Abstract

We use a drop-port geometry to characterize frequency combs generated from silicon nitride on-chip microresonators in the normal group velocity regime. In sharp contrast with the traditional transmission geometry, we observe smooth output spectra with comparable powers in the pump and adjacent comb lines. The power transfer into the comb may be explained to a large extent by the coupling parameters characterizing the linear operation of the resonances studied. Furthermore, comparison of thru- and drop-port spectra shows that much of the ASE noise is filtered out by transmission to the drop-port. Autocorrelation measurements are performed on the drop-port output, without the need to filter out or suppress the strong pump line as is necessary in thru-port experiments. Passively mode-locked pulses with low background are observed in a normal dispersion microcavity.

© 2013 Optical Society of America

Full Article  |  PDF Article

Errata

Pei-Hsun Wang, Yi Xuan, Li Fan, Leo Tom Varghese, Jian Wang, Yang Liu, Xiaoxiao Xue, Daniel E. Leaird, Minghao Qi, and Andrew M. Weiner, "Drop-port study of microresonator frequency combs: power transfer, spectra and time-domain characterization: erratum," Opt. Express 22, 12148-12148 (2014)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-10-12148

References

  • View by:
  • |
  • |
  • |

  1. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
    [CrossRef] [PubMed]
  2. I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett.34(7), 878–880 (2009).
    [CrossRef] [PubMed]
  3. D. V. Strekalov and N. Yu, “Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump,” Phys. Rev. A79(4), 041805 (2009).
    [CrossRef]
  4. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
    [CrossRef]
  5. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
    [CrossRef]
  6. Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A82(3), 033801 (2010).
    [CrossRef]
  7. W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator,” Opt. Lett.36(12), 2290–2292 (2011).
    [CrossRef] [PubMed]
  8. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
    [CrossRef] [PubMed]
  9. F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
    [CrossRef]
  10. S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84(5), 053833 (2011).
    [CrossRef]
  11. I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express20(6), 6604–6609 (2012).
    [CrossRef] [PubMed]
  12. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6(7), 480–487 (2012).
    [CrossRef]
  13. F. Ferdous, H. Miao, P.-H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
    [CrossRef] [PubMed]
  14. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” arXiv: 1211.0733v3 (2013).
  15. K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013).
    [CrossRef] [PubMed]
  16. A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. Dudley, C. Menyuk, and Y. Chembo, “Azimuthal turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery mode resonators,” IEEE Photon. J.5(4), 6100409 (2013).
    [CrossRef]
  17. W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively mode-locked Raman laser,” Phys. Rev. Lett.105(14), 143903 (2010).
    [CrossRef] [PubMed]
  18. T. Barwicz, M. A. Popović, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express12(7), 1437–1442 (2004).
    [CrossRef] [PubMed]
  19. T. Barwicz, M. A. Popović, M. R. Watts, P. T. Rakich, E. P. Ippen, and H. I. Smith, “Fabrication of add-drop filters based on frequency-matched microring resonators,” J. Lightwave Technol.24(5), 2207–2218 (2006).
    [CrossRef]
  20. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
    [CrossRef]
  21. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
    [CrossRef]
  22. Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A87(5), 053852 (2013).
    [CrossRef]
  23. A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36(15), 2845–2847 (2011).
    [CrossRef] [PubMed]
  24. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun3, 765 (2012).
    [CrossRef] [PubMed]
  25. A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express20(24), 27355–27362 (2012).
    [CrossRef] [PubMed]
  26. A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37(1), 43–45 (2012).
    [CrossRef] [PubMed]
  27. A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr frequency comb generation in overmoded resonators,” Opt. Express20(24), 27290–27298 (2012).
    [CrossRef] [PubMed]
  28. J. Čtyroký, I. Richter, and M. Šinor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron.38(9–11), 781–797 (2010).
  29. B. E. Little, J. P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett.22(1), 4–6 (1997).
    [CrossRef] [PubMed]
  30. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001).
    [CrossRef] [PubMed]
  31. P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
    [CrossRef]
  32. T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12(20), 4742–4750 (2004).
    [CrossRef] [PubMed]
  33. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express15(17), 10553–10561 (2007).
    [CrossRef] [PubMed]
  34. M. Ebrahimzadeh, G. A. Turnbull, T. J. Edwards, D. J. M. Stothard, I. D. Lindsay, and M. H. Dunn, “Intracavity continuous-wave singly resonant optical parametric oscillators,” J. Opt. Soc. Am. B16(9), 1499–1511 (1999).
    [CrossRef]
  35. F. G. Colville, M. H. Dunn, and M. Ebrahimzadeh, “Continuous-wave, singly resonant, intracavity parametric oscillator,” Opt. Lett.22(2), 75–77 (1997).
    [CrossRef] [PubMed]

2013

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A87(5), 053852 (2013).
[CrossRef]

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. Dudley, C. Menyuk, and Y. Chembo, “Azimuthal turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery mode resonators,” IEEE Photon. J.5(4), 6100409 (2013).
[CrossRef]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013).
[CrossRef] [PubMed]

2012

A. B. Matsko, A. A. Savchenkov, and L. Maleki, “Normal group-velocity dispersion Kerr frequency comb,” Opt. Lett.37(1), 43–45 (2012).
[CrossRef] [PubMed]

I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express20(6), 6604–6609 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, P.-H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr frequency comb generation in overmoded resonators,” Opt. Express20(24), 27290–27298 (2012).
[CrossRef] [PubMed]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun3, 765 (2012).
[CrossRef] [PubMed]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6(7), 480–487 (2012).
[CrossRef]

2011

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84(5), 053833 (2011).
[CrossRef]

W. Liang, A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, D. Seidel, and L. Maleki, “Generation of near-infrared frequency combs from a MgF₂ whispering gallery mode resonator,” Opt. Lett.36(12), 2290–2292 (2011).
[CrossRef] [PubMed]

A. B. Matsko, A. A. Savchenkov, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Mode-locked Kerr frequency combs,” Opt. Lett.36(15), 2845–2847 (2011).
[CrossRef] [PubMed]

2010

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A82(3), 033801 (2010).
[CrossRef]

J. Čtyroký, I. Richter, and M. Šinor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron.38(9–11), 781–797 (2010).

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively mode-locked Raman laser,” Phys. Rev. Lett.105(14), 143903 (2010).
[CrossRef] [PubMed]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

2009

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

D. V. Strekalov and N. Yu, “Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump,” Phys. Rev. A79(4), 041805 (2009).
[CrossRef]

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett.34(7), 878–880 (2009).
[CrossRef] [PubMed]

2007

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express15(17), 10553–10561 (2007).
[CrossRef] [PubMed]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

2006

2004

2001

1999

1997

Aksyuk, V.

Arcizet, O.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Balakireva, I.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. Dudley, C. Menyuk, and Y. Chembo, “Azimuthal turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery mode resonators,” IEEE Photon. J.5(4), 6100409 (2013).
[CrossRef]

Barwicz, T.

Baumgartel, L.

Carmon, T.

Chembo, Y.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. Dudley, C. Menyuk, and Y. Chembo, “Azimuthal turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery mode resonators,” IEEE Photon. J.5(4), 6100409 (2013).
[CrossRef]

Chembo, Y. K.

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A87(5), 053852 (2013).
[CrossRef]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A82(3), 033801 (2010).
[CrossRef]

Chen, L.

F. Ferdous, H. Miao, P.-H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Chu, S.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Chu, S. T.

Coillet, A.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. Dudley, C. Menyuk, and Y. Chembo, “Azimuthal turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery mode resonators,” IEEE Photon. J.5(4), 6100409 (2013).
[CrossRef]

Colville, F. G.

Ctyroký, J.

J. Čtyroký, I. Richter, and M. Šinor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron.38(9–11), 781–797 (2010).

Cundiff, S. T.

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

Del’Haye, P.

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84(5), 053833 (2011).
[CrossRef]

Duchesne, D.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Dudley, J.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. Dudley, C. Menyuk, and Y. Chembo, “Azimuthal turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery mode resonators,” IEEE Photon. J.5(4), 6100409 (2013).
[CrossRef]

Dunn, M. H.

Ebrahimzadeh, M.

Edwards, T. J.

Ferdous, F.

F. Ferdous, H. Miao, P.-H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Ferrera, M.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Foster, M. A.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Gaeta, A. L.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6(7), 480–487 (2012).
[CrossRef]

Gondarenko, A.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Gorodetsky, M. L.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6(7), 480–487 (2012).
[CrossRef]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Grudinin, I. S.

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6(7), 480–487 (2012).
[CrossRef]

Haus, H. A.

Henriet, R.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. Dudley, C. Menyuk, and Y. Chembo, “Azimuthal turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery mode resonators,” IEEE Photon. J.5(4), 6100409 (2013).
[CrossRef]

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6(7), 480–487 (2012).
[CrossRef]

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6(7), 480–487 (2012).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Huang, C.-B.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Ilchenko, V. S.

Ippen, E. P.

Jiang, Z.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Joannopoulos, J.

Johnson, A. R.

Johnson, S.

Khan, M. H.

Kippenberg, T. J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6(7), 480–487 (2012).
[CrossRef]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Laine, J. P.

Lamont, M. R.

Larger, L.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. Dudley, C. Menyuk, and Y. Chembo, “Azimuthal turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery mode resonators,” IEEE Photon. J.5(4), 6100409 (2013).
[CrossRef]

Leaird, D. E.

F. Ferdous, H. Miao, P.-H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Levy, J. S.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Liang, W.

Lindsay, I. D.

Lipson, M.

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013).
[CrossRef] [PubMed]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Little, B. E.

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun3, 765 (2012).
[CrossRef] [PubMed]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

B. E. Little, J. P. Laine, and S. T. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett.22(1), 4–6 (1997).
[CrossRef] [PubMed]

Maleki, L.

Matsko, A. B.

Menyuk, C.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. Dudley, C. Menyuk, and Y. Chembo, “Azimuthal turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery mode resonators,” IEEE Photon. J.5(4), 6100409 (2013).
[CrossRef]

Menyuk, C. R.

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A87(5), 053852 (2013).
[CrossRef]

Miao, H.

F. Ferdous, H. Miao, P.-H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Morandotti, R.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun3, 765 (2012).
[CrossRef] [PubMed]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Moss, D. J.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun3, 765 (2012).
[CrossRef] [PubMed]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Okawachi, Y.

Papp, S. B.

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84(5), 053833 (2011).
[CrossRef]

Park, Y.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun3, 765 (2012).
[CrossRef] [PubMed]

Pasquazi, A.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun3, 765 (2012).
[CrossRef] [PubMed]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

Peccianti, M.

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun3, 765 (2012).
[CrossRef] [PubMed]

Popovic, M. A.

Qi, M.

Rakich, P. T.

Razzari, L.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

Richter, I.

J. Čtyroký, I. Richter, and M. Šinor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron.38(9–11), 781–797 (2010).

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6(7), 480–487 (2012).
[CrossRef]

Saha, K.

Saleh, K.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. Dudley, C. Menyuk, and Y. Chembo, “Azimuthal turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery mode resonators,” IEEE Photon. J.5(4), 6100409 (2013).
[CrossRef]

Salem, R.

Savchenkov, A. A.

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Seidel, D.

Shen, H.

Shim, B.

Šinor, M.

J. Čtyroký, I. Richter, and M. Šinor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron.38(9–11), 781–797 (2010).

Smith, H. I.

Srinivasan, K.

F. Ferdous, H. Miao, P.-H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Stothard, D. J. M.

Strekalov, D. V.

D. V. Strekalov and N. Yu, “Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump,” Phys. Rev. A79(4), 041805 (2009).
[CrossRef]

Turnbull, G. A.

Turner-Foster, A. C.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

Vahala, K. J.

Varghese, L. T.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Wang, C. Y.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6(7), 480–487 (2012).
[CrossRef]

Wang, J.

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

Wang, P.-H.

Watts, M. R.

Weiner, A. M.

F. Ferdous, H. Miao, P.-H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Xiao, S.

Yang, L.

Yu, N.

I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express20(6), 6604–6609 (2012).
[CrossRef] [PubMed]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A82(3), 033801 (2010).
[CrossRef]

I. S. Grudinin, N. Yu, and L. Maleki, “Generation of optical frequency combs with a CaF2 resonator,” Opt. Lett.34(7), 878–880 (2009).
[CrossRef] [PubMed]

D. V. Strekalov and N. Yu, “Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump,” Phys. Rev. A79(4), 041805 (2009).
[CrossRef]

IEEE Photon. J.

A. Coillet, I. Balakireva, R. Henriet, K. Saleh, L. Larger, J. Dudley, C. Menyuk, and Y. Chembo, “Azimuthal turing patterns, bright and dark cavity solitons in Kerr combs generated with whispering-gallery mode resonators,” IEEE Photon. J.5(4), 6100409 (2013).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat Commun

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat Commun3, 765 (2012).
[CrossRef] [PubMed]

Nat. Photonics

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007).
[CrossRef]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics4(11), 760–766 (2010).
[CrossRef]

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics4(1), 37–40 (2010).
[CrossRef]

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics4(1), 41–45 (2010).
[CrossRef]

F. Ferdous, H. Miao, D. E. Leaird, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011).
[CrossRef]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics6(7), 480–487 (2012).
[CrossRef]

P. Del’Haye, O. Arcizet, M. L. Gorodetsky, R. Holzwarth, and T. J. Kippenberg, “Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion,” Nat. Photonics3(9), 529–533 (2009).
[CrossRef]

Nature

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature450(7173), 1214–1217 (2007).
[CrossRef] [PubMed]

Opt. Express

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Modeling and measurement of losses in silicon-on-insulator resonators and bends,” Opt. Express15(17), 10553–10561 (2007).
[CrossRef] [PubMed]

I. S. Grudinin, L. Baumgartel, and N. Yu, “Frequency comb from a microresonator with engineered spectrum,” Opt. Express20(6), 6604–6609 (2012).
[CrossRef] [PubMed]

F. Ferdous, H. Miao, P.-H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012).
[CrossRef] [PubMed]

A. A. Savchenkov, A. B. Matsko, W. Liang, V. S. Ilchenko, D. Seidel, and L. Maleki, “Kerr frequency comb generation in overmoded resonators,” Opt. Express20(24), 27290–27298 (2012).
[CrossRef] [PubMed]

A. Pasquazi, M. Peccianti, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Stable, dual mode, high repetition rate mode-locked laser based on a microring resonator,” Opt. Express20(24), 27355–27362 (2012).
[CrossRef] [PubMed]

K. Saha, Y. Okawachi, B. Shim, J. S. Levy, R. Salem, A. R. Johnson, M. A. Foster, M. R. Lamont, M. Lipson, and A. L. Gaeta, “Modelocking and femtosecond pulse generation in chip-based frequency combs,” Opt. Express21(1), 1335–1343 (2013).
[CrossRef] [PubMed]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001).
[CrossRef] [PubMed]

T. Barwicz, M. A. Popović, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in SiN: fabrication and analysis,” Opt. Express12(7), 1437–1442 (2004).
[CrossRef] [PubMed]

T. Carmon, L. Yang, and K. J. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12(20), 4742–4750 (2004).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Quantum Electron.

J. Čtyroký, I. Richter, and M. Šinor, “Dual resonance in a waveguide-coupled ring microresonator,” Opt. Quantum Electron.38(9–11), 781–797 (2010).

Phys. Rev. A

Y. K. Chembo and C. R. Menyuk, “Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators,” Phys. Rev. A87(5), 053852 (2013).
[CrossRef]

D. V. Strekalov and N. Yu, “Generation of optical combs in a whispering gallery mode resonator from a bichromatic pump,” Phys. Rev. A79(4), 041805 (2009).
[CrossRef]

S. B. Papp and S. A. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84(5), 053833 (2011).
[CrossRef]

Y. K. Chembo and N. Yu, “Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators,” Phys. Rev. A82(3), 033801 (2010).
[CrossRef]

Phys. Rev. Lett.

W. Liang, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, “Passively mode-locked Raman laser,” Phys. Rev. Lett.105(14), 143903 (2010).
[CrossRef] [PubMed]

Science

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011).
[CrossRef] [PubMed]

Other

T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, “Temporal solitons in optical microresonators,” arXiv: 1211.0733v3 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Microscope image of a 100 μm radius silicon nitride microring with coupling region. (b) Image of a U-groove. (c) Experimental setup for time-domain characterization.

Fig. 2
Fig. 2

Measured and simulated dispersion of silicon nitride waveguides for 550 nm and 765 nm film thicknesses. The inset shows the TM1 and TM2 mode profiles for 550 nm waveguide thickness. The solid lines show the simulated data while the dots show the measured data. The values in the parentheses in the legend indicate the height of the waveguide.

Fig. 3
Fig. 3

Measured optical spectra of generated combs from both the thru- (blue trace) and drop-port (red trace) with input power (a) 430 mW at around 1558.5 nm (TM1 mode) and (b) 680 mW at around 1558.8 nm (TM2 mode). The insets show the corresponding transmission spectra with low input power; the vertical scale on the left axis of (a) inset shows the drop-port transmission.

Fig. 4
Fig. 4

The detected output power of the pump (black trace) and the comb lines other than the pump (blue trace) versus input power, corresponding to the (a) thru- and (b) drop-port at 1558.4 nm (TM1) resonance while (c) and (d) represent the analogous results from the thru- and drop-port at 1558.7 nm (TM2) resonance. The red traces in (b) and (d) stand for the total power including both pump and comb lines.

Fig. 5
Fig. 5

Autocorrelation traces corresponding to the drop-port spectrum in Fig. 3(a). The green trace shows the intensity autocorrelation trace calculated by taking the optical spectrum and assuming flat spectral phase, while the blue and red traces show the measured autocorrelation traces before and after the line-by-line phase compensation.

Fig. 6
Fig. 6

(a) Optical spectrum measured from the drop-port with input power of 1 W at around 1560.4 nm. (b) The corresponding optical spectrum after the EDFA. (c) Measured (blue) and calculated (green) autocorrelation traces. (d)-(e) The optical spectrum after the EDFA and the autocorrelation measurement with input power of 700 mW at around 1562.2 nm.

Tables (1)

Tables Icon

Table 1 Coupling and Transmission Parameters

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T thru = (λ λ 0 ) 2 + ( FSR 4π ) 2 ( κ d 2 + κ p 2 κ e 2 ) 2 (λ λ 0 ) 2 + ( FSR 4π ) 2 ( κ d 2 + κ p 2 + κ e 2 ) 2
T drop = 4× ( FSR 4π ) 2 ( κ d 2 × κ e 2 ) (λ λ 0 ) 2 + ( FSR 4π ) 2 ( κ d 2 + κ p 2 + κ e 2 ) 2
P μring P in = 4 κ e 2 ( κ d 2 + κ p 2 + κ e 2 )

Metrics