Abstract

Nanosecond single and multiple pulse laser damage studies on HfO2/SiO2 high-reflective coatings were performed at 1064 nm. The evolution of LIDT and 100% damage probability threshold under multiple irradiations revealed that fatigue effects were affected by both laser fluence and shot numbers. And the damage probability curves exhibiting different behaviors confirmed experimentally that this fatigue effect of the dielectric coatings was due to material modification rather than statistical effects. By using a model assuming Gaussian distribution of defect threshold, the fitting results of LID probability curves indicated the turning point appeared in the damage probability curves under large shot number irradiations was just the representation of the existence of newly created defects. The thresholds of these newly created defects were exponential decrease with irradiated shot numbers. Besides, a new kind of damage morphologies under multiple shot irradiations were characterized to further expose the fatigue effect caused by cumulative laser-induced material modifications.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Gallais, J. Y. Natoli, C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 10(25), 1465–1474 (2002).
    [CrossRef] [PubMed]
  2. K. R. Manes, H. G. Ahlstrom, R. A. Haas, J. F. Holzrichter, “Light-plasma interaction studies with high-power glass laser,” J. Opt. Soc. Am. 67(6), 717–726 (1977).
    [CrossRef]
  3. A. E. Chmel, “Cumulative effect in laser-induced damage of optical glasses: a review,” Glass Phys. Chem. 26, 49–58 (2000).
  4. A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3), 175–190 (1997).
    [CrossRef]
  5. F. R. Wagner, A. Hildenbrand, J. Y. Natoli, M. Commandré, “Multiple pulse nanosecond laser induced damage study in LiB3O5 crystals,” Opt. Express 18(26), 26791–26798 (2010).
    [CrossRef] [PubMed]
  6. F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandre, J. Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
    [CrossRef]
  7. F. R. Wagner, C. Gouldieff, J. Y. Natoli, “Contrasted material responses to nanosecond multiple-pulse laser damage: from statistical behavior to material modification,” Opt. Lett. 38(11), 1869–1871 (2013).
    [CrossRef] [PubMed]
  8. F. R. Wagner, G. Duchateau, A. Hildenbrand, J.-Y. Natoli, M. Commandré, “Model for nanosecond laser induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99(23), 231111 (2011).
    [CrossRef]
  9. F. Y. Génin, C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
    [CrossRef]
  10. F. Y. Génin, C. J. Stolz, M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
    [CrossRef]
  11. X. F. Liu, D. W. Li, Y. A. Zhao, X. Li, “Further investigation of the characteristics of nodular defects,” Appl. Opt. 49(10), 1774–1779 (2010).
    [CrossRef] [PubMed]
  12. J. Y. Natoli, B. Bertussi, M. Commandré, “Effect of multiple laser irradiations on silica at 1064 and 355 nm,” Opt. Lett. 30(11), 1315–1317 (2005).
    [CrossRef] [PubMed]
  13. L. A. Emmert, M. Mero, W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
    [CrossRef]
  14. M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
    [CrossRef]
  15. H. Krol, L. Gallais, C. Grezes-Besset, J. Y. Natoli, M. Commandre, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
    [CrossRef]
  16. J. Capoulade, L. Gallais, J. Y. Natoli, M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47(29), 5272–5280 (2008).
    [CrossRef] [PubMed]
  17. W. W. Liu, C. Y. Wei, S. L. Chen, Z. Fang, K. Yi, J. D. Shao, “Statistical study of single and multiple pulse laser-induced damages of HfO2/SiO2 AR coatings at 1064nm,” Opt. Commun. 301–301, 12–18 (2013).
  18. Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284(2), 625–629 (2011).
    [CrossRef]
  19. S. Papernov, A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
    [CrossRef]

2013 (2)

W. W. Liu, C. Y. Wei, S. L. Chen, Z. Fang, K. Yi, J. D. Shao, “Statistical study of single and multiple pulse laser-induced damages of HfO2/SiO2 AR coatings at 1064nm,” Opt. Commun. 301–301, 12–18 (2013).

F. R. Wagner, C. Gouldieff, J. Y. Natoli, “Contrasted material responses to nanosecond multiple-pulse laser damage: from statistical behavior to material modification,” Opt. Lett. 38(11), 1869–1871 (2013).
[CrossRef] [PubMed]

2012 (1)

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandre, J. Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[CrossRef]

2011 (2)

F. R. Wagner, G. Duchateau, A. Hildenbrand, J.-Y. Natoli, M. Commandré, “Model for nanosecond laser induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99(23), 231111 (2011).
[CrossRef]

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284(2), 625–629 (2011).
[CrossRef]

2010 (3)

2008 (1)

2005 (4)

M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

H. Krol, L. Gallais, C. Grezes-Besset, J. Y. Natoli, M. Commandre, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[CrossRef]

J. Y. Natoli, B. Bertussi, M. Commandré, “Effect of multiple laser irradiations on silica at 1064 and 355 nm,” Opt. Lett. 30(11), 1315–1317 (2005).
[CrossRef] [PubMed]

S. Papernov, A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
[CrossRef]

2002 (1)

2000 (1)

A. E. Chmel, “Cumulative effect in laser-induced damage of optical glasses: a review,” Glass Phys. Chem. 26, 49–58 (2000).

1997 (2)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3), 175–190 (1997).
[CrossRef]

F. Y. Génin, C. J. Stolz, M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

1996 (1)

F. Y. Génin, C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

1977 (1)

Ahlstrom, H. G.

Akhouayri, H.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandre, J. Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[CrossRef]

Amra, C.

Bertussi, B.

Capoulade, J.

Chen, S. L.

W. W. Liu, C. Y. Wei, S. L. Chen, Z. Fang, K. Yi, J. D. Shao, “Statistical study of single and multiple pulse laser-induced damages of HfO2/SiO2 AR coatings at 1064nm,” Opt. Commun. 301–301, 12–18 (2013).

Chmel, A. E.

A. E. Chmel, “Cumulative effect in laser-induced damage of optical glasses: a review,” Glass Phys. Chem. 26, 49–58 (2000).

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3), 175–190 (1997).
[CrossRef]

Commandre, M.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandre, J. Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[CrossRef]

H. Krol, L. Gallais, C. Grezes-Besset, J. Y. Natoli, M. Commandre, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[CrossRef]

Commandré, M.

Duchateau, G.

F. R. Wagner, G. Duchateau, A. Hildenbrand, J.-Y. Natoli, M. Commandré, “Model for nanosecond laser induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99(23), 231111 (2011).
[CrossRef]

Emmert, L. A.

L. A. Emmert, M. Mero, W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[CrossRef]

Fang, Z.

W. W. Liu, C. Y. Wei, S. L. Chen, Z. Fang, K. Yi, J. D. Shao, “Statistical study of single and multiple pulse laser-induced damages of HfO2/SiO2 AR coatings at 1064nm,” Opt. Commun. 301–301, 12–18 (2013).

Gallais, L.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandre, J. Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[CrossRef]

J. Capoulade, L. Gallais, J. Y. Natoli, M. Commandré, “Multiscale analysis of the laser-induced damage threshold in optical coatings,” Appl. Opt. 47(29), 5272–5280 (2008).
[CrossRef] [PubMed]

H. Krol, L. Gallais, C. Grezes-Besset, J. Y. Natoli, M. Commandre, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[CrossRef]

L. Gallais, J. Y. Natoli, C. Amra, “Statistical study of single and multiple pulse laser-induced damage in glasses,” Opt. Express 10(25), 1465–1474 (2002).
[CrossRef] [PubMed]

Génin, F. Y.

F. Y. Génin, C. J. Stolz, M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

F. Y. Génin, C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

Gouldieff, C.

F. R. Wagner, C. Gouldieff, J. Y. Natoli, “Contrasted material responses to nanosecond multiple-pulse laser damage: from statistical behavior to material modification,” Opt. Lett. 38(11), 1869–1871 (2013).
[CrossRef] [PubMed]

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandre, J. Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[CrossRef]

Grezes-Besset, C.

H. Krol, L. Gallais, C. Grezes-Besset, J. Y. Natoli, M. Commandre, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[CrossRef]

Haas, R. A.

He, H. B.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284(2), 625–629 (2011).
[CrossRef]

Hildenbrand, A.

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandre, J. Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[CrossRef]

F. R. Wagner, G. Duchateau, A. Hildenbrand, J.-Y. Natoli, M. Commandré, “Model for nanosecond laser induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99(23), 231111 (2011).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J. Y. Natoli, M. Commandré, “Multiple pulse nanosecond laser induced damage study in LiB3O5 crystals,” Opt. Express 18(26), 26791–26798 (2010).
[CrossRef] [PubMed]

Holzrichter, J. F.

Kozlowski, M. R.

F. Y. Génin, C. J. Stolz, M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

Krol, H.

H. Krol, L. Gallais, C. Grezes-Besset, J. Y. Natoli, M. Commandre, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[CrossRef]

Li, D. W.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284(2), 625–629 (2011).
[CrossRef]

X. F. Liu, D. W. Li, Y. A. Zhao, X. Li, “Further investigation of the characteristics of nodular defects,” Appl. Opt. 49(10), 1774–1779 (2010).
[CrossRef] [PubMed]

Li, X.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284(2), 625–629 (2011).
[CrossRef]

X. F. Liu, D. W. Li, Y. A. Zhao, X. Li, “Further investigation of the characteristics of nodular defects,” Appl. Opt. 49(10), 1774–1779 (2010).
[CrossRef] [PubMed]

Liu, J.

M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

Liu, W. W.

W. W. Liu, C. Y. Wei, S. L. Chen, Z. Fang, K. Yi, J. D. Shao, “Statistical study of single and multiple pulse laser-induced damages of HfO2/SiO2 AR coatings at 1064nm,” Opt. Commun. 301–301, 12–18 (2013).

Liu, X. F.

Manes, K. R.

Mero, M.

L. A. Emmert, M. Mero, W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

Natoli, J. Y.

Natoli, J.-Y.

F. R. Wagner, G. Duchateau, A. Hildenbrand, J.-Y. Natoli, M. Commandré, “Model for nanosecond laser induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99(23), 231111 (2011).
[CrossRef]

Papernov, S.

S. Papernov, A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
[CrossRef]

Ristau, D.

M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

Rudolph, W.

L. A. Emmert, M. Mero, W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[CrossRef]

M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

Schmid, A. W.

S. Papernov, A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
[CrossRef]

Shan, Y. G.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284(2), 625–629 (2011).
[CrossRef]

Shao, J. D.

W. W. Liu, C. Y. Wei, S. L. Chen, Z. Fang, K. Yi, J. D. Shao, “Statistical study of single and multiple pulse laser-induced damages of HfO2/SiO2 AR coatings at 1064nm,” Opt. Commun. 301–301, 12–18 (2013).

Starke, K.

M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

Stolz, C. J.

F. Y. Génin, C. J. Stolz, M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

F. Y. Génin, C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

Wagner, F. R.

F. R. Wagner, C. Gouldieff, J. Y. Natoli, “Contrasted material responses to nanosecond multiple-pulse laser damage: from statistical behavior to material modification,” Opt. Lett. 38(11), 1869–1871 (2013).
[CrossRef] [PubMed]

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandre, J. Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[CrossRef]

F. R. Wagner, G. Duchateau, A. Hildenbrand, J.-Y. Natoli, M. Commandré, “Model for nanosecond laser induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99(23), 231111 (2011).
[CrossRef]

F. R. Wagner, A. Hildenbrand, J. Y. Natoli, M. Commandré, “Multiple pulse nanosecond laser induced damage study in LiB3O5 crystals,” Opt. Express 18(26), 26791–26798 (2010).
[CrossRef] [PubMed]

Wang, Y.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284(2), 625–629 (2011).
[CrossRef]

Wei, C. Y.

W. W. Liu, C. Y. Wei, S. L. Chen, Z. Fang, K. Yi, J. D. Shao, “Statistical study of single and multiple pulse laser-induced damages of HfO2/SiO2 AR coatings at 1064nm,” Opt. Commun. 301–301, 12–18 (2013).

Yi, K.

W. W. Liu, C. Y. Wei, S. L. Chen, Z. Fang, K. Yi, J. D. Shao, “Statistical study of single and multiple pulse laser-induced damages of HfO2/SiO2 AR coatings at 1064nm,” Opt. Commun. 301–301, 12–18 (2013).

Zhao, Y. A.

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284(2), 625–629 (2011).
[CrossRef]

X. F. Liu, D. W. Li, Y. A. Zhao, X. Li, “Further investigation of the characteristics of nodular defects,” Appl. Opt. 49(10), 1774–1779 (2010).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

F. R. Wagner, G. Duchateau, A. Hildenbrand, J.-Y. Natoli, M. Commandré, “Model for nanosecond laser induced damage in potassium titanyl phosphate crystals,” Appl. Phys. Lett. 99(23), 231111 (2011).
[CrossRef]

Glass Phys. Chem. (1)

A. E. Chmel, “Cumulative effect in laser-induced damage of optical glasses: a review,” Glass Phys. Chem. 26, 49–58 (2000).

J. Appl. Phys. (2)

L. A. Emmert, M. Mero, W. Rudolph, “Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses,” J. Appl. Phys. 108(4), 043523 (2010).
[CrossRef]

S. Papernov, A. W. Schmid, “Two mechanisms of crater formation in ultraviolet-pulsed-laser irradiated SiO2 thin films with artificial defects,” J. Appl. Phys. 97(11), 114906 (2005).
[CrossRef]

J. Opt. Soc. Am. (1)

Mater. Sci. Eng. B (1)

A. E. Chmel, “Fatigue laser-induced damage in transparent materials,” Mater. Sci. Eng. B 49(3), 175–190 (1997).
[CrossRef]

Opt. Commun. (2)

H. Krol, L. Gallais, C. Grezes-Besset, J. Y. Natoli, M. Commandre, “Investigation of nanoprecursors threshold distribution in laser-damage testing,” Opt. Commun. 256(1-3), 184–189 (2005).
[CrossRef]

Y. G. Shan, H. B. He, Y. Wang, X. Li, D. W. Li, Y. A. Zhao, “Electrical field enhancement and laser damage growth in high-reflective coatings at 1064 nm,” Opt. Commun. 284(2), 625–629 (2011).
[CrossRef]

Opt. Eng. (1)

F. R. Wagner, A. Hildenbrand, H. Akhouayri, C. Gouldieff, L. Gallais, M. Commandre, J. Y. Natoli, “Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism,” Opt. Eng. 51(12), 121806 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

M. Mero, J. Liu, W. Rudolph, D. Ristau, K. Starke, “Scaling laws of femtosecond laser pulse induced breakdown in oxide films,” Phys. Rev. B 71(11), 115109 (2005).
[CrossRef]

Proc. SPIE (2)

F. Y. Génin, C. J. Stolz, “Morphologies of laser-induced damage in hafnia-silica multilayer mirror and polarizer coatings,” Proc. SPIE 2870, 439–448 (1996).
[CrossRef]

F. Y. Génin, C. J. Stolz, M. R. Kozlowski, “Growth of laser-induced damage during repetitive illumination of HfO2/SiO2 multilayer mirror and polarizer coatings,” Proc. SPIE 2966, 273–282 (1997).
[CrossRef]

Statistical study of single and multiple pulse laser-induced damages of HfO2/SiO2 AR coatings at 1064nm (1)

W. W. Liu, C. Y. Wei, S. L. Chen, Z. Fang, K. Yi, J. D. Shao, “Statistical study of single and multiple pulse laser-induced damages of HfO2/SiO2 AR coatings at 1064nm,” Opt. Commun. 301–301, 12–18 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup for LIDT tests of films under single- and multi-shot irradiation.

Fig. 2
Fig. 2

(a) S-on-1 probability curves of 1064nm HR coatings, (b) and (c) are the evolution of LIDT and100% damage probability threshold versus shot number.

Fig. 3
Fig. 3

(a)-(b) are the probability curves for S = 1, 10 specifically.

Fig. 4
Fig. 4

(a)-(c) are the probability curves for S = 60, 200, 1000 specifically.

Fig. 5
Fig. 5

The evolution of the turning point versus shot number.

Fig. 6
Fig. 6

Damage morphologies for fluence (a) 62 J/cm2 (b) 206 J/cm2 at shot number N = 1 tested by optical microscopy.

Fig. 7
Fig. 7

SEM micrographs of the damage sites shown in Fig. 6.

Fig. 8
Fig. 8

For N = 1, the AFM section analysis of the central molten pits of damages at (a) 62J/cm2 (b) 206J/cm2.

Fig. 9
Fig. 9

Damage morphologies for (a) 25 J/cm2, N = 1000 (b) 87J/cm2, N = 300 (c) 147J/cm2, N = 10 tested by optical microscopy.

Fig. 10
Fig. 10

(a)Damage morphologies and (b)surface profiler of the damage site at fluence 74.5 J/cm2 for shot number N = 100.

Fig. 11
Fig. 11

For N = 300, cross sections of the central molten pits of damages at fluence of 87J/cm2.

Tables (1)

Tables Icon

Table1 Information of the defects under different shot numbers

Metrics