Abstract

We investigate the spectral response of an upconversion detector theoretically and experimentally, and discuss implications for its use as an infrared spectrometer. Upconversion detection is based on high-conversion-efficiency, sum-frequency generation (SFG). The spectral selectivity of an upconversion spectrometer is determined by the SFG spectral response function. This function changes with varying pump power. Working at maximum internal conversion efficiency is desirable for high sensitivity of the system, but the spectral response function is different at this pump power compared to the response function at low power. We calculate the theoretical spectral response of the upconversion detector as a function of pump power and obtain excellent agreement with upconversion spectra measured in a periodically poled LiNbO3 waveguide.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt.51, 1433–1445 (2004).
  2. C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3waveguides,” Opt. Lett.30, 1725–1727 (2005).
    [CrossRef] [PubMed]
  3. L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep.521, 69–94 (2012).
    [CrossRef]
  4. Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express16, 19557–19561 (2008).
    [CrossRef] [PubMed]
  5. L. Ma, O. Slattery, and X. Tang, “Experimental study of high sensitivity infrared spectrometer with waveguide-based upconversion detector1,” Opt. Express17, 14395–14404 (2009).
    [CrossRef] [PubMed]
  6. M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum.82, 071101 (2011).
    [CrossRef] [PubMed]
  7. A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett.102, 141104 (2013).
    [CrossRef]
  8. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032–3040 (2008).
    [CrossRef] [PubMed]
  9. J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19, 21445–21456 (2011).
    [CrossRef] [PubMed]
  10. G.-L. Shentu, J. S. Pelc, X.-D. Wang, Q.-C. Sun, M.-Y. Zheng, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express21, 13986–13991 (2013).
    [CrossRef] [PubMed]
  11. P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett.38, 1310–1312 (2013).
    [CrossRef] [PubMed]
  12. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), Chap. 6, pp. 67–85.
  13. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28, 2631–2654 (1992).
    [CrossRef]
  14. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
    [CrossRef]
  15. K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett.27, 43–45 (2002).
    [CrossRef]
  16. R. L. Byer, “Optical parametric oscillators,” in Quantum Electronics: A Treatise, vol. I, Nonlinear Optics, Part B, H. Rabin and C. L. Tang, eds. (Academic Press, 1975), pp. 587–702.
  17. J. S. Pelc, P. S. Kuo, O. Slattery, L. Ma, X. Tang, and M. M. Fejer, “Dual-channel, single-photon upconversion detector at 1.3 μ m,” Opt. Express20, 19075–19087 (2012).
    [CrossRef] [PubMed]
  18. P. A. Jansson, Deconvolution: with applications in spectroscopy (Academic Press, 1984).
  19. J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett.35, 2804–2806 (2010).
    [CrossRef] [PubMed]
  20. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μ m-band wavelength conversion based on difference-frequency generation in LiNbO3waveguides with integrated coupling structures,” Opt. Lett.23, 1004–1006 (1998).
    [CrossRef]
  21. R. V. Roussev, “Optical-frequency mixers in periodically poled lithium niobate: materials, modeling and characterization,” Ph.D. thesis, Stanford University (2006).
  22. P. Kumar, “Quantum frequency conversion,” Opt. Lett.15, 1476–1478 (1990).
    [CrossRef] [PubMed]

2013 (3)

2012 (2)

2011 (2)

2010 (1)

2009 (1)

2008 (2)

2005 (1)

2004 (1)

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt.51, 1433–1445 (2004).

2002 (1)

1998 (1)

1992 (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28, 2631–2654 (1992).
[CrossRef]

1990 (1)

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Arbore, M. A.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Bienfang, J. C.

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett.102, 141104 (2013).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Byer, R. L.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28, 2631–2654 (1992).
[CrossRef]

R. L. Byer, “Optical parametric oscillators,” in Quantum Electronics: A Treatise, vol. I, Nonlinear Optics, Part B, H. Rabin and C. L. Tang, eds. (Academic Press, 1975), pp. 587–702.

Chou, M. H.

Diamanti, E.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Eisaman, M. D.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum.82, 071101 (2011).
[CrossRef] [PubMed]

Fan, J.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum.82, 071101 (2011).
[CrossRef] [PubMed]

Fejer, M. M.

G.-L. Shentu, J. S. Pelc, X.-D. Wang, Q.-C. Sun, M.-Y. Zheng, M. M. Fejer, Q. Zhang, and J.-W. Pan, “Ultralow noise up-conversion detector and spectrometer for the telecom band,” Opt. Express21, 13986–13991 (2013).
[CrossRef] [PubMed]

P. S. Kuo, J. S. Pelc, O. Slattery, Y.-S. Kim, M. M. Fejer, and X. Tang, “Reducing noise in single-photon-level frequency conversion,” Opt. Lett.38, 1310–1312 (2013).
[CrossRef] [PubMed]

J. S. Pelc, P. S. Kuo, O. Slattery, L. Ma, X. Tang, and M. M. Fejer, “Dual-channel, single-photon upconversion detector at 1.3 μ m,” Opt. Express20, 19075–19087 (2012).
[CrossRef] [PubMed]

J. S. Pelc, L. Ma, C. R. Phillips, Q. Zhang, C. Langrock, O. Slattery, X. Tang, and M. M. Fejer, “Long-wavelength-pumped upconversion single-photon detector at 1550 nm: performance and noise analysis,” Opt. Express19, 21445–21456 (2011).
[CrossRef] [PubMed]

J. S. Pelc, C. Langrock, Q. Zhang, and M. M. Fejer, “Influence of domain disorder on parametric noise in quasi-phase-matched quantum frequency converters,” Opt. Lett.35, 2804–2806 (2010).
[CrossRef] [PubMed]

Q. Zhang, C. Langrock, M. M. Fejer, and Y. Yamamoto, “Waveguide-based single-pixel up-conversion infrared spectrometer,” Opt. Express16, 19557–19561 (2008).
[CrossRef] [PubMed]

C. Langrock, E. Diamanti, R. V. Roussev, Y. Yamamoto, M. M. Fejer, and H. Takesue, “Highly efficient single-photon detection at communication wavelengths by use of upconversion in reverse-proton-exchanged periodically poled LiNbO3waveguides,” Opt. Lett.30, 1725–1727 (2005).
[CrossRef] [PubMed]

K. R. Parameswaran, J. R. Kurz, R. V. Roussev, and M. M. Fejer, “Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide,” Opt. Lett.27, 43–45 (2002).
[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μ m-band wavelength conversion based on difference-frequency generation in LiNbO3waveguides with integrated coupling structures,” Opt. Lett.23, 1004–1006 (1998).
[CrossRef]

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28, 2631–2654 (1992).
[CrossRef]

Hauden, J.

Jansson, P. A.

P. A. Jansson, Deconvolution: with applications in spectroscopy (Academic Press, 1984).

Jundt, D. H.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28, 2631–2654 (1992).
[CrossRef]

Kim, Y.-S.

Kumar, P.

Kuo, P. S.

Kurz, J. R.

Kwiat, P. G.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt.51, 1433–1445 (2004).

Langrock, C.

Lita, A. E.

Ma, L.

Magel, G. A.

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28, 2631–2654 (1992).
[CrossRef]

Migdall, A.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum.82, 071101 (2011).
[CrossRef] [PubMed]

Migdall, A. L.

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett.102, 141104 (2013).
[CrossRef]

Miller, A. J.

Nam, S. W.

Pan, J.-W.

Parameswaran, K. R.

Pelc, J. S.

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Phillips, C. R.

Polyakov, S. V.

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum.82, 071101 (2011).
[CrossRef] [PubMed]

Restelli, A.

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett.102, 141104 (2013).
[CrossRef]

Roussev, R. V.

Shen, Y. R.

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), Chap. 6, pp. 67–85.

Shentu, G.-L.

Slattery, O.

Sun, Q.-C.

Takesue, H.

Tang, X.

Vandevender, A. P.

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt.51, 1433–1445 (2004).

Wang, X.-D.

Yamamoto, Y.

Zhang, Q.

Zheng, M.-Y.

Appl. Phys. Lett. (1)

A. Restelli, J. C. Bienfang, and A. L. Migdall, “Single-photon detection efficiency up to 50% at 1310 nm with an InGaAs/InP avalanche diode gated at 1.25 GHz,” Appl. Phys. Lett.102, 141104 (2013).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron.28, 2631–2654 (1992).
[CrossRef]

J. Mod. Opt. (1)

A. P. Vandevender and P. G. Kwiat, “High efficiency single photon detection via frequency upconversion,” J. Mod. Opt.51, 1433–1445 (2004).

Opt. Express (6)

Opt. Lett. (6)

Phys. Rep. (1)

L. Ma, O. Slattery, and X. Tang, “Single photon frequency up-conversion and its applications,” Phys. Rep.521, 69–94 (2012).
[CrossRef]

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev.127, 1918–1939 (1962).
[CrossRef]

Rev. Sci. Instrum. (1)

M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, “Invited review article: Single-photon sources and detectors,” Rev. Sci. Instrum.82, 071101 (2011).
[CrossRef] [PubMed]

Other (4)

Y. R. Shen, The Principles of Nonlinear Optics (Wiley, 1984), Chap. 6, pp. 67–85.

R. L. Byer, “Optical parametric oscillators,” in Quantum Electronics: A Treatise, vol. I, Nonlinear Optics, Part B, H. Rabin and C. L. Tang, eds. (Academic Press, 1975), pp. 587–702.

R. V. Roussev, “Optical-frequency mixers in periodically poled lithium niobate: materials, modeling and characterization,” Ph.D. thesis, Stanford University (2006).

P. A. Jansson, Deconvolution: with applications in spectroscopy (Academic Press, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Theoretical SF conversion efficiency (in arbitrary units (a. u.)) and SF tuning curves at pump powers Pp/Pmax = 0.25, 1, and 2. (b) Comparison of SF spectral tuning curves at Pp/Pmax = 0.25 and 1, and a sinc2kL/2) tuning curve. (c) Calculated ratio of side-lobe height to central-peak height and (d) width of central peak (FWHM) for different pumping powers relative to FWHM of sinc2kL/2) function.

Fig. 2
Fig. 2

Experimental setup. Sum frequency mixing of 1305 nm and 1556 nm beams to produce 709.7 nm SF photons is performed in a PPLN waveguide. The output of the waveguide is sent to two prisms at Brewster’s angle that separate out the pump and signal beams. PC, polarization controller; VATT, variable attenuator; LP, linear polarizer; AL, aspheric lens; P, prism; M, mirror; BPF, bandpass filter; Si Det, silicon detector.

Fig. 3
Fig. 3

(a) Measured peak conversion efficiency (red circles) and theoretical fit (black line). (b) Normalized sum-frequency conversion for different pump powers. Curves are labeled by Pp/Pmax and correspond to red circles in (a). (c) Measured and theoretical ratio between side-lobe and central-peak heights. (d) Measured and theoretical full-width half maximum of the central peak.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

d E p d z = i κ p E S F E s * e i Δ k z d E s d z = i κ s E S F E p * e i Δ k z d E S F d z = i κ S F E p E s e i Δ k z ,
η = N S F ( L ) N s ( 0 ) = 1 1 + ( Δ k / 2 Γ ) 2 sin 2 ( Γ L 1 + ( Δ k / 2 Γ ) 2 ) ,
Γ = d eff c 2 ω s ω S F I p n p n s n S F ε 0 c .
η = sin 2 ( Γ L ) = sin 2 ( π 2 P p P max ) .
u i e i ϕ i = n i c ε 0 2 ω i W E i ,
d u p d z = Γ u S F u s sin θ d u s d z = Γ u S F u p sin θ d u S F d z = Γ u p u s sin θ d θ d z = Δ k + Γ cos θ ( u p u s u S F u S F u p u s u s u S F u p ) ,
θ = Δ k z + ϕ S F ϕ p ϕ s
Γ = d eff c 2 ω p ω s ω S F W n p n s n S F ε 0 c .
d u p d ζ = u S F u s sin θ d u s d ζ = u S F u p sin θ d u S F d ζ = u p u s sin θ d θ d ζ = Δ S + cot θ d d ζ [ ln ( u p u s u S F ) ] .
m p = u s 2 + u S F 2 m s = u p 2 + u S F 2 m S F = u p 2 u s 2 .
cos θ = ( C 0 + Δ S u S F 2 / 2 ) / ( u p u s u S F ) ,
d u S F 2 d ζ = ± 2 [ ( u p u s u S F ) 2 ( C 0 + Δ S u S F 2 / 2 ) 2 ] 1 / 2 = ± 2 [ u S F 2 ( m s u S F 2 ) ( m p u S F 2 ) ( C 0 + Δ S u S F 2 / 2 ) 2 ] 1 / 2 .
ζ = ± 1 2 u S F 2 ( 0 ) u S F 2 ( ζ ) d ( u S F 2 ) [ u S F 2 ( m s u S F 2 ) ( m p u S F 2 ) ( C 0 + Δ S u S F 2 / 2 ) 2 ] 1 / 2 .
u S F 2 ( m s u S F 2 ) ( m p u S F 2 ) ( C 0 + Δ S u S F 2 / 2 ) 2 = 0 ,
u S F 2 ( ζ ) = u S F , a 2 + ( u S F , b 2 u S F , a 2 ) sn 2 [ ( u S F , c 2 u S F , a 2 ) 1 / 2 ( ζ + ζ 0 ) , γ ] ,
γ = u S F , b 2 u S F , a 2 u S F , c 2 u S F , a 2 .
m p = u s 2 ( 0 ) m s = u p 2 ( 0 ) C 0 = 0 .
u S F , b 2 = 1 2 ( m p + m s + ( Δ S ) 2 / 4 ( m p + m s + ( Δ S ) 2 / 4 ) 2 4 m s m p ) u S F , c 2 = 1 2 ( m p + m s + ( Δ S ) 2 / 4 + ( m p + m s + ( Δ S ) 2 / 4 ) 2 4 m s m p ) .
u S F , b 2 = m p m s m s + ( Δ S ) 2 / 4 m S F , c 2 = m s + ( Δ S ) 2 / 4 ,
γ = u S F , b 2 / u S F , c 2 = m p m s ( m s + ( Δ S ) 2 / 4 ) 2 0.
u S F 2 ( ζ ) = u p 2 ( 0 ) u s 2 ( 0 ) u p 2 ( 0 ) + ( Δ S ) 2 / 4 sin 2 ( ζ u p 2 ( 0 ) + ( Δ S ) 2 / 4 )
u S F 2 ( ζ = Γ L ) u s 2 ( 0 ) = N S F ( z = L ) N s ( 0 ) = 1 1 + ( Δ k / 2 Γ ) 2 sin 2 ( Γ L 1 + ( Δ k / 2 Γ ) 2 ) .

Metrics