Abstract

A stable, continuous wave, single frequency fiber amplifier system at 1015 nm with 10 W output power is presented. It is based on a large mode double clad fiber cooled to liquid nitrogen temperature. The amplified light is frequency quadrupled to 254 nm and used for spectroscopy of the 61S → 63P transition in mercury.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
    [CrossRef]
  2. T. R. Gosnell, “Laser cooling of a solid by 65K starting from room temperature,” Opt. Lett.24, 1041–1043 (1999).
    [CrossRef]
  3. L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
    [CrossRef]
  4. P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D65, 251–255 (2011).
    [CrossRef]
  5. G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
    [CrossRef] [PubMed]
  6. F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
    [CrossRef]
  7. J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000).
    [CrossRef]
  8. D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0 → 63P1 transition in Hg,” Phys. Rev. A63, 013402 (2000).
    [CrossRef]
  9. D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett.109, 063901 (2012).
    [CrossRef] [PubMed]
  10. D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
    [CrossRef]
  11. M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-α generation with solid-state lasers,” Opt. Express17, 11274–11280 (2009).
    [CrossRef] [PubMed]
  12. M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett.32, 955–957 (2007).
    [CrossRef] [PubMed]
  13. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, and P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett.30, 459–461 (2005).
    [CrossRef] [PubMed]
  14. E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).
  15. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power,” Opt. Express12, 6088–6092 (2004).
    [CrossRef] [PubMed]
  16. M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013).
    [CrossRef]
  17. M. Hildebrandt, M. Frede, and D. Kracht, “Narrow-linewidth ytterbium-doped fiber amplifier system with 45 nm tuning range and 133 W of output power,” Opt. Lett.32, 2345–2347 (2007).
    [CrossRef] [PubMed]
  18. L. Goldberg, J. P. Koplow, and D. A. V. Kliner, “Highly efficient 4-W Yb-doped fiber amplifier pumped by a broad-stripe laser diode,” Opt. Lett.24, 673–675 (1999).
    [CrossRef]
  19. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngs, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm,” Opt. Express17, 447–454 (2009).
    [CrossRef] [PubMed]
  20. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
    [CrossRef]
  21. A. Seifert, M. Sinther, T. Walther, and E. S. Fry, “Narrow-linewidth, multi-Watt Yb-doped fiber amplifier at 1014.8 nm,” Appl. Opt.45, 7908–7911 (2006).
    [CrossRef] [PubMed]
  22. T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun.273, 256–259 (2007).
    [CrossRef]
  23. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
    [CrossRef]
  24. W. G. Schweitzer, “Hyperfine structure and isotope shifts in the 2537-Å line of mercury by a new interferometric method,” J. Opt. Soc. Am.53, 1055–1071 (1963).
    [CrossRef]
  25. M. G. Zadnik, S. Specht, and F. Begemann, “Revised isotopic composition of terrestrial mercury,” Int. J. Mass Spectrom.89, 103–110 (1989).
    [CrossRef]

2013

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013).
[CrossRef]

2012

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett.109, 063901 (2012).
[CrossRef] [PubMed]

2011

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
[CrossRef]

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D65, 251–255 (2011).
[CrossRef]

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

2010

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

2009

2007

2006

2005

2004

2000

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000).
[CrossRef]

D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0 → 63P1 transition in Hg,” Phys. Rev. A63, 013402 (2000).
[CrossRef]

1999

1997

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

1995

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

1989

M. G. Zadnik, S. Specht, and F. Begemann, “Revised isotopic composition of terrestrial mercury,” Int. J. Mass Spectrom.89, 103–110 (1989).
[CrossRef]

1963

Alegria, C.

Alnis, J.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000).
[CrossRef]

Alvarez-Chavez, J. A.

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Beczkowiak, A.

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

Begemann, F.

M. G. Zadnik, S. Specht, and F. Begemann, “Revised isotopic composition of terrestrial mercury,” Int. J. Mass Spectrom.89, 103–110 (1989).
[CrossRef]

Bigotta, S.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

Bize, S.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
[CrossRef]

Broeng, J.

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Chryssou, C. E.

Codemard, C. A.

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Desurvire, E.

E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

Diehl, T.

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

Dupriez, P.

Feldker, T.

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

Fitzakerley, D.W.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Frede, M.

Fry, E. S.

Gabrielse, G.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Gavrielides, A.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun.273, 256–259 (2007).
[CrossRef]

George, M. C.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Goldberg, L.

Gosnell, T. R.

Grzonka, D.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Gustafsson, U.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Hänsch, T. W.

Harber, D. M.

D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0 → 63P1 transition in Hg,” Phys. Rev. A63, 013402 (2000).
[CrossRef]

Hessels, E. A.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Hickey, L. M. B.

Hildebrandt, M.

Horley, R.

Jeong, Y.

Kalra, R.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Kirchner, M.

Kliner, D. A. V.

Koglbauer, A.

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

Kolbe, D.

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013).
[CrossRef]

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett.109, 063901 (2012).
[CrossRef] [PubMed]

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-α generation with solid-state lasers,” Opt. Express17, 11274–11280 (2009).
[CrossRef] [PubMed]

Kolthammer, W. S.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Koplow, J. P.

Kracht, D.

Le Coq, Y.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
[CrossRef]

Lesanovsky, I.

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

Li, W.

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

Lieto, A. D.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

Lyngs, J. K.

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Markert, F.

Maruyama, H.

McConnell, R.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

McFerran, J. J.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
[CrossRef]

Mejri, S.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
[CrossRef]

Melgaard, S. D.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

Müller, M.

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

Müllers, A.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

Newell, T. C.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun.273, 256–259 (2007).
[CrossRef]

Nilsson, J.

Oelert, W.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Olausson, C. B.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Payne, D.

Payne, D. N.

Peterson, P.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun.273, 256–259 (2007).
[CrossRef]

Richerme, P.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Romalis, M. V.

D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0 → 63P1 transition in Hg,” Phys. Rev. A63, 013402 (2000).
[CrossRef]

Sahu, J.

Sahu, J. K.

Scheid, M.

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett.109, 063901 (2012).
[CrossRef] [PubMed]

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-α generation with solid-state lasers,” Opt. Express17, 11274–11280 (2009).
[CrossRef] [PubMed]

M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett.32, 955–957 (2007).
[CrossRef] [PubMed]

Schmidt-Kaler, F.

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

Schweitzer, W. G.

Sefzick, T.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Seifert, A.

Seletskiy, D. V.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

Sharma, M. P.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun.273, 256–259 (2007).
[CrossRef]

Sheik-Bahae, M.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

Shirakawa, A.

Sinther, M.

Siol, S.

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D65, 251–255 (2011).
[CrossRef]

Soh, D. B. S.

Somesfalean, G.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000).
[CrossRef]

Specht, S.

M. G. Zadnik, S. Specht, and F. Begemann, “Revised isotopic composition of terrestrial mercury,” Int. J. Mass Spectrom.89, 103–110 (1989).
[CrossRef]

Stappel, M.

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013).
[CrossRef]

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

Steinborn, R.

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013).
[CrossRef]

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

Storry, C. H.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Svanberg, S.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000).
[CrossRef]

Tonelli, M.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

Turner, P. W.

Ueda, K.

Villwock, P.

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D65, 251–255 (2011).
[CrossRef]

Walther, T.

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D65, 251–255 (2011).
[CrossRef]

A. Seifert, M. Sinther, T. Walther, and E. S. Fry, “Narrow-linewidth, multi-Watt Yb-doped fiber amplifier at 1014.8 nm,” Appl. Opt.45, 7908–7911 (2006).
[CrossRef] [PubMed]

Walz, J.

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013).
[CrossRef]

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett.109, 063901 (2012).
[CrossRef] [PubMed]

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

M. Scheid, D. Kolbe, F. Markert, T. W. Hänsch, and J. Walz, “Continuous-wave Lyman-α generation with solid-state lasers,” Opt. Express17, 11274–11280 (2009).
[CrossRef] [PubMed]

M. Scheid, F. Markert, J. Walz, J. Wang, M. Kirchner, and T. W. Hänsch, “750 mW continuous-wave solid-state deep ultraviolet laser source at the 253.7 nm transition in mercury,” Opt. Lett.32, 955–957 (2007).
[CrossRef] [PubMed]

Wang, J.

Wanzcyk, L.

Weel, M.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Yi, L.

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
[CrossRef]

Zadnik, M. G.

M. G. Zadnik, S. Specht, and F. Begemann, “Revised isotopic composition of terrestrial mercury,” Int. J. Mass Spectrom.89, 103–110 (1989).
[CrossRef]

Zielinski, M.

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Zoller, P.

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. Alnis, U. Gustafsson, G. Somesfalean, and S. Svanberg, “Sum-frequency generation with a blue diode laser for mercury spectroscopy at 254 nm,” Appl. Phys. Lett.76, 1234–1236 (2000).
[CrossRef]

Can. J. Phys.

D. Kolbe, A. Beczkowiak, T. Diehl, A. Koglbauer, A. Müllers, M. Scheid, M. Stappel, R. Steinborn, and J. Walz, “Continuous Lyman-alpha generation by four-wave mixing in mercury for laser-cooling of antihydrogen,” Can. J. Phys.89, 25–28 (2011).
[CrossRef]

Eur. Phys. J. D

P. Villwock, S. Siol, and T. Walther, “Magneto-optical trapping of neutral mercury,” Eur. Phys. J. D65, 251–255 (2011).
[CrossRef]

IEEE J. Quantum Electron.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, “Ytterbium-doped silica fiber lasers: versatile sources for the 1–1.2 μm region,” IEEE J. Quantum Electron.1, 2–13 (1995).
[CrossRef]

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” IEEE J. Quantum Electron.33, 1049–1056 (1997).
[CrossRef]

Int. J. Mass Spectrom.

M. G. Zadnik, S. Specht, and F. Begemann, “Revised isotopic composition of terrestrial mercury,” Int. J. Mass Spectrom.89, 103–110 (1989).
[CrossRef]

J. Opt. Soc. Am.

Laser Phys.

M. Stappel, R. Steinborn, D. Kolbe, and J. Walz, “A high power, continuous-wave, single-frequency fiber amplifier at 1091 nm and frequency doubling to 545.5 nm,” Laser Phys.23, 075103 (2013).
[CrossRef]

Nat. Phot.

D. V. Seletskiy, S. D. Melgaard, S. Bigotta, A. D. Lieto, M. Tonelli, and M. Sheik-Bahae, “Laser cooling of solids to cryogenic temperatures,” Nat. Phot.4, 161–164 (2010).
[CrossRef]

New. J. Phys.

F. Schmidt-Kaler, T. Feldker, D. Kolbe, J. Walz, M. Müller, P. Zoller, W. Li, and I. Lesanovsky, “Rydberg excitation of trapped cold ions: a detailed case study,” New. J. Phys.13, 075014 (2011).
[CrossRef]

Opt. Commun.

T. C. Newell, P. Peterson, A. Gavrielides, and M. P. Sharma, “Temperature effects on the emission properties of Yb-doped optical fibers,” Opt. Commun.273, 256–259 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

D. M. Harber and M. V. Romalis, “Measurement of the scalar Stark shift of the 61S0 → 63P1 transition in Hg,” Phys. Rev. A63, 013402 (2000).
[CrossRef]

Phys. Rev. Lett.

D. Kolbe, M. Scheid, and J. Walz, “Triple resonant four-wave mixing boosts the yield of continuous coherent vacuum ultraviolet generation,” Phys. Rev. Lett.109, 063901 (2012).
[CrossRef] [PubMed]

L. Yi, S. Mejri, J. J. McFerran, Y. Le Coq, and S. Bize, “Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S0 ↔ 3P0 clock transition,” Phys. Rev. Lett.106, 073005 (2011).
[CrossRef]

G. Gabrielse, R. Kalra, W. S. Kolthammer, R. McConnell, P. Richerme, D. Grzonka, W. Oelert, T. Sefzick, M. Zielinski, D.W. Fitzakerley, M. C. George, E. A. Hessels, C. H. Storry, M. Weel, A. Müllers, and J. Walz, “Trapped antihydrogen in its ground state,” Phys. Rev. Lett.108, 113002 (2012).
[CrossRef] [PubMed]

Other

E. Desurvire, Erbium-doped Fiber Amplifiers: Principles and Applications (Wiley, New York, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Level scheme of the relevant energy levels in Ytterbium. A, B and C mark the absorption transitions which can be identified in the spectrum (b). (b) Measured absorption spectrum of a 10 m low doped double clad Ytterbium fiber (Nufern LMA-YDF-10/400) at room and liquid nitrogen temperature.

Fig. 2
Fig. 2

Experimental setup. (a) 450 mW laser light, provided by a fiber coupled MOPA system at 1015 nm, is amplified in a cryogenic fiber amplifier up to 10 W. The doped fiber is placed in liquid nitrogen and end-pumped by a fiber coupled diode laser. The amplified light is ASE filtered and polarization analyzed. (b) A part of the amplified light is frequency doubled twice to 254 nm. For a mercury spectroscopy the beam is split at a beamsplitter cube and one part is guided through a 2 mm mercury cell to the signal photo diode, while the other part is monitored with a reference photo diode. pmSMF: polarization maintaining single mode fiber, MMF: multi mode fiber, YDF: Ytterbium doped fiber, LN2: liquid nitrogen, λ/2: half-wave plate, λ/4: quarter-wave plate, PBC: polarizing beamsplitter cube, SHG: second harmonic generation, LBO: lithium triborate, BBO: β-barium borate.

Fig. 3
Fig. 3

P- and s-polarized output power vs. pump power. The output power is ASE and pump light filtered. The slope efficiency is 41%. Inset (a) shows the ASE spectrum with and without ASE filtering at maximum pump power. Inset (b) shows the longtime stability at maximum output power.

Fig. 4
Fig. 4

Polarized output power for different seed powers as a function of the incident pump power.

Fig. 5
Fig. 5

(a) Measured (black squares) and theoretical (red solid line) absorption spectrum of the 61S0 → 63P1 transition in mercury vapor for a 2 mm cell at room temperature. (b) Relative strength of the mercury isotopes and their hyperfine components.

Metrics