Abstract

Fiber optical parametric oscillators (FOPOs) are coherent sources that can provide ultra-broadband tunability and high output power levels and are been considered for applications such as medical imaging and sensing. While most recent literature has focused on advancing the performance of these devices experimentally, theoretical studies are still scarce. In contrast, ordinary laser theory is very mature, has been thoroughly studied and is now well understood from the point of view of fundamental physics. In this work, we present a theoretical study of OPOs and in particular we theoretically discuss the process of gain saturation in optical parametric amplifiers. In order to emphasize the significant difference between the two coherent sources, we compare the optimized coupling ratios for maximum output powers of the ordinary laser and the optical parametric oscillator and demonstrate that in contrast to ordinary lasers, highest output powers in optical parametric oscillators are achieved with output coupling ratios close to 1. We confirm experimentally our theoretical studies by building a narrowband fiber optical parametric oscillator at 1450nm with multi-watt output power. We show that the device is robust to intracavity losses and achieve peak power as high as 2.4W.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Kuo, N. Alic, P. Wysocki, and S. Radic, “Simultaneous NIR and SWIR wavelength-swept generation over record 329-nm range using swept-pump fiber optical parametric oscillator,” Optical Fiber Communication Conference (OFC), PDPA9, Mar. (2010).
  2. A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett.35(19), 3198–3200 (2010).
    [CrossRef] [PubMed]
  3. A. Gershikov, J. Lasri, Z. Sacks, and G. Eisenstein, “A tunable fiber parametric oscillator for the 2 μm wavelength range employing an intra-cavity thulium doped fiber active filter,” Opt. Commun.284(21), 5218–5220 (2011).
    [CrossRef]
  4. Y. Nakazaki and S. Yamashita, “Fast and wide tuning range wavelength-swept fiber laser based on dispersion tuning and its application to dynamic FBG sensing,” Opt. Express17(10), 8310–8318 (2009).
    [CrossRef] [PubMed]
  5. Y. Zhou, K. K. Y. Cheung, Q. Li, S. Yang, P. C. Chui, and K. K. Y. Wong, “Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator,” Opt. Lett.35(14), 2427–2429 (2010).
    [CrossRef] [PubMed]
  6. R. W. Boyd, Nonlinear Optics (Academic Press, 3rd edition, 2008), Chap 2.
  7. T. W. Tukker, C. Otto, and J. Greve, “Design, optimization, and characterization of a narrow-bandwidth optical parametric oscillator,” J. Opt. Soc. Am. B16(4), 90–95 (1991).
  8. Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “Output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1.57 μm,” Appl. Phys. B-Lasers O77(5), 505–508 (2003).
    [CrossRef]
  9. A. Salehiomran and M. Rochette, “A nonlinear model for the operation of fiber optical parametric oscillators in the steady state,” IEEE Photon. Technol. Lett.25(10), 981–984 (2013).
    [CrossRef]
  10. Y. Q. Xu, K. F. Mak, and S. G. Murdoch, “Multiwatt level output powers from a tunable fiber optical parametric oscillator,” Opt. Lett.36(11), 1966–1968 (2011).
    [CrossRef] [PubMed]
  11. Y. Q. Xu and S. G. Murdoch, “High conversion efficiency fiber optical parametric oscillator,” Opt. Lett.36(21), 4266–4268 (2011).
    [CrossRef] [PubMed]
  12. Y. Q. Xu and S. Murdoch, “93% conversion efficiency from a fiber optical parametric oscillator,” Conference on Lasers and Electro-Optics (CLEO), CM1J7, Jun. (2012)
    [CrossRef]
  13. M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain specture of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004).
    [CrossRef]
  14. A. E. Siegman, Lasers (University Science Books, 1986), Chap 12.
  15. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Aademic Press, 2007), Chapter 10.
  16. G. Cappellini and S. Trillo, “Third-order three-wave mixing in singlemode fibers: exact solutions and spatial instability effects,” J. Opt. Soc. Am. B8(4), 824–838 (1991).
    [CrossRef]
  17. L. Jin, B. Xu, and S. Yamashita, “Alleviation of additional phase noise in fiber optical parametric amplifier based signal regenerator,” Opt. Express20(24), 27254–27264 (2012).
    [CrossRef] [PubMed]
  18. L. B. Kreuzer, “Single and multi-mode oscillation of the singly resonant optical parametric oscillator,” in Proceedings of the Joint Conference on Lasers and Opto-Electronics (Institution of Electrical and Radio Engineers, 1969), 52–63.
  19. C. R. Philips and M. M. Fejer, “Stability of the single resonant optical parametric oscillator,” J. Opt. Soc. Am. B27(12), 2687–2699 (2010).
    [CrossRef]
  20. C. R. Phillips and M. M. Fejer, “Adiabatic optical parametric oscillators: steady-state and dynamical behavior,” Opt. Express20(3), 2466–2482 (2012).
    [CrossRef] [PubMed]

2013

A. Salehiomran and M. Rochette, “A nonlinear model for the operation of fiber optical parametric oscillators in the steady state,” IEEE Photon. Technol. Lett.25(10), 981–984 (2013).
[CrossRef]

2012

2011

2010

2009

2004

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain specture of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004).
[CrossRef]

2003

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “Output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1.57 μm,” Appl. Phys. B-Lasers O77(5), 505–508 (2003).
[CrossRef]

1991

Cappellini, G.

Chen, S. W.

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “Output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1.57 μm,” Appl. Phys. B-Lasers O77(5), 505–508 (2003).
[CrossRef]

Chen, Y. F.

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “Output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1.57 μm,” Appl. Phys. B-Lasers O77(5), 505–508 (2003).
[CrossRef]

Cheung, K. K. Y.

Chui, P. C.

Eisenstein, G.

A. Gershikov, J. Lasri, Z. Sacks, and G. Eisenstein, “A tunable fiber parametric oscillator for the 2 μm wavelength range employing an intra-cavity thulium doped fiber active filter,” Opt. Commun.284(21), 5218–5220 (2011).
[CrossRef]

A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett.35(19), 3198–3200 (2010).
[CrossRef] [PubMed]

Fejer, M. M.

Gershikov, A.

A. Gershikov, J. Lasri, Z. Sacks, and G. Eisenstein, “A tunable fiber parametric oscillator for the 2 μm wavelength range employing an intra-cavity thulium doped fiber active filter,” Opt. Commun.284(21), 5218–5220 (2011).
[CrossRef]

A. Gershikov, E. Shumakher, A. Willinger, and G. Eisenstein, “Fiber parametric oscillator for the 2 μm wavelength range based on narrowband optical parametric amplification,” Opt. Lett.35(19), 3198–3200 (2010).
[CrossRef] [PubMed]

Greve, J.

Jin, L.

Kazovsky, L. G.

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain specture of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004).
[CrossRef]

Lan, Y. P.

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “Output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1.57 μm,” Appl. Phys. B-Lasers O77(5), 505–508 (2003).
[CrossRef]

Lasri, J.

A. Gershikov, J. Lasri, Z. Sacks, and G. Eisenstein, “A tunable fiber parametric oscillator for the 2 μm wavelength range employing an intra-cavity thulium doped fiber active filter,” Opt. Commun.284(21), 5218–5220 (2011).
[CrossRef]

Li, Q.

Mak, K. F.

Marhic, M. E.

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain specture of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004).
[CrossRef]

Murdoch, S. G.

Nakazaki, Y.

Otto, C.

Philips, C. R.

Phillips, C. R.

Rochette, M.

A. Salehiomran and M. Rochette, “A nonlinear model for the operation of fiber optical parametric oscillators in the steady state,” IEEE Photon. Technol. Lett.25(10), 981–984 (2013).
[CrossRef]

Sacks, Z.

A. Gershikov, J. Lasri, Z. Sacks, and G. Eisenstein, “A tunable fiber parametric oscillator for the 2 μm wavelength range employing an intra-cavity thulium doped fiber active filter,” Opt. Commun.284(21), 5218–5220 (2011).
[CrossRef]

Salehiomran, A.

A. Salehiomran and M. Rochette, “A nonlinear model for the operation of fiber optical parametric oscillators in the steady state,” IEEE Photon. Technol. Lett.25(10), 981–984 (2013).
[CrossRef]

Shumakher, E.

Trillo, S.

Tsai, S. W.

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “Output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1.57 μm,” Appl. Phys. B-Lasers O77(5), 505–508 (2003).
[CrossRef]

Tukker, T. W.

Willinger, A.

Wong, K. K. Y.

Y. Zhou, K. K. Y. Cheung, Q. Li, S. Yang, P. C. Chui, and K. K. Y. Wong, “Fast and wide tuning wavelength-swept source based on dispersion-tuned fiber optical parametric oscillator,” Opt. Lett.35(14), 2427–2429 (2010).
[CrossRef] [PubMed]

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain specture of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004).
[CrossRef]

Xu, B.

Xu, Y. Q.

Yamashita, S.

Yang, S.

Zhou, Y.

Appl. Phys. B-Lasers O

Y. F. Chen, S. W. Chen, S. W. Tsai, and Y. P. Lan, “Output optimization of a high-repetition-rate diode-pumped Q-switched intracavity optical parametric oscillator at 1.57 μm,” Appl. Phys. B-Lasers O77(5), 505–508 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. E. Marhic, K. K. Y. Wong, and L. G. Kazovsky, “Wide-band tuning of the gain specture of one-pump fiber optical parametric amplifiers,” IEEE J. Sel. Top. Quantum Electron.10(5), 1133–1141 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Salehiomran and M. Rochette, “A nonlinear model for the operation of fiber optical parametric oscillators in the steady state,” IEEE Photon. Technol. Lett.25(10), 981–984 (2013).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

A. Gershikov, J. Lasri, Z. Sacks, and G. Eisenstein, “A tunable fiber parametric oscillator for the 2 μm wavelength range employing an intra-cavity thulium doped fiber active filter,” Opt. Commun.284(21), 5218–5220 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Other

B. Kuo, N. Alic, P. Wysocki, and S. Radic, “Simultaneous NIR and SWIR wavelength-swept generation over record 329-nm range using swept-pump fiber optical parametric oscillator,” Optical Fiber Communication Conference (OFC), PDPA9, Mar. (2010).

Y. Q. Xu and S. Murdoch, “93% conversion efficiency from a fiber optical parametric oscillator,” Conference on Lasers and Electro-Optics (CLEO), CM1J7, Jun. (2012)
[CrossRef]

A. E. Siegman, Lasers (University Science Books, 1986), Chap 12.

G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Aademic Press, 2007), Chapter 10.

R. W. Boyd, Nonlinear Optics (Academic Press, 3rd edition, 2008), Chap 2.

L. B. Kreuzer, “Single and multi-mode oscillation of the singly resonant optical parametric oscillator,” in Proceedings of the Joint Conference on Lasers and Opto-Electronics (Institution of Electrical and Radio Engineers, 1969), 52–63.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) The single pass saturation properties of the rare-earth doped fiber. Gunsat = 100 is the unsaturated gain. Pcirc and Psat are the power and saturated power, respectively. (b) Optimized output coupling for the rare-earth doped fibers laser with different internal cavity losses.

Fig. 2
Fig. 2

Evolution of the pump and signal power in the fiber. The full and dashed lines are corresponding to the pump and signal, respectively.

Fig. 3
Fig. 3

The single pass saturation behavior in the fiber working as a FOPA.

Fig. 4
Fig. 4

The gain saturation in the fiber working as a FOPA. As a comparison, Fig. 1(c) is inserted to the figure.

Fig. 5
Fig. 5

Optimized output coupling for the FOPO.

Fig. 6
Fig. 6

Experimental setup. EDFA: erbium doped fiber amplifier. OBPF: optical band pass filter. OSA: optical spectrum analyzer. For the 2 × 2 coupler, the arms corresponding to the arrows with number 100 are the two inputs of the coupler. Here, we take the 90/10 coupler as an example. For the signal (orange arrows) goes through the coupler. 10% power will feedback to the cavity, and 90% will be coupled out of the cavity. For the pump (black arrows): 90% power will be injected into the cavity, and 10% will be coupled out.

Fig. 7
Fig. 7

Loss properties of the bend loss low-pass filters made by wound fibers. (a) Filter 1 and (b) Filter 2, and (c) Filter 3 were made by DSF, DSF and SMF respectively. Filter 1 has a larger wound diameter and a longer length than Filter 2 and Filter 3.

Fig. 8
Fig. 8

Optical spectrum of the FOPO output.

Fig. 9
Fig. 9

The temporal profile of the pump (a) and signal (b) pulses.

Fig. 10
Fig. 10

Experimental (dots) and numerical (lines) results for the output peak power versus the FOPO output coupling.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P sig (ξ)= 1 2 [ 1+α (bc)a sn 2 [± (( 7 /2 )ξ+δ)/g](ac)b (bc) sn 2 [± (( 7 /2 )ξ+δ)/g](ac) ]( P sig (0)+ P pump (0)), where g= 2 [(ac)(bd)] 1/2 , δ= η(0) b d η [f( η )] 1/2 .

Metrics