwave photonics using Semiconductor Optical Amplifiers,” IEEE Trans. Microw. Theory Tech.58(11), 3022–3038 (2010).
[CrossRef]

Heideman, R.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

Huang, D.

J. Dong, X. Zhang, Y. Zhang, and D. Huang, “Optical UWB doublet pulse generation using multiple nonlinearities of single SOA,” Electron. Lett.44(18), 1083–1084 (2008).
[CrossRef]

Lehoucq, G.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Leinse, A.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

Liang, D.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Liang, H.

J. Zheng, N. Zu, L. Wang, J. Liu, and H. Liang, “Photonic generation of ultrawideband pulse with tunable notch- band behavior,” IEEE Photonics Journal4(3), 657–663 (2012).

Lin, I.

I. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waeforms applicable to ultrawideband communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

Liu, J.

J. Zheng, N. Zu, L. Wang, J. Liu, and H. Liang, “Photonic generation of ultrawideband pulse with tunable notch- band behavior,” IEEE Photonics Journal4(3), 657–663 (2012).

Lloret, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Lui, K.

E. Zhou, X. Xu, K. Lui, and K. K.-Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010).
[CrossRef]

Luo, B.

B. Luo, J. Dong, and X. Zhang, “Photonic generation of UWB doublet pulse based on XPM in an SOA-based NOLM,” Opto-Electronics and Communications Conference, 717–718 (2012).
[CrossRef]

Manzanedo, M. D.

M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photon. Technol. Lett.20(7), 526–528 (2008).
[CrossRef]

Marpaung, D.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

McKinney, J. D.

I. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waeforms applicable to ultrawideband communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

Mora, J.

M. Bolea, J. Mora, B. Ortega, and J. Capmany, “Optical UWB pulse generator using an N tap microwave photonic filter and phase inversion adaptable to different pulse modulation formats,” Opt. Express17(7), 5023–5032 (2009).
[CrossRef] [PubMed]

M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photon. Technol. Lett.20(7), 526–528 (2008).
[CrossRef]

Mork, J.

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to microwave photonics using Semiconductor Optical Amplifiers,” IEEE Trans. Microw. Theory Tech.58(11), 3022–3038 (2010).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Ortega, B.

Pastor, D.

Peters, J. D.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Roeloffzen, C.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

Sales, S.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to microwave photonics using Semiconductor Optical Amplifiers,” IEEE Trans. Microw. Theory Tech.58(11), 3022–3038 (2010).
[CrossRef]

Sancho, J.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Wang, F.

Wang, L.

J. Zheng, N. Zu, L. Wang, J. Liu, and H. Liang, “Photonic generation of ultrawideband pulse with tunable notch- band behavior,” IEEE Photonics Journal4(3), 657–663 (2012).

Wang, Q.

Wang, Z.

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

Weiner, A. M.

I. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waeforms applicable to ultrawideband communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

Wong, K. K.-Y.

E. Zhou, X. Xu, K. Lui, and K. K.-Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010).
[CrossRef]

Xavier, S.

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Xu, E.

Xu, X.

E. Zhou, X. Xu, K. Lui, and K. K.-Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010).
[CrossRef]

Xue, W.

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to microwave photonics using Semiconductor Optical Amplifiers,” IEEE Trans. Microw. Theory Tech.58(11), 3022–3038 (2010).
[CrossRef]

Yao, J.

J. Yao, “Photonics for ultrawideband communications,” IEEE Microw. Mag.10(4), 82–95 (2009).
[CrossRef]

J. Yao, “Photonics for ultrawideband communications,” IEEE Microw. Mag.10(4), 82–95 (2009).
[CrossRef]

J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol.25(11), 3219–3235 (2007).
[CrossRef]

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006).
[CrossRef]

F. Zeng and J. Yao, “All-optical bandpass microwave filter based on an electro-optic phase modulator,” Opt. Express12(16), 3814–3819 (2004).
[CrossRef] [PubMed]

Zeng, F.

Zhang, X.

F. Wang, J. Dong, E. Xu, and X. Zhang, “All-optical UWB generation and modulation using SOA-XPM effect and DWDM-based multi-channel frequency discrimination,” Opt. Express18(24), 24588–24594 (2010).
[CrossRef] [PubMed]

J. Dong, X. Zhang, Y. Zhang, and D. Huang, “Optical UWB doublet pulse generation using multiple nonlinearities of single SOA,” Electron. Lett.44(18), 1083–1084 (2008).
[CrossRef]

B. Luo, J. Dong, and X. Zhang, “Photonic generation of UWB doublet pulse based on XPM in an SOA-based NOLM,” Opto-Electronics and Communications Conference, 717–718 (2012).
[CrossRef]

Zhang, Y.

J. Dong, X. Zhang, Y. Zhang, and D. Huang, “Optical UWB doublet pulse generation using multiple nonlinearities of single SOA,” Electron. Lett.44(18), 1083–1084 (2008).
[CrossRef]

Zheng, J.

J. Zheng, N. Zu, L. Wang, J. Liu, and H. Liang, “Photonic generation of ultrawideband pulse with tunable notch- band behavior,” IEEE Photonics Journal4(3), 657–663 (2012).

Zhou, E.

E. Zhou, X. Xu, K. Lui, and K. K.-Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010).
[CrossRef]

Zu, N.

J. Zheng, N. Zu, L. Wang, J. Liu, and H. Liang, “Photonic generation of ultrawideband pulse with tunable notch- band behavior,” IEEE Photonics Journal4(3), 657–663 (2012).

Electron. Lett.

J. Dong, X. Zhang, Y. Zhang, and D. Huang, “Optical UWB doublet pulse generation using multiple nonlinearities of single SOA,” Electron. Lett.44(18), 1083–1084 (2008).
[CrossRef]

IEEE Microw. Mag.

J. Yao, “Photonics for ultrawideband communications,” IEEE Microw. Mag.10(4), 82–95 (2009).
[CrossRef]

J. Yao, “Photonics for ultrawideband communications,” IEEE Microw. Mag.10(4), 82–95 (2009).
[CrossRef]

IEEE Microw. Wirel. Compon. Lett.

I. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waeforms applicable to ultrawideband communication,” IEEE Microw. Wirel. Compon. Lett.15(4), 226–228 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

F. Zeng and J. Yao, “An approach to ultrawideband pulse generation and distribution over optical fiber,” IEEE Photon. Technol. Lett.18(7), 823–825 (2006).
[CrossRef]

M. D. Manzanedo, J. Mora, and J. Capmany, “Continuously tunable microwave photonic filter with negative coefficients using cross-phase modulation in an SOA-MZ interferometer,” IEEE Photon. Technol. Lett.20(7), 526–528 (2008).
[CrossRef]

E. Zhou, X. Xu, K. Lui, and K. K.-Y. Wong, “A power-efficient ultra-wideband pulse generator based on multiple PM-IM conversions,” IEEE Photon. Technol. Lett.22(14), 1063–1065 (2010).
[CrossRef]

IEEE Photonics Journal

J. Zheng, N. Zu, L. Wang, J. Liu, and H. Liang, “Photonic generation of ultrawideband pulse with tunable notch- band behavior,” IEEE Photonics Journal4(3), 657–663 (2012).

IEEE Trans. Microw. Theory Tech.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech.54(2), 832–846 (2006).
[CrossRef]

S. Sales, W. Xue, J. Mork, and I. Gasulla, “Slow and Fast Light Effects and their Applications to microwave photonics using Semiconductor Optical Amplifiers,” IEEE Trans. Microw. Theory Tech.58(11), 3022–3038 (2010).
[CrossRef]

H.-W. Chen, A. W. Fang, J. D. Peters, Z. Wang, J. Bovington, D. Liang, and J. E. Bowers, “Integrated microwave photonic filter on a hybrid silicon platform,” IEEE Trans. Microw. Theory Tech.58(11), 3213–3219 (2010).
[CrossRef]

J. Lightwave Technol.

Laser & Photon. Rev.

D. Marpaung, C. Roeloffzen, R. Heideman, A. Leinse, S. Sales, and J. Capmany, “Integrated microwave photonics,” Laser & Photon. Rev.7(4), 506–538 (2013).
[CrossRef]

Nat Commun

J. Sancho, J. Bourderionnet, J. Lloret, S. Combrié, I. Gasulla, S. Xavier, S. Sales, P. Colman, G. Lehoucq, D. Dolfi, J. Capmany, and A. De Rossi, “Integrable microwave filter based on a photonic crystal delay line,” Nat Commun3, 1075 (2012).
[CrossRef] [PubMed]

Nat. Photonics

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007).
[CrossRef]

Opt. Express

Rev. Sci. Instrum.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

Other

B. Luo, J. Dong, and X. Zhang, “Photonic generation of UWB doublet pulse based on XPM in an SOA-based NOLM,” Opto-Electronics and Communications Conference, 717–718 (2012).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental layout of an optical generator for high order pulses based on a non-linear interferometric structure and an optical processor unit.

Fig. 2
Fig. 2

Gaussian pulses of the (a) electrical signal with a 12.5 Gb/s bit rate and (b) the corresponding pump signal at the output of the EOM. Generated pulses in the system for a (c) positive pulse at λ1 = 1550.12 nm and a (b) negative pulse at λ3 = 1551.72 nm.

Fig. 3
Fig. 3

Experimental (black) and theoretical(red) waveforms for (a) monocycle pulse, (b) doublet pulse and (c) high-order pulse. Corresponding spectrum (black line) for (d) monocycle, (e) doublet and (f) high-order pulses. FCC mask illustrated with a red line. Theoretical spectral representation is plotted with a blue line. The average factor is 4 for temporal traces.

Fig. 4
Fig. 4

PPM and BPM modulation for the generated UWB pulses. For PPM, original pulses (black line) and delayed pulses (red line) for (a) monocycle, (b) doublet and (c) four-coefficients pulse. For BPM, original pulses (black line) and inverted pulses (red line) for (d) monocycle, (e) doublet and (f) four-coefficients pulses.

Metrics