Abstract

We demonstrate a single-channel 1.92 Tbit/s, 64 QAM coherent optical pulse optical time-division multiplexing (OTDM) transmission by utilizing frequency-domain equalization (FDE). FDE makes it possible to compensate precisely for the waveform distortions caused by hardware imperfections thus greatly improving the error vector magnitude (EVM) of the demodulated 64 QAM signal compared with that obtained with a conventional FIR filter. As a result, a coherent 64 QAM OTDM transmission over 150 km with a bit error rate of below the forward error correction limit of 2x10−3 (requiring 7% overhead) was achieved for the first time.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Winzer, “Beyond 100G ethernet,” IEEE Commun. Mag.48(7), 26–30 (2010).
    [CrossRef]
  2. M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett.36(24), 2027–2029 (2000).
    [CrossRef]
  3. P. Guan, T. Hirano, K. Harako, Y. Tomiyama, T. Hirooka, and M. Nakazawa, “2.56 Tbit/s/ch Polarization-multiplexed DQPSK transmission over 300 km using time-domain optical Fourier transformation,” Opt. Express19(26), B567–B573 (2011).
    [CrossRef] [PubMed]
  4. E. Palushani, C. Schmidt-Langhorst, T. Richter, M. Nolle, R. Ludwig, and C. Schubert, “Transmission of a serial 5.1-Tb/s data signal using 16-QAM and coherent detection,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), Geneva, 2011, We.8.B.5.
    [CrossRef]
  5. T. Richter, C. Schmidt-Langhorst, M. Nolle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-capacity using 16-QAM and coherent detection,” in Proceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2011, PDPA9.
  6. M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, “Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission,” Opt. Express19(26), B574–B580 (2011).
    [CrossRef] [PubMed]
  7. K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett.24(5), 416–418 (2012).
    [CrossRef]
  8. K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), Brussels, 2008, We.2.E.3.
  9. Y. Koizumi, K. Toyoda, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, “512 QAM transmission over 240 km using frequency-domain equalization in a digital coherent receiver,” Opt. Express20(21), 23383–23389 (2012).
    [CrossRef] [PubMed]
  10. D. O. Odeke, K. Kasai, T. Hirooka, M. Yoshida, M. Nakazawa, T. Hara, and S. Oikawa, “A single-channel, 1.6 Tbit/s 32 QAM coherent pulse transmission over 150 km with RZ-CW conversion and FDE technique,” in Proceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2013, OTh4E.4.
  11. K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express3(22), 487–492 (2006).
    [CrossRef]
  12. T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett.32(11), 1515–1517 (2007).
    [CrossRef] [PubMed]
  13. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,”inProceedings of the Optical Fiber Communication Conference (OFC),Anaheim, 2006, OTuF2.
    [CrossRef]
  14. C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Proc. of the Optical Fiber Communication Conf. (OFC), Anaheim, 2005, OTuO3.
    [CrossRef]
  15. K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express4(3), 77–81 (2007).
    [CrossRef]

2012 (2)

K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett.24(5), 416–418 (2012).
[CrossRef]

Y. Koizumi, K. Toyoda, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, “512 QAM transmission over 240 km using frequency-domain equalization in a digital coherent receiver,” Opt. Express20(21), 23383–23389 (2012).
[CrossRef] [PubMed]

2011 (2)

2010 (1)

P. Winzer, “Beyond 100G ethernet,” IEEE Commun. Mag.48(7), 26–30 (2010).
[CrossRef]

2007 (2)

T. Sakamoto, T. Kawanishi, and M. Izutsu, “Asymptotic formalism for ultraflat optical frequency comb generation using a Mach-Zehnder modulator,” Opt. Lett.32(11), 1515–1517 (2007).
[CrossRef] [PubMed]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express4(3), 77–81 (2007).
[CrossRef]

2006 (1)

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express3(22), 487–492 (2006).
[CrossRef]

2000 (1)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett.36(24), 2027–2029 (2000).
[CrossRef]

Abakoumov, D.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,”inProceedings of the Optical Fiber Communication Conference (OFC),Anaheim, 2006, OTuF2.
[CrossRef]

Bartos, A.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,”inProceedings of the Optical Fiber Communication Conference (OFC),Anaheim, 2006, OTuF2.
[CrossRef]

Baxter, G.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,”inProceedings of the Optical Fiber Communication Conference (OFC),Anaheim, 2006, OTuF2.
[CrossRef]

Clarke, I.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,”inProceedings of the Optical Fiber Communication Conference (OFC),Anaheim, 2006, OTuF2.
[CrossRef]

Frisken, S.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,”inProceedings of the Optical Fiber Communication Conference (OFC),Anaheim, 2006, OTuF2.
[CrossRef]

Guan, P.

Harako, K.

Hirano, T.

Hirooka, T.

Hongo, J.

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express4(3), 77–81 (2007).
[CrossRef]

Izutsu, M.

Kasai, K.

K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett.24(5), 416–418 (2012).
[CrossRef]

M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, “Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission,” Opt. Express19(26), B574–B580 (2011).
[CrossRef] [PubMed]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express4(3), 77–81 (2007).
[CrossRef]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express3(22), 487–492 (2006).
[CrossRef]

Kawanishi, T.

Koizumi, Y.

Nakazawa, M.

Y. Koizumi, K. Toyoda, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, “512 QAM transmission over 240 km using frequency-domain equalization in a digital coherent receiver,” Opt. Express20(21), 23383–23389 (2012).
[CrossRef] [PubMed]

K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett.24(5), 416–418 (2012).
[CrossRef]

P. Guan, T. Hirano, K. Harako, Y. Tomiyama, T. Hirooka, and M. Nakazawa, “2.56 Tbit/s/ch Polarization-multiplexed DQPSK transmission over 300 km using time-domain optical Fourier transformation,” Opt. Express19(26), B567–B573 (2011).
[CrossRef] [PubMed]

M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, “Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission,” Opt. Express19(26), B574–B580 (2011).
[CrossRef] [PubMed]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express4(3), 77–81 (2007).
[CrossRef]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express3(22), 487–492 (2006).
[CrossRef]

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett.36(24), 2027–2029 (2000).
[CrossRef]

Omiya, T.

Otuya, D. O.

K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett.24(5), 416–418 (2012).
[CrossRef]

Poole, S.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,”inProceedings of the Optical Fiber Communication Conference (OFC),Anaheim, 2006, OTuF2.
[CrossRef]

Sakamoto, T.

Suzuki, A.

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express3(22), 487–492 (2006).
[CrossRef]

Tamura, K. R.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett.36(24), 2027–2029 (2000).
[CrossRef]

Tomiyama, Y.

Toyoda, K.

Winzer, P.

P. Winzer, “Beyond 100G ethernet,” IEEE Commun. Mag.48(7), 26–30 (2010).
[CrossRef]

Yamamoto, T.

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett.36(24), 2027–2029 (2000).
[CrossRef]

Yoshida, M.

Y. Koizumi, K. Toyoda, T. Omiya, M. Yoshida, T. Hirooka, and M. Nakazawa, “512 QAM transmission over 240 km using frequency-domain equalization in a digital coherent receiver,” Opt. Express20(21), 23383–23389 (2012).
[CrossRef] [PubMed]

K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett.24(5), 416–418 (2012).
[CrossRef]

M. Nakazawa, K. Kasai, M. Yoshida, and T. Hirooka, “Novel RZ-CW conversion scheme for ultra multi-level, high-speed coherent OTDM transmission,” Opt. Express19(26), B574–B580 (2011).
[CrossRef] [PubMed]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express4(3), 77–81 (2007).
[CrossRef]

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express3(22), 487–492 (2006).
[CrossRef]

Zhou, H.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,”inProceedings of the Optical Fiber Communication Conference (OFC),Anaheim, 2006, OTuF2.
[CrossRef]

Electron. Lett. (1)

M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett.36(24), 2027–2029 (2000).
[CrossRef]

IEEE Commun. Mag. (1)

P. Winzer, “Beyond 100G ethernet,” IEEE Commun. Mag.48(7), 26–30 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Kasai, D. O. Otuya, M. Yoshida, T. Hirooka, and M. Nakazawa, “Single-carrier 800-Gb/s 32 RZ/QAM coherent transmission over 225 km employing a novel RZ-CW conversion technique,” IEEE Photon. Technol. Lett.24(5), 416–418 (2012).
[CrossRef]

IEICE Electron. Express (2)

K. Kasai, A. Suzuki, M. Yoshida, and M. Nakazawa, “Performance improvement of an acetylene (C2H2) frequency-stabilized fiber laser,” IEICE Electron. Express3(22), 487–492 (2006).
[CrossRef]

K. Kasai, J. Hongo, M. Yoshida, and M. Nakazawa, “Optical phase-locked loop for coherent transmission over 500 km using heterodyne detection with fiber lasers,” IEICE Electron. Express4(3), 77–81 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (6)

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,”inProceedings of the Optical Fiber Communication Conference (OFC),Anaheim, 2006, OTuF2.
[CrossRef]

C. Boerner, V. Marembert, S. Ferber, C. Schubert, C. Schmidt-Langhorst, R. Ludwig, and H. G. Weber, “320 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator,” in Proc. of the Optical Fiber Communication Conf. (OFC), Anaheim, 2005, OTuO3.
[CrossRef]

K. Ishihara, T. Kobayashi, R. Kudo, Y. Takatori, A. Sano, E. Yamada, H. Masuda, and Y. Miyamoto, “Coherent optical transmission with frequency-domain equalization,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), Brussels, 2008, We.2.E.3.

D. O. Odeke, K. Kasai, T. Hirooka, M. Yoshida, M. Nakazawa, T. Hara, and S. Oikawa, “A single-channel, 1.6 Tbit/s 32 QAM coherent pulse transmission over 150 km with RZ-CW conversion and FDE technique,” in Proceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2013, OTh4E.4.

E. Palushani, C. Schmidt-Langhorst, T. Richter, M. Nolle, R. Ludwig, and C. Schubert, “Transmission of a serial 5.1-Tb/s data signal using 16-QAM and coherent detection,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), Geneva, 2011, We.8.B.5.
[CrossRef]

T. Richter, C. Schmidt-Langhorst, M. Nolle, R. Ludwig, and C. Schubert, “Single wavelength channel 10.2 Tb/s TDM-capacity using 16-QAM and coherent detection,” in Proceedings of the Optical Fiber Communication Conference (OFC), Los Angeles, 2011, PDPA9.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Experimental setup for single-channel 1.92 Tbits/s, 64 QAM coherent optical pulse transmission over 150 km.

Fig. 2
Fig. 2

(a) Optical spectrum and (b) autocorrelation trace of a 10 GHz Gaussian pulse train.

Fig. 3
Fig. 3

(a) Optical spectrum (0.01 nm resolution) and (b) time waveform of 1.92 Tbit/s, 64 QAM coherent pulse data and pilot tone signals.

Fig. 4
Fig. 4

Optimization of launch power in 1.92 Tbit/s, 64 QAM-150 km coherent pulse transmission.

Fig. 5
Fig. 5

Optical spectra of 1.92 Tbit/s, 64 QAM data signal before and after 150 km transmission (2 nm resolution bandwidth).

Fig. 6
Fig. 6

(a) Optical spectrum and (b) autocorrelation trace of 10 GHz control pulse for NOLM.

Fig. 7
Fig. 7

Frequency relationship between optical comb signal at transmitter and modulated LO signal at OPLL circuit.

Fig. 8
Fig. 8

(a) IF spectrum at 700 MHz and (b) its SSB phase noise spectrum under OPLL condition.

Fig. 9
Fig. 9

Computational complexity as the number of real-valued multiplications per symbol as a function of the frequency resolution with FDE and an FIR filter.

Fig. 10
Fig. 10

Back-to-back constellation maps of 10 Gsymbol/s, 64 QAM signal when equalized with (a) FIR filter and (b) FDE.

Fig. 11
Fig. 11

Optical spectra of 10 Gsymbol/s, 64 QAM coherent pulse data signal before and after RZ-CW conversion (0.01nm resolution bandwidth).

Fig. 12
Fig. 12

BER characteristics for (a) one tributary and (b) all the tributaries after a 150 km transmission at a received power of −16 dBm.

Metrics