Abstract

A real-time drift correction and calibration method using spectral correlation based on a revolving in-line gas cell for laser-based spectroscopic trace-gas measurements has been developed and evaluated experimentally. This technique is relatively simple to implement in laser spectroscopy systems and assures long-term stability of trace-gas measurements by minimizing the effects of external sources of drift in real-time. Spectroscopic sensitivity sufficient for environmental monitoring and effective drift suppression has been achieved for long-term measurements of CO2 with a quantum cascade laser based spectrometer.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Tittel, D. Richter, and A. Fried, “Mid-Infrared Laser Applications in Spectroscopy,” in Solid-State Mid-Infrared Laser Sources (2003), pp. 458–529.
  2. M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, and D. Lloyd, “Measurement of Trace Gas Fluxes Using Tunable Diode Laser Spectroscopy [and Discussion],” Philos. Trans. R. Soc. London, Ser. A351(1696), 371–382 (1995).
    [CrossRef]
  3. D. R. Bowling, S. D. Sargent, B. D. Tanner, and J. R. Ehleringer, “Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem–atmosphere CO2 exchange,” Agric. For. Meteorol.118(1-2), 1–19 (2003).
    [CrossRef]
  4. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
    [CrossRef]
  5. D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B75(2-3), 343–350 (2002).
    [CrossRef]
  6. H. Schiff, G. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed.20(3), 525–556 (1994).
    [CrossRef]
  7. A. A. Kosterev, F. K. Tittel, R. Köhler, C. Gmachl, F. Capasso, D. L. Sivco, A. Y. Cho, S. Wehe, and M. G. Allen, “Thermoelectrically Cooled Quantum-Cascade-Laser-Based Sensor for the Continuous Monitoring Of Ambient Atmospheric Carbon Monoxide,” Appl. Opt.41(6), 1169–1173 (2002).
    [CrossRef] [PubMed]
  8. A. L. Dunn, S. C. Wofsy, and A. H. Bright, “Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest,” Ecol. Appl.19(2), 495–504 (2009).
    [CrossRef] [PubMed]
  9. C. D. Jones, P. Cox, and C. Huntingford, “Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature,” Tellus B Chem. Phys. Meterol.55(2), 642–648 (2003).
    [CrossRef]
  10. K. Szlavecz, M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, and C. Csuzdi, “Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests,” Biol. Invasions13(5), 1165–1182 (2011).
    [CrossRef]
  11. P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B102(2), 313–329 (2011).
    [CrossRef]
  12. P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B57, 131–139 (1993).
    [CrossRef]
  13. J. A. Silver and A. C. Slanton, “Optical interference fringe reduction in laser absorption experiments,” Appl. Opt.27(10), 1914–1916 (1988).
    [CrossRef] [PubMed]
  14. P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B85(2-3), 207–218 (2006).
    [CrossRef]
  15. M. B. Frish, R. T. Wainner, M. C. Laderer, K. R. Parameswaran, D. M. Sonnenfroh, and M. A. Druy, “Precision and accuracy of miniature tunable diode laser absorption spectrometers,” in Proc. SPIE 8032, 803209 (2011), A. D. Mark, and A. C. Richard, eds. (2011).
  16. D. C. Scott, R. L. Herman, C. R. Webster, R. D. May, G. J. Flesch, and E. J. Moyer, “Airborne Laser Infrared Absorption Spectrometer (Alias-Ii) for In Situ Atmospheric Measurements of N2O, CH4, CO, HCl, and NO2 from Balloon or Remotely Piloted Aircraft Platforms,” Appl. Opt.38(21), 4609–4622 (1999).
    [CrossRef] [PubMed]
  17. C. R. Webster, “Brewster-plate spoiler: a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities,” J. Opt. Soc. Am. B2(9), 1464–1470 (1985).
    [CrossRef]
  18. N. Goldstein, S. Adler-Golden, J. Lee, and F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser,” Appl. Opt.31(18), 3409–3415 (1992).
    [CrossRef] [PubMed]
  19. J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).
  20. E. A. Kozlova and A. C. Manning, “Methodology and calibration for continuous measurements of biogeochemical trace gas and O2 concentrations from a 300-m tall tower in central Siberia,” Atmos. Meas. Tech.2(1), 205–220 (2009).
    [CrossRef]
  21. B. W. M. Moeskops, S. M. Cristescu, and F. J. M. Harren, “Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser,” Opt. Lett.31(6), 823–825 (2006).
    [CrossRef] [PubMed]
  22. C. Roller, K. Namjou, J. D. Jeffers, M. Camp, A. Mock, P. J. McCann, and J. Grego, “Nitric Oxide Breath Testing by Tunable-Diode Laser Absorption Spectroscopy: Application in Monitoring Respiratory Inflammation,” Appl. Opt.41(28), 6018–6029 (2002).
    [CrossRef] [PubMed]
  23. J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011).
    [CrossRef]
  24. K. Sun, L. Tao, D. J. Miller, M. A. Khan, and M. A. Zondlo, “Inline Multi-harmonic Calibration Method for Open-path Atmospheric Ammonia Measurements,” Appl. Phys. B110(2), 213–222 (2013).
    [CrossRef]
  25. C. J. Smith, M. A. Khan, M. A. Zondlo, and G. Wysocki, “In-Line Reference Cell for Real-Time Calibration of Laser Absorption Spectrometers,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012)(2012), p. CW3B.1.
  26. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
    [CrossRef] [PubMed]
  27. H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “How good is the polarization selection rule for intersubband transitions?” Appl. Phys. Lett.72(14), 1682–1684 (1998).
    [CrossRef]
  28. L. S. Rothman, “The HITRAN Database.” http://www.cfa.harvard.edu/hitran/
  29. S. So, A. A. Sani, Z. Lin, F. Tittel, and G. Wysocki, “Demo abstract: Laser-based trace-gas chemical sensors for distributed wireless sensor networks,” in IPSN:ACM/IEEE International Conference on Information Processing in Sensor Networks (2009), pp. 427–428.
  30. C. J. Smith, S. So, L. Xia, S. Pitz, K. Szlavecz, D. Carlson, A. Terzis, and G. Wysocki, “Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring—laboratory and field test,” Appl. Phys. B110(2), 241–248 (2013).
    [CrossRef]
  31. Y. J. Ma, M. Richards, M. Ghanem, Y. Guo, and J. Hassard, “Air pollution monitoring and mining based on sensor Grid in London,” Sensors (Basel Switzerland)8(6), 3601–3623 (2008).
    [CrossRef]

2013 (2)

K. Sun, L. Tao, D. J. Miller, M. A. Khan, and M. A. Zondlo, “Inline Multi-harmonic Calibration Method for Open-path Atmospheric Ammonia Measurements,” Appl. Phys. B110(2), 213–222 (2013).
[CrossRef]

C. J. Smith, S. So, L. Xia, S. Pitz, K. Szlavecz, D. Carlson, A. Terzis, and G. Wysocki, “Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring—laboratory and field test,” Appl. Phys. B110(2), 241–248 (2013).
[CrossRef]

2011 (3)

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011).
[CrossRef]

K. Szlavecz, M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, and C. Csuzdi, “Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests,” Biol. Invasions13(5), 1165–1182 (2011).
[CrossRef]

P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B102(2), 313–329 (2011).
[CrossRef]

2010 (1)

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).

2009 (2)

E. A. Kozlova and A. C. Manning, “Methodology and calibration for continuous measurements of biogeochemical trace gas and O2 concentrations from a 300-m tall tower in central Siberia,” Atmos. Meas. Tech.2(1), 205–220 (2009).
[CrossRef]

A. L. Dunn, S. C. Wofsy, and A. H. Bright, “Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest,” Ecol. Appl.19(2), 495–504 (2009).
[CrossRef] [PubMed]

2008 (2)

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Y. J. Ma, M. Richards, M. Ghanem, Y. Guo, and J. Hassard, “Air pollution monitoring and mining based on sensor Grid in London,” Sensors (Basel Switzerland)8(6), 3601–3623 (2008).
[CrossRef]

2006 (2)

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B85(2-3), 207–218 (2006).
[CrossRef]

B. W. M. Moeskops, S. M. Cristescu, and F. J. M. Harren, “Sub-part-per-billion monitoring of nitric oxide by use of wavelength modulation spectroscopy in combination with a thermoelectrically cooled, continuous-wave quantum cascade laser,” Opt. Lett.31(6), 823–825 (2006).
[CrossRef] [PubMed]

2003 (2)

D. R. Bowling, S. D. Sargent, B. D. Tanner, and J. R. Ehleringer, “Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem–atmosphere CO2 exchange,” Agric. For. Meteorol.118(1-2), 1–19 (2003).
[CrossRef]

C. D. Jones, P. Cox, and C. Huntingford, “Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature,” Tellus B Chem. Phys. Meterol.55(2), 642–648 (2003).
[CrossRef]

2002 (3)

1999 (1)

1998 (1)

H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “How good is the polarization selection rule for intersubband transitions?” Appl. Phys. Lett.72(14), 1682–1684 (1998).
[CrossRef]

1995 (1)

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, and D. Lloyd, “Measurement of Trace Gas Fluxes Using Tunable Diode Laser Spectroscopy [and Discussion],” Philos. Trans. R. Soc. London, Ser. A351(1696), 371–382 (1995).
[CrossRef]

1994 (2)

H. Schiff, G. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed.20(3), 525–556 (1994).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

1993 (1)

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B57, 131–139 (1993).
[CrossRef]

1992 (1)

1988 (1)

1985 (1)

Adler-Golden, S.

Allen, M. G.

Amann, M. C.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011).
[CrossRef]

Bakhirkin, Y.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Bechara, J.

H. Schiff, G. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed.20(3), 525–556 (1994).
[CrossRef]

Bien, F.

Bowling, D. R.

D. R. Bowling, S. D. Sargent, B. D. Tanner, and J. R. Ehleringer, “Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem–atmosphere CO2 exchange,” Agric. For. Meteorol.118(1-2), 1–19 (2003).
[CrossRef]

Bright, A. H.

A. L. Dunn, S. C. Wofsy, and A. H. Bright, “Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest,” Ecol. Appl.19(2), 495–504 (2009).
[CrossRef] [PubMed]

Buchanan, M.

H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “How good is the polarization selection rule for intersubband transitions?” Appl. Phys. Lett.72(14), 1682–1684 (1998).
[CrossRef]

Camp, M.

Capasso, F.

Carlson, D.

C. J. Smith, S. So, L. Xia, S. Pitz, K. Szlavecz, D. Carlson, A. Terzis, and G. Wysocki, “Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring—laboratory and field test,” Appl. Phys. B110(2), 241–248 (2013).
[CrossRef]

Chen, J.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011).
[CrossRef]

Cho, A. Y.

Cox, P.

C. D. Jones, P. Cox, and C. Huntingford, “Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature,” Tellus B Chem. Phys. Meterol.55(2), 642–648 (2003).
[CrossRef]

Cristescu, S. M.

Csuzdi, C.

K. Szlavecz, M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, and C. Csuzdi, “Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests,” Biol. Invasions13(5), 1165–1182 (2011).
[CrossRef]

Curl, R. F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Dunn, A. L.

A. L. Dunn, S. C. Wofsy, and A. H. Bright, “Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest,” Ecol. Appl.19(2), 495–504 (2009).
[CrossRef] [PubMed]

Dyroff, C.

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B85(2-3), 207–218 (2006).
[CrossRef]

Ehleringer, J. R.

D. R. Bowling, S. D. Sargent, B. D. Tanner, and J. R. Ehleringer, “Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem–atmosphere CO2 exchange,” Agric. For. Meteorol.118(1-2), 1–19 (2003).
[CrossRef]

Faist, J.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Filley, T.

K. Szlavecz, M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, and C. Csuzdi, “Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests,” Biol. Invasions13(5), 1165–1182 (2011).
[CrossRef]

Flesch, G. J.

Fraser, M.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Fried, A.

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B85(2-3), 207–218 (2006).
[CrossRef]

Ghanem, M.

Y. J. Ma, M. Richards, M. Ghanem, Y. Guo, and J. Hassard, “Air pollution monitoring and mining based on sensor Grid in London,” Sensors (Basel Switzerland)8(6), 3601–3623 (2008).
[CrossRef]

Gmachl, C.

Goldstein, N.

Grego, J.

Guo, Y.

Y. J. Ma, M. Richards, M. Ghanem, Y. Guo, and J. Hassard, “Air pollution monitoring and mining based on sensor Grid in London,” Sensors (Basel Switzerland)8(6), 3601–3623 (2008).
[CrossRef]

Hangauer, A.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011).
[CrossRef]

Harren, F. J. M.

Hassard, J.

Y. J. Ma, M. Richards, M. Ghanem, Y. Guo, and J. Hassard, “Air pollution monitoring and mining based on sensor Grid in London,” Sensors (Basel Switzerland)8(6), 3601–3623 (2008).
[CrossRef]

Herman, R. L.

Herndon, S.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).

Huntingford, C.

C. D. Jones, P. Cox, and C. Huntingford, “Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature,” Tellus B Chem. Phys. Meterol.55(2), 642–648 (2003).
[CrossRef]

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Jeffers, J. D.

Jones, C. D.

C. D. Jones, P. Cox, and C. Huntingford, “Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature,” Tellus B Chem. Phys. Meterol.55(2), 642–648 (2003).
[CrossRef]

Kebabian, P. L.

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, and D. Lloyd, “Measurement of Trace Gas Fluxes Using Tunable Diode Laser Spectroscopy [and Discussion],” Philos. Trans. R. Soc. London, Ser. A351(1696), 371–382 (1995).
[CrossRef]

Khan, M. A.

K. Sun, L. Tao, D. J. Miller, M. A. Khan, and M. A. Zondlo, “Inline Multi-harmonic Calibration Method for Open-path Atmospheric Ammonia Measurements,” Appl. Phys. B110(2), 213–222 (2013).
[CrossRef]

Köhler, R.

Kosterev, A.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Kosterev, A. A.

Kozlova, E. A.

E. A. Kozlova and A. C. Manning, “Methodology and calibration for continuous measurements of biogeochemical trace gas and O2 concentrations from a 300-m tall tower in central Siberia,” Atmos. Meas. Tech.2(1), 205–220 (2009).
[CrossRef]

Lee, J.

Lewicki, R.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

Lin, Z.

S. So, A. A. Sani, Z. Lin, F. Tittel, and G. Wysocki, “Demo abstract: Laser-based trace-gas chemical sensors for distributed wireless sensor networks,” in IPSN:ACM/IEEE International Conference on Information Processing in Sensor Networks (2009), pp. 427–428.

Liu, H. C.

H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “How good is the polarization selection rule for intersubband transitions?” Appl. Phys. Lett.72(14), 1682–1684 (1998).
[CrossRef]

Lloyd, D.

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, and D. Lloyd, “Measurement of Trace Gas Fluxes Using Tunable Diode Laser Spectroscopy [and Discussion],” Philos. Trans. R. Soc. London, Ser. A351(1696), 371–382 (1995).
[CrossRef]

Ma, Y. J.

Y. J. Ma, M. Richards, M. Ghanem, Y. Guo, and J. Hassard, “Air pollution monitoring and mining based on sensor Grid in London,” Sensors (Basel Switzerland)8(6), 3601–3623 (2008).
[CrossRef]

Mackay, G.

H. Schiff, G. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed.20(3), 525–556 (1994).
[CrossRef]

Manning, A. C.

E. A. Kozlova and A. C. Manning, “Methodology and calibration for continuous measurements of biogeochemical trace gas and O2 concentrations from a 300-m tall tower in central Siberia,” Atmos. Meas. Tech.2(1), 205–220 (2009).
[CrossRef]

May, R. D.

McCann, P. J.

McCormick, M.

K. Szlavecz, M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, and C. Csuzdi, “Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests,” Biol. Invasions13(5), 1165–1182 (2011).
[CrossRef]

McManus, J. B.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B75(2-3), 343–350 (2002).
[CrossRef]

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, and D. Lloyd, “Measurement of Trace Gas Fluxes Using Tunable Diode Laser Spectroscopy [and Discussion],” Philos. Trans. R. Soc. London, Ser. A351(1696), 371–382 (1995).
[CrossRef]

Miller, D. J.

K. Sun, L. Tao, D. J. Miller, M. A. Khan, and M. A. Zondlo, “Inline Multi-harmonic Calibration Method for Open-path Atmospheric Ammonia Measurements,” Appl. Phys. B110(2), 213–222 (2013).
[CrossRef]

Mock, A.

Moeskops, B. W. M.

Morcol, T.

K. Szlavecz, M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, and C. Csuzdi, “Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests,” Biol. Invasions13(5), 1165–1182 (2011).
[CrossRef]

Moyer, E. J.

Mücke, R.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B57, 131–139 (1993).
[CrossRef]

Namjou, K.

Nelson, D. D.

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B75(2-3), 343–350 (2002).
[CrossRef]

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, and D. Lloyd, “Measurement of Trace Gas Fluxes Using Tunable Diode Laser Spectroscopy [and Discussion],” Philos. Trans. R. Soc. London, Ser. A351(1696), 371–382 (1995).
[CrossRef]

Nelson, J. D. D.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).

Pitz, S.

C. J. Smith, S. So, L. Xia, S. Pitz, K. Szlavecz, D. Carlson, A. Terzis, and G. Wysocki, “Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring—laboratory and field test,” Appl. Phys. B110(2), 241–248 (2013).
[CrossRef]

Richards, M.

Y. J. Ma, M. Richards, M. Ghanem, Y. Guo, and J. Hassard, “Air pollution monitoring and mining based on sensor Grid in London,” Sensors (Basel Switzerland)8(6), 3601–3623 (2008).
[CrossRef]

Richter, D.

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B85(2-3), 207–218 (2006).
[CrossRef]

Roller, C.

Sani, A. A.

S. So, A. A. Sani, Z. Lin, F. Tittel, and G. Wysocki, “Demo abstract: Laser-based trace-gas chemical sensors for distributed wireless sensor networks,” in IPSN:ACM/IEEE International Conference on Information Processing in Sensor Networks (2009), pp. 427–428.

Sargent, S. D.

D. R. Bowling, S. D. Sargent, B. D. Tanner, and J. R. Ehleringer, “Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem–atmosphere CO2 exchange,” Agric. For. Meteorol.118(1-2), 1–19 (2003).
[CrossRef]

Saunders, J.

K. Szlavecz, M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, and C. Csuzdi, “Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests,” Biol. Invasions13(5), 1165–1182 (2011).
[CrossRef]

Schiff, H.

H. Schiff, G. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed.20(3), 525–556 (1994).
[CrossRef]

Scott, D. C.

Shorter, J. H.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B75(2-3), 343–350 (2002).
[CrossRef]

Silver, J. A.

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sivco, D. L.

Slanton, A. C.

Slemr, F.

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B57, 131–139 (1993).
[CrossRef]

Smith, C. J.

C. J. Smith, S. So, L. Xia, S. Pitz, K. Szlavecz, D. Carlson, A. Terzis, and G. Wysocki, “Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring—laboratory and field test,” Appl. Phys. B110(2), 241–248 (2013).
[CrossRef]

So, S.

C. J. Smith, S. So, L. Xia, S. Pitz, K. Szlavecz, D. Carlson, A. Terzis, and G. Wysocki, “Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring—laboratory and field test,” Appl. Phys. B110(2), 241–248 (2013).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

S. So, A. A. Sani, Z. Lin, F. Tittel, and G. Wysocki, “Demo abstract: Laser-based trace-gas chemical sensors for distributed wireless sensor networks,” in IPSN:ACM/IEEE International Conference on Information Processing in Sensor Networks (2009), pp. 427–428.

Strzoda, R.

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011).
[CrossRef]

Sun, K.

K. Sun, L. Tao, D. J. Miller, M. A. Khan, and M. A. Zondlo, “Inline Multi-harmonic Calibration Method for Open-path Atmospheric Ammonia Measurements,” Appl. Phys. B110(2), 213–222 (2013).
[CrossRef]

Szlavecz, K.

C. J. Smith, S. So, L. Xia, S. Pitz, K. Szlavecz, D. Carlson, A. Terzis, and G. Wysocki, “Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring—laboratory and field test,” Appl. Phys. B110(2), 241–248 (2013).
[CrossRef]

K. Szlavecz, M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, and C. Csuzdi, “Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests,” Biol. Invasions13(5), 1165–1182 (2011).
[CrossRef]

Tanner, B. D.

D. R. Bowling, S. D. Sargent, B. D. Tanner, and J. R. Ehleringer, “Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem–atmosphere CO2 exchange,” Agric. For. Meteorol.118(1-2), 1–19 (2003).
[CrossRef]

Tao, L.

K. Sun, L. Tao, D. J. Miller, M. A. Khan, and M. A. Zondlo, “Inline Multi-harmonic Calibration Method for Open-path Atmospheric Ammonia Measurements,” Appl. Phys. B110(2), 213–222 (2013).
[CrossRef]

Terzis, A.

C. J. Smith, S. So, L. Xia, S. Pitz, K. Szlavecz, D. Carlson, A. Terzis, and G. Wysocki, “Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring—laboratory and field test,” Appl. Phys. B110(2), 241–248 (2013).
[CrossRef]

Tittel, F.

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

S. So, A. A. Sani, Z. Lin, F. Tittel, and G. Wysocki, “Demo abstract: Laser-based trace-gas chemical sensors for distributed wireless sensor networks,” in IPSN:ACM/IEEE International Conference on Information Processing in Sensor Networks (2009), pp. 427–428.

Tittel, F. K.

Walega, J. G.

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B85(2-3), 207–218 (2006).
[CrossRef]

Wasilewski, Z. R.

H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “How good is the polarization selection rule for intersubband transitions?” Appl. Phys. Lett.72(14), 1682–1684 (1998).
[CrossRef]

Webster, C. R.

Wehe, S.

Wehr, R.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).

Weibring, P.

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B85(2-3), 207–218 (2006).
[CrossRef]

Werle, P.

P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B102(2), 313–329 (2011).
[CrossRef]

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B57, 131–139 (1993).
[CrossRef]

Whigham, D.

K. Szlavecz, M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, and C. Csuzdi, “Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests,” Biol. Invasions13(5), 1165–1182 (2011).
[CrossRef]

Wofsy, S. C.

A. L. Dunn, S. C. Wofsy, and A. H. Bright, “Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest,” Ecol. Appl.19(2), 495–504 (2009).
[CrossRef] [PubMed]

Wood, E.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).

Wysocki, G.

C. J. Smith, S. So, L. Xia, S. Pitz, K. Szlavecz, D. Carlson, A. Terzis, and G. Wysocki, “Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring—laboratory and field test,” Appl. Phys. B110(2), 241–248 (2013).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

S. So, A. A. Sani, Z. Lin, F. Tittel, and G. Wysocki, “Demo abstract: Laser-based trace-gas chemical sensors for distributed wireless sensor networks,” in IPSN:ACM/IEEE International Conference on Information Processing in Sensor Networks (2009), pp. 427–428.

Xia, L.

C. J. Smith, S. So, L. Xia, S. Pitz, K. Szlavecz, D. Carlson, A. Terzis, and G. Wysocki, “Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring—laboratory and field test,” Appl. Phys. B110(2), 241–248 (2013).
[CrossRef]

K. Szlavecz, M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, and C. Csuzdi, “Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests,” Biol. Invasions13(5), 1165–1182 (2011).
[CrossRef]

Zahniser, M. S.

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B75(2-3), 343–350 (2002).
[CrossRef]

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, and D. Lloyd, “Measurement of Trace Gas Fluxes Using Tunable Diode Laser Spectroscopy [and Discussion],” Philos. Trans. R. Soc. London, Ser. A351(1696), 371–382 (1995).
[CrossRef]

Zondlo, M. A.

K. Sun, L. Tao, D. J. Miller, M. A. Khan, and M. A. Zondlo, “Inline Multi-harmonic Calibration Method for Open-path Atmospheric Ammonia Measurements,” Appl. Phys. B110(2), 213–222 (2013).
[CrossRef]

Agric. For. Meteorol. (1)

D. R. Bowling, S. D. Sargent, B. D. Tanner, and J. R. Ehleringer, “Tunable diode laser absorption spectroscopy for stable isotope studies of ecosystem–atmosphere CO2 exchange,” Agric. For. Meteorol.118(1-2), 1–19 (2003).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. B (8)

C. J. Smith, S. So, L. Xia, S. Pitz, K. Szlavecz, D. Carlson, A. Terzis, and G. Wysocki, “Wireless laser spectroscopic sensor node for atmospheric CO2 monitoring—laboratory and field test,” Appl. Phys. B110(2), 241–248 (2013).
[CrossRef]

P. Weibring, D. Richter, A. Fried, J. G. Walega, and C. Dyroff, “Ultra-high-precision mid-IR spectrometer II: system description and spectroscopic performance,” Appl. Phys. B85(2-3), 207–218 (2006).
[CrossRef]

A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B90(2), 165–176 (2008).
[CrossRef]

D. D. Nelson, J. H. Shorter, J. B. McManus, and M. S. Zahniser, “Sub-part-per-billion detection of nitric oxide in air using a thermoelectrically cooled mid-infrared quantum cascade laser spectrometer,” Appl. Phys. B75(2-3), 343–350 (2002).
[CrossRef]

P. Werle, “Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence,” Appl. Phys. B102(2), 313–329 (2011).
[CrossRef]

P. Werle, R. Mücke, and F. Slemr, “The limits of signal averaging in atmospheric trace-gas monitoring by tunable diode-laser absorption spectroscopy (TDLAS),” Appl. Phys. B57, 131–139 (1993).
[CrossRef]

J. Chen, A. Hangauer, R. Strzoda, and M. C. Amann, “VCSEL-based calibration-free carbon monoxide sensor at 2.3 μm with in-line reference cell,” Appl. Phys. B102(2), 381–389 (2011).
[CrossRef]

K. Sun, L. Tao, D. J. Miller, M. A. Khan, and M. A. Zondlo, “Inline Multi-harmonic Calibration Method for Open-path Atmospheric Ammonia Measurements,” Appl. Phys. B110(2), 213–222 (2013).
[CrossRef]

Appl. Phys. Lett. (1)

H. C. Liu, M. Buchanan, and Z. R. Wasilewski, “How good is the polarization selection rule for intersubband transitions?” Appl. Phys. Lett.72(14), 1682–1684 (1998).
[CrossRef]

Atmos. Meas. Tech. (1)

E. A. Kozlova and A. C. Manning, “Methodology and calibration for continuous measurements of biogeochemical trace gas and O2 concentrations from a 300-m tall tower in central Siberia,” Atmos. Meas. Tech.2(1), 205–220 (2009).
[CrossRef]

Biol. Invasions (1)

K. Szlavecz, M. McCormick, L. Xia, J. Saunders, T. Morcol, D. Whigham, T. Filley, and C. Csuzdi, “Ecosystem effects of non-native earthworms in Mid-Atlantic deciduous forests,” Biol. Invasions13(5), 1165–1182 (2011).
[CrossRef]

Ecol. Appl. (1)

A. L. Dunn, S. C. Wofsy, and A. H. Bright, “Landscape heterogeneity, soil climate, and carbon exchange in a boreal black spruce forest,” Ecol. Appl.19(2), 495–504 (2009).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

J. B. McManus, M. S. Zahniser, J. D. D. Nelson, J. H. Shorter, S. Herndon, E. Wood, and R. Wehr, “Application of quantum cascade lasers to high-precision atmospheric trace gas measurements,” Opt. Eng.49(11), 111124 (2010).

Opt. Lett. (1)

Philos. Trans. R. Soc. London, Ser. A (1)

M. S. Zahniser, D. D. Nelson, J. B. McManus, P. L. Kebabian, and D. Lloyd, “Measurement of Trace Gas Fluxes Using Tunable Diode Laser Spectroscopy [and Discussion],” Philos. Trans. R. Soc. London, Ser. A351(1696), 371–382 (1995).
[CrossRef]

Res. Chem. Intermed. (1)

H. Schiff, G. Mackay, and J. Bechara, “The use of tunable diode laser absorption spectroscopy for atmospheric measurements,” Res. Chem. Intermed.20(3), 525–556 (1994).
[CrossRef]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science264(5158), 553–556 (1994).
[CrossRef] [PubMed]

Sensors (Basel Switzerland) (1)

Y. J. Ma, M. Richards, M. Ghanem, Y. Guo, and J. Hassard, “Air pollution monitoring and mining based on sensor Grid in London,” Sensors (Basel Switzerland)8(6), 3601–3623 (2008).
[CrossRef]

Tellus B Chem. Phys. Meterol. (1)

C. D. Jones, P. Cox, and C. Huntingford, “Uncertainty in climate–carbon-cycle projections associated with the sensitivity of soil respiration to temperature,” Tellus B Chem. Phys. Meterol.55(2), 642–648 (2003).
[CrossRef]

Other (5)

F. Tittel, D. Richter, and A. Fried, “Mid-Infrared Laser Applications in Spectroscopy,” in Solid-State Mid-Infrared Laser Sources (2003), pp. 458–529.

L. S. Rothman, “The HITRAN Database.” http://www.cfa.harvard.edu/hitran/

S. So, A. A. Sani, Z. Lin, F. Tittel, and G. Wysocki, “Demo abstract: Laser-based trace-gas chemical sensors for distributed wireless sensor networks,” in IPSN:ACM/IEEE International Conference on Information Processing in Sensor Networks (2009), pp. 427–428.

C. J. Smith, M. A. Khan, M. A. Zondlo, and G. Wysocki, “In-Line Reference Cell for Real-Time Calibration of Laser Absorption Spectrometers,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012)(2012), p. CW3B.1.

M. B. Frish, R. T. Wainner, M. C. Laderer, K. R. Parameswaran, D. M. Sonnenfroh, and M. A. Druy, “Precision and accuracy of miniature tunable diode laser absorption spectrometers,” in Proc. SPIE 8032, 803209 (2011), A. D. Mark, and A. C. Richard, eds. (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) A schematic showing the gas cell construction and its placement on a Newport URB100CC rotary stage. The red dot marks the optical axis of the beam as it passes through the zero-gas sub-cell. (b) A schematic of the experimental layout demonstrating a basic arrangement of the optical setup with the laser beam transmitted through the revolving gas cell.

Fig. 2
Fig. 2

(a) Raw laser scan data collected for a sub-cell containing a zero-gas (background scan shown in black) and for a sub-cell containing a reference gas (reference scan shown in red). (b) The reference gas cell scan is background-corrected to isolate the actual reference gas spectrum. This background-corrected signal can be fitted by a spectral model (red) and the fit residuals are shown in the lower panel. (c) A reference scan from (a) in black fitted by the spectral fitting model (red) assuming polynomial baseline for the QCL L-I curve (the plotted spectrum is baseline-corrected). Optical fringes are evident in the residuals of (c) while they are strongly suppressed in (b).

Fig. 3
Fig. 3

(a) Time series measurements of the raw signals acquired for the sample, zero-gas, and reference sub-cells are shown in the top panel. The background-corrected reference gas concentration data are shown in the bottom panel. (b) Allan deviation calculated using the raw (black) and background-corrected (red) reference signal from (a). The grey line in (b) represents Allan deviation plot generated for white noise for comparison. CO2 concentration in the laboratory air calculated using the background-corrected sample signal absorption peak value is shown in (c).

Fig. 4
Fig. 4

(a) A raw transmission measurement (top) and a background-corrected transmission measurement (bottom) performed for a reference gas sub-cell at an optical frequency away from the CO2 absorption line are showed as time series. (b) Allan plots produced from the time series in (a) . The grey line in (b) represents white noise trend for comparison.

Fig. 5
Fig. 5

Allan deviation calculations comparing the effect of increased sampling rate. Measurements with higher sampling rate marked as “many avgs” are performed using a single spectral point both on the absorption line peak (marked as “peak”) and away from the target transition (marked as “wing”). The same data were analyzed using a spectral fitting and the corresponding peak absorption fluctuations of the scanned absorption line profile are shown as “Fit, many avgs”. Allan plots for background-corrected measurements from Figs. 3(b) and 4(b) are shown for comparison (labeled as “few avgs”).

Fig. 6
Fig. 6

(a) Spectral scans of background-corrected reference and sample spectra acquired at the beginning and the end of a long-term measurement. (b) A scatter plot of a Tsample,c(Tref,c) for one set of spectral scans collected during one revolution of the cell is shown in black. The same plot after applying transmission-correction to both the reference and the sample spectrum showing effectively msample/ref × Tsample,c(TR) (in blue). The grey line, which indicates perfect 1:1 correlation with a reference spectrum of 383.9 ppmv CO2 in air is shown for comparison.

Fig. 7
Fig. 7

(a) Long-term corrected reference and sample peak transmission time-series measurements are shown in the top panel. Lower panel shows concentration time series after calibration using three different calibration methods. (b) Allan deviation plots calculated for sample concentration data series shown in (a). (At higher integration times, the elevated Allan deviation values after drift reduction are related to measurement of actual variations in the laboratory CO2 level.)

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I zero (ν)= T zero F(ν) I 0 e α b (ν) L b
I ref (ν)= T ref F(ν) I 0 e ( α b (ν) L b + α ref (ν) L a )
I sample (ν)= T sample F(ν) I 0 e ( α b (ν) L b + α sample (ν) L a )
T ref,c (ν)= I ref (ν) I zero (ν) = T ref T zero e α ref (ν) L a
T sample,c (ν)= I sample (ν) I zero (ν) = T sample T zero e α sample (ν) L a
T R ( t n )= T ref,c ( t n ) B sim B meas
[C O 2 ] sample =m× [C O 2 ] ref
[C O 2 ] sample = 1 T sample,c ( t npeak ) 1 T ref,c ( t npeak ) × [C O 2 ] ref
T sample,c (ν)= I sample (ν) I zero (ν) = T sample T zero e [ α sample (ν) L a +γ α b (ν) L b ]
[C O 2 ] samplefit = [C O 2 ] sample +Δ
m meas = [C O 2 ] sample +Δ [C O 2 ] ref +Δ
m meas [C O 2 ] sample [C O 2 ] ref + [C O 2 ] ref [C O 2 ] sample [C O 2 ] ref 2 Δ
[C O 2 ] samplecorr = [C O 2 ] sample + [C O 2 ] ref [C O 2 ] sample [C O 2 ] ref Δ

Metrics