Abstract

The constituents of soft matter systems such as colloidal suspensions, emulsions, polymers, and biological tissues undergo microscopic random motion, due to thermal energy. They may also experience drift motion correlated over mesoscopic or macroscopic length scales, e.g. in response to an internal or applied stress or during flow. We present a new method for measuring simultaneously both the microscopic motion and the mesoscopic or macroscopic drift. The method is based on the analysis of spatio-temporal cross-correlation functions of speckle patterns taken in an imaging configuration. The method is tested on a translating Brownian suspension and a sheared colloidal glass.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications(Roberts and Company, Englewood, 2007).
  2. R. K. Erf, Speckle Metrology(Academic, 1978).
  3. B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, 1976).
  4. J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiological Measurement22, R35–R66 (2001).
    [CrossRef]
  5. M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers in Medical Science24, 639 (2009).
    [CrossRef]
  6. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
    [CrossRef]
  7. R. J. Adrian, “Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs particle image velocimetry,” Appl. Opt.23, 1690 (1984).
    [CrossRef] [PubMed]
  8. T. D. Dudderar, R. Meynart, and P. G. Simpkins, “Full-field laser metrology for fluid velocity measurement,” Optics and Lasers in Engineering9, 163 (1988).
    [CrossRef]
  9. C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Experiments In Fluids10, 181193 (1991).
    [CrossRef]
  10. P. T. Tokumaru and P. E. Dimotakis, “Image correlation velocimetry,” Experiments In Fluids19, 115 (1995).
    [CrossRef]
  11. A. P. Y. Wong and P. Wiltzius, “Dynamic light-scattering with a CCD camera,” Rev. Sci. Instrum.64, 2547–2549 (1993).
    [CrossRef]
  12. S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys.104, 1758–1761 (1996).
    [CrossRef]
  13. A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett.102, 085702 (2009).
    [CrossRef] [PubMed]
  14. S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter6, 5514–5522 (2010).
    [CrossRef]
  15. P. Zakharov and F. Scheffold, “Monitoring spatially heterogeneous dynamics in a drying colloidal thin film,” Soft Matter8, 102–113 (2010).
    [CrossRef]
  16. A. Amon, V. B. Nguyen, A. Bruand, J. Crassous, and E. Clement, “Hot spots in an athermal system,” Phys. Rev. Lett.108, 135502 (2012).
    [CrossRef] [PubMed]
  17. L. Cipelletti, “Method and device for characterizing the internal dynamics of a sample of material in the presence of a rigid displacement,” Patent WO 2012/076826, 14June2012.
  18. G. Brambilla, S. Buzzaccaro, R. Piazza, L. Berthier, and L. Cipelletti, “Highly nonlinear dynamics in a slowly sedimenting colloidal gel,” Phys. Rev. Lett.106, 118302 (2011).
    [CrossRef] [PubMed]
  19. O. Lieleg, J. Kayser, G. Brambilla, L. Cipelletti, and A. R. Bausch, “Slow dynamics and internal stress relaxation in bundled cytoskeletal networks,” Nature Materials10, 236–242 (2011).
    [CrossRef] [PubMed]
  20. W. H. Press and S. A. Teukolsky, Numerical Recipes in C. (Cambridge University Press, 1992).
  21. T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: interpolation methods in medical image processing,” Ieee Transactions on Medical Imaging18, 1049–1075 (1999).
    [CrossRef]
  22. F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier-transform,” Proc. IEEE66, 5183 (1978).
    [CrossRef]
  23. D. El Masri, M. Pierno, L. Berthier, and L. Cipelletti, “Aging and ultra-slow equilibration in concentrated colloidal hard spheres,” J. Phys.: Condens. Matter17, S3543 (2005).
    [CrossRef]
  24. A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E72, 051401 (2005).
    [CrossRef]
  25. G. J. Tearney and E. B. Bouma, “Optical methods and systems for tissue analysis,” Patent US20020183601 A1, 5December2002.
  26. D. E. Koppel, “Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants,” J. Chem. Phys.57, 4814–4820 (1972).
    [CrossRef]
  27. T. Asakura and N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” App. Physics25, 179–194 (1981).
    [CrossRef]
  28. G. Brambilla, D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, and A. B. Schofield, “Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition,” Phys. Rev. Lett.102, 085703 (2009).
    [CrossRef] [PubMed]
  29. P. N. Pusey and W. van Megen, “Observation of a glass-transition in suspensions of spherical colloidal particles,” Phys. Rev. Lett.59, 2083 (1987).
    [CrossRef] [PubMed]
  30. V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, and P. Schall, “Long-range strain correlations in sheared colloidal glasses,” Phys. Rev. Lett.107, 198303 (2011).
    [CrossRef] [PubMed]
  31. T. Divoux, D. Tamarii, C. Barentin, and S. Manneville, “Transient shear banding in a simple yield stress fluid,” Phys. Rev. Lett.104, 208301 (2010).
    [CrossRef] [PubMed]
  32. P. Schall, D. A. Weitz, and F. Spaepen, “Structural rearrangements that govern flow in colloidal glasses,” Science318, 1895 (2007).
  33. P. Jop, V. Mansard, P. Chaudhuri, L. Bocquet, and A. Colin, “Microscale rheology of a soft glassy material close to yielding,” Phys. Rev. Lett.108, 148301 (2012)
    [CrossRef] [PubMed]
  34. R. Cerbino and A. Vailati, “Near-field scattering techniques: Novel instrumentation and results from time and spatially resolved investigations of soft matter systems,” Current Opinion in Colloid & Interface Science14, 416 (2009).
    [CrossRef]
  35. F. Giavazzi, D. Brogioli, V. Trappe, T. Bellini, and R. Cerbino, “Scattering information obtained by optical microscopy: Differential dynamic microscopy and beyond,” Phys. Rev. E80, 031403 (2009).
    [CrossRef]
  36. S. Buzzaccaro, E. Secchi, and R. Piazza, “Ghost particle velocimetry: accurate 3D flow visualization using standard lab equipment,” Phys. Rev. Lett.111048101 (2013).
    [CrossRef] [PubMed]
  37. J.-P. Bouchaud and E. Pitard, “Anomalous dynamical light scattering in soft glassy gels,” Eur. Phys. J. E6, 231 (2001).
    [CrossRef]

2013

S. Buzzaccaro, E. Secchi, and R. Piazza, “Ghost particle velocimetry: accurate 3D flow visualization using standard lab equipment,” Phys. Rev. Lett.111048101 (2013).
[CrossRef] [PubMed]

2012

P. Jop, V. Mansard, P. Chaudhuri, L. Bocquet, and A. Colin, “Microscale rheology of a soft glassy material close to yielding,” Phys. Rev. Lett.108, 148301 (2012)
[CrossRef] [PubMed]

A. Amon, V. B. Nguyen, A. Bruand, J. Crassous, and E. Clement, “Hot spots in an athermal system,” Phys. Rev. Lett.108, 135502 (2012).
[CrossRef] [PubMed]

2011

G. Brambilla, S. Buzzaccaro, R. Piazza, L. Berthier, and L. Cipelletti, “Highly nonlinear dynamics in a slowly sedimenting colloidal gel,” Phys. Rev. Lett.106, 118302 (2011).
[CrossRef] [PubMed]

O. Lieleg, J. Kayser, G. Brambilla, L. Cipelletti, and A. R. Bausch, “Slow dynamics and internal stress relaxation in bundled cytoskeletal networks,” Nature Materials10, 236–242 (2011).
[CrossRef] [PubMed]

V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, and P. Schall, “Long-range strain correlations in sheared colloidal glasses,” Phys. Rev. Lett.107, 198303 (2011).
[CrossRef] [PubMed]

2010

T. Divoux, D. Tamarii, C. Barentin, and S. Manneville, “Transient shear banding in a simple yield stress fluid,” Phys. Rev. Lett.104, 208301 (2010).
[CrossRef] [PubMed]

S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter6, 5514–5522 (2010).
[CrossRef]

P. Zakharov and F. Scheffold, “Monitoring spatially heterogeneous dynamics in a drying colloidal thin film,” Soft Matter8, 102–113 (2010).
[CrossRef]

2009

M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers in Medical Science24, 639 (2009).
[CrossRef]

R. Cerbino and A. Vailati, “Near-field scattering techniques: Novel instrumentation and results from time and spatially resolved investigations of soft matter systems,” Current Opinion in Colloid & Interface Science14, 416 (2009).
[CrossRef]

F. Giavazzi, D. Brogioli, V. Trappe, T. Bellini, and R. Cerbino, “Scattering information obtained by optical microscopy: Differential dynamic microscopy and beyond,” Phys. Rev. E80, 031403 (2009).
[CrossRef]

A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett.102, 085702 (2009).
[CrossRef] [PubMed]

G. Brambilla, D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, and A. B. Schofield, “Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition,” Phys. Rev. Lett.102, 085703 (2009).
[CrossRef] [PubMed]

2007

P. Schall, D. A. Weitz, and F. Spaepen, “Structural rearrangements that govern flow in colloidal glasses,” Science318, 1895 (2007).

2005

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

D. El Masri, M. Pierno, L. Berthier, and L. Cipelletti, “Aging and ultra-slow equilibration in concentrated colloidal hard spheres,” J. Phys.: Condens. Matter17, S3543 (2005).
[CrossRef]

A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E72, 051401 (2005).
[CrossRef]

2001

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiological Measurement22, R35–R66 (2001).
[CrossRef]

J.-P. Bouchaud and E. Pitard, “Anomalous dynamical light scattering in soft glassy gels,” Eur. Phys. J. E6, 231 (2001).
[CrossRef]

1999

T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: interpolation methods in medical image processing,” Ieee Transactions on Medical Imaging18, 1049–1075 (1999).
[CrossRef]

1996

S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys.104, 1758–1761 (1996).
[CrossRef]

1995

P. T. Tokumaru and P. E. Dimotakis, “Image correlation velocimetry,” Experiments In Fluids19, 115 (1995).
[CrossRef]

1993

A. P. Y. Wong and P. Wiltzius, “Dynamic light-scattering with a CCD camera,” Rev. Sci. Instrum.64, 2547–2549 (1993).
[CrossRef]

1991

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Experiments In Fluids10, 181193 (1991).
[CrossRef]

1988

T. D. Dudderar, R. Meynart, and P. G. Simpkins, “Full-field laser metrology for fluid velocity measurement,” Optics and Lasers in Engineering9, 163 (1988).
[CrossRef]

1987

P. N. Pusey and W. van Megen, “Observation of a glass-transition in suspensions of spherical colloidal particles,” Phys. Rev. Lett.59, 2083 (1987).
[CrossRef] [PubMed]

1984

1981

T. Asakura and N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” App. Physics25, 179–194 (1981).
[CrossRef]

1978

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier-transform,” Proc. IEEE66, 5183 (1978).
[CrossRef]

1972

D. E. Koppel, “Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants,” J. Chem. Phys.57, 4814–4820 (1972).
[CrossRef]

Adrian, R. J.

Amon, A.

A. Amon, V. B. Nguyen, A. Bruand, J. Crassous, and E. Clement, “Hot spots in an athermal system,” Phys. Rev. Lett.108, 135502 (2012).
[CrossRef] [PubMed]

Asakura, T.

T. Asakura and N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” App. Physics25, 179–194 (1981).
[CrossRef]

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Barentin, C.

T. Divoux, D. Tamarii, C. Barentin, and S. Manneville, “Transient shear banding in a simple yield stress fluid,” Phys. Rev. Lett.104, 208301 (2010).
[CrossRef] [PubMed]

Bartsch, E.

S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys.104, 1758–1761 (1996).
[CrossRef]

Bausch, A. R.

O. Lieleg, J. Kayser, G. Brambilla, L. Cipelletti, and A. R. Bausch, “Slow dynamics and internal stress relaxation in bundled cytoskeletal networks,” Nature Materials10, 236–242 (2011).
[CrossRef] [PubMed]

Bellini, T.

F. Giavazzi, D. Brogioli, V. Trappe, T. Bellini, and R. Cerbino, “Scattering information obtained by optical microscopy: Differential dynamic microscopy and beyond,” Phys. Rev. E80, 031403 (2009).
[CrossRef]

Berne, B. J.

B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, 1976).

Berthier, L.

G. Brambilla, S. Buzzaccaro, R. Piazza, L. Berthier, and L. Cipelletti, “Highly nonlinear dynamics in a slowly sedimenting colloidal gel,” Phys. Rev. Lett.106, 118302 (2011).
[CrossRef] [PubMed]

G. Brambilla, D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, and A. B. Schofield, “Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition,” Phys. Rev. Lett.102, 085703 (2009).
[CrossRef] [PubMed]

D. El Masri, M. Pierno, L. Berthier, and L. Cipelletti, “Aging and ultra-slow equilibration in concentrated colloidal hard spheres,” J. Phys.: Condens. Matter17, S3543 (2005).
[CrossRef]

Bissig, H.

A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E72, 051401 (2005).
[CrossRef]

Bocquet, L.

P. Jop, V. Mansard, P. Chaudhuri, L. Bocquet, and A. Colin, “Microscale rheology of a soft glassy material close to yielding,” Phys. Rev. Lett.108, 148301 (2012)
[CrossRef] [PubMed]

Bonn, D.

V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, and P. Schall, “Long-range strain correlations in sheared colloidal glasses,” Phys. Rev. Lett.107, 198303 (2011).
[CrossRef] [PubMed]

Bouchaud, J.-P.

J.-P. Bouchaud and E. Pitard, “Anomalous dynamical light scattering in soft glassy gels,” Eur. Phys. J. E6, 231 (2001).
[CrossRef]

Bouma, E. B.

G. J. Tearney and E. B. Bouma, “Optical methods and systems for tissue analysis,” Patent US20020183601 A1, 5December2002.

Brambilla, G.

O. Lieleg, J. Kayser, G. Brambilla, L. Cipelletti, and A. R. Bausch, “Slow dynamics and internal stress relaxation in bundled cytoskeletal networks,” Nature Materials10, 236–242 (2011).
[CrossRef] [PubMed]

G. Brambilla, S. Buzzaccaro, R. Piazza, L. Berthier, and L. Cipelletti, “Highly nonlinear dynamics in a slowly sedimenting colloidal gel,” Phys. Rev. Lett.106, 118302 (2011).
[CrossRef] [PubMed]

S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter6, 5514–5522 (2010).
[CrossRef]

G. Brambilla, D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, and A. B. Schofield, “Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition,” Phys. Rev. Lett.102, 085703 (2009).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiological Measurement22, R35–R66 (2001).
[CrossRef]

Brogioli, D.

F. Giavazzi, D. Brogioli, V. Trappe, T. Bellini, and R. Cerbino, “Scattering information obtained by optical microscopy: Differential dynamic microscopy and beyond,” Phys. Rev. E80, 031403 (2009).
[CrossRef]

Bruand, A.

A. Amon, V. B. Nguyen, A. Bruand, J. Crassous, and E. Clement, “Hot spots in an athermal system,” Phys. Rev. Lett.108, 135502 (2012).
[CrossRef] [PubMed]

Buzzaccaro, S.

S. Buzzaccaro, E. Secchi, and R. Piazza, “Ghost particle velocimetry: accurate 3D flow visualization using standard lab equipment,” Phys. Rev. Lett.111048101 (2013).
[CrossRef] [PubMed]

G. Brambilla, S. Buzzaccaro, R. Piazza, L. Berthier, and L. Cipelletti, “Highly nonlinear dynamics in a slowly sedimenting colloidal gel,” Phys. Rev. Lett.106, 118302 (2011).
[CrossRef] [PubMed]

Cerbino, R.

F. Giavazzi, D. Brogioli, V. Trappe, T. Bellini, and R. Cerbino, “Scattering information obtained by optical microscopy: Differential dynamic microscopy and beyond,” Phys. Rev. E80, 031403 (2009).
[CrossRef]

R. Cerbino and A. Vailati, “Near-field scattering techniques: Novel instrumentation and results from time and spatially resolved investigations of soft matter systems,” Current Opinion in Colloid & Interface Science14, 416 (2009).
[CrossRef]

Chaudhuri, P.

P. Jop, V. Mansard, P. Chaudhuri, L. Bocquet, and A. Colin, “Microscale rheology of a soft glassy material close to yielding,” Phys. Rev. Lett.108, 148301 (2012)
[CrossRef] [PubMed]

Chikkadi, V.

V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, and P. Schall, “Long-range strain correlations in sheared colloidal glasses,” Phys. Rev. Lett.107, 198303 (2011).
[CrossRef] [PubMed]

Ciccotti, M.

S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter6, 5514–5522 (2010).
[CrossRef]

Cipelletti, L.

O. Lieleg, J. Kayser, G. Brambilla, L. Cipelletti, and A. R. Bausch, “Slow dynamics and internal stress relaxation in bundled cytoskeletal networks,” Nature Materials10, 236–242 (2011).
[CrossRef] [PubMed]

G. Brambilla, S. Buzzaccaro, R. Piazza, L. Berthier, and L. Cipelletti, “Highly nonlinear dynamics in a slowly sedimenting colloidal gel,” Phys. Rev. Lett.106, 118302 (2011).
[CrossRef] [PubMed]

S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter6, 5514–5522 (2010).
[CrossRef]

A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett.102, 085702 (2009).
[CrossRef] [PubMed]

G. Brambilla, D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, and A. B. Schofield, “Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition,” Phys. Rev. Lett.102, 085703 (2009).
[CrossRef] [PubMed]

A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E72, 051401 (2005).
[CrossRef]

D. El Masri, M. Pierno, L. Berthier, and L. Cipelletti, “Aging and ultra-slow equilibration in concentrated colloidal hard spheres,” J. Phys.: Condens. Matter17, S3543 (2005).
[CrossRef]

L. Cipelletti, “Method and device for characterizing the internal dynamics of a sample of material in the presence of a rigid displacement,” Patent WO 2012/076826, 14June2012.

Clement, E.

A. Amon, V. B. Nguyen, A. Bruand, J. Crassous, and E. Clement, “Hot spots in an athermal system,” Phys. Rev. Lett.108, 135502 (2012).
[CrossRef] [PubMed]

Colin, A.

P. Jop, V. Mansard, P. Chaudhuri, L. Bocquet, and A. Colin, “Microscale rheology of a soft glassy material close to yielding,” Phys. Rev. Lett.108, 148301 (2012)
[CrossRef] [PubMed]

Crassous, J.

A. Amon, V. B. Nguyen, A. Bruand, J. Crassous, and E. Clement, “Hot spots in an athermal system,” Phys. Rev. Lett.108, 135502 (2012).
[CrossRef] [PubMed]

Dimotakis, P. E.

P. T. Tokumaru and P. E. Dimotakis, “Image correlation velocimetry,” Experiments In Fluids19, 115 (1995).
[CrossRef]

Divoux, T.

T. Divoux, D. Tamarii, C. Barentin, and S. Manneville, “Transient shear banding in a simple yield stress fluid,” Phys. Rev. Lett.104, 208301 (2010).
[CrossRef] [PubMed]

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Draijer, M.

M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers in Medical Science24, 639 (2009).
[CrossRef]

Dudderar, T. D.

T. D. Dudderar, R. Meynart, and P. G. Simpkins, “Full-field laser metrology for fluid velocity measurement,” Optics and Lasers in Engineering9, 163 (1988).
[CrossRef]

Duri, A.

S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter6, 5514–5522 (2010).
[CrossRef]

A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett.102, 085702 (2009).
[CrossRef] [PubMed]

A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E72, 051401 (2005).
[CrossRef]

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

El Masri, D.

G. Brambilla, D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, and A. B. Schofield, “Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition,” Phys. Rev. Lett.102, 085703 (2009).
[CrossRef] [PubMed]

D. El Masri, M. Pierno, L. Berthier, and L. Cipelletti, “Aging and ultra-slow equilibration in concentrated colloidal hard spheres,” J. Phys.: Condens. Matter17, S3543 (2005).
[CrossRef]

Erf, R. K.

R. K. Erf, Speckle Metrology(Academic, 1978).

Frenz, V.

S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys.104, 1758–1761 (1996).
[CrossRef]

Fromental, J. M.

S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter6, 5514–5522 (2010).
[CrossRef]

Gharib, M.

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Experiments In Fluids10, 181193 (1991).
[CrossRef]

Giavazzi, F.

F. Giavazzi, D. Brogioli, V. Trappe, T. Bellini, and R. Cerbino, “Scattering information obtained by optical microscopy: Differential dynamic microscopy and beyond,” Phys. Rev. E80, 031403 (2009).
[CrossRef]

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Gonner, C.

T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: interpolation methods in medical image processing,” Ieee Transactions on Medical Imaging18, 1049–1075 (1999).
[CrossRef]

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications(Roberts and Company, Englewood, 2007).

Harris, F. J.

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier-transform,” Proc. IEEE66, 5183 (1978).
[CrossRef]

Hondebrink, E.

M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers in Medical Science24, 639 (2009).
[CrossRef]

Jop, P.

P. Jop, V. Mansard, P. Chaudhuri, L. Bocquet, and A. Colin, “Microscale rheology of a soft glassy material close to yielding,” Phys. Rev. Lett.108, 148301 (2012)
[CrossRef] [PubMed]

Kayser, J.

O. Lieleg, J. Kayser, G. Brambilla, L. Cipelletti, and A. R. Bausch, “Slow dynamics and internal stress relaxation in bundled cytoskeletal networks,” Nature Materials10, 236–242 (2011).
[CrossRef] [PubMed]

Kirsch, S.

S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys.104, 1758–1761 (1996).
[CrossRef]

Koppel, D. E.

D. E. Koppel, “Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants,” J. Chem. Phys.57, 4814–4820 (1972).
[CrossRef]

Leeuwen, T.

M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers in Medical Science24, 639 (2009).
[CrossRef]

Lehmann, T. M.

T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: interpolation methods in medical image processing,” Ieee Transactions on Medical Imaging18, 1049–1075 (1999).
[CrossRef]

Lieleg, O.

O. Lieleg, J. Kayser, G. Brambilla, L. Cipelletti, and A. R. Bausch, “Slow dynamics and internal stress relaxation in bundled cytoskeletal networks,” Nature Materials10, 236–242 (2011).
[CrossRef] [PubMed]

Lips, A.

S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter6, 5514–5522 (2010).
[CrossRef]

Maccarrone, S.

S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter6, 5514–5522 (2010).
[CrossRef]

Manneville, S.

T. Divoux, D. Tamarii, C. Barentin, and S. Manneville, “Transient shear banding in a simple yield stress fluid,” Phys. Rev. Lett.104, 208301 (2010).
[CrossRef] [PubMed]

Mansard, V.

P. Jop, V. Mansard, P. Chaudhuri, L. Bocquet, and A. Colin, “Microscale rheology of a soft glassy material close to yielding,” Phys. Rev. Lett.108, 148301 (2012)
[CrossRef] [PubMed]

Meynart, R.

T. D. Dudderar, R. Meynart, and P. G. Simpkins, “Full-field laser metrology for fluid velocity measurement,” Optics and Lasers in Engineering9, 163 (1988).
[CrossRef]

Nguyen, V. B.

A. Amon, V. B. Nguyen, A. Bruand, J. Crassous, and E. Clement, “Hot spots in an athermal system,” Phys. Rev. Lett.108, 135502 (2012).
[CrossRef] [PubMed]

Nienhuis, B.

V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, and P. Schall, “Long-range strain correlations in sheared colloidal glasses,” Phys. Rev. Lett.107, 198303 (2011).
[CrossRef] [PubMed]

Pashkovski, E.

S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter6, 5514–5522 (2010).
[CrossRef]

Pecora, R.

B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, 1976).

Petekidis, G.

G. Brambilla, D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, and A. B. Schofield, “Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition,” Phys. Rev. Lett.102, 085703 (2009).
[CrossRef] [PubMed]

Piazza, R.

S. Buzzaccaro, E. Secchi, and R. Piazza, “Ghost particle velocimetry: accurate 3D flow visualization using standard lab equipment,” Phys. Rev. Lett.111048101 (2013).
[CrossRef] [PubMed]

G. Brambilla, S. Buzzaccaro, R. Piazza, L. Berthier, and L. Cipelletti, “Highly nonlinear dynamics in a slowly sedimenting colloidal gel,” Phys. Rev. Lett.106, 118302 (2011).
[CrossRef] [PubMed]

Pierno, M.

G. Brambilla, D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, and A. B. Schofield, “Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition,” Phys. Rev. Lett.102, 085703 (2009).
[CrossRef] [PubMed]

D. El Masri, M. Pierno, L. Berthier, and L. Cipelletti, “Aging and ultra-slow equilibration in concentrated colloidal hard spheres,” J. Phys.: Condens. Matter17, S3543 (2005).
[CrossRef]

Pitard, E.

J.-P. Bouchaud and E. Pitard, “Anomalous dynamical light scattering in soft glassy gels,” Eur. Phys. J. E6, 231 (2001).
[CrossRef]

Pravaz, O.

S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter6, 5514–5522 (2010).
[CrossRef]

Press, W. H.

W. H. Press and S. A. Teukolsky, Numerical Recipes in C. (Cambridge University Press, 1992).

Pusey, P. N.

P. N. Pusey and W. van Megen, “Observation of a glass-transition in suspensions of spherical colloidal particles,” Phys. Rev. Lett.59, 2083 (1987).
[CrossRef] [PubMed]

Schall, P.

V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, and P. Schall, “Long-range strain correlations in sheared colloidal glasses,” Phys. Rev. Lett.107, 198303 (2011).
[CrossRef] [PubMed]

P. Schall, D. A. Weitz, and F. Spaepen, “Structural rearrangements that govern flow in colloidal glasses,” Science318, 1895 (2007).

Schartl, W.

S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys.104, 1758–1761 (1996).
[CrossRef]

Scheffold, F.

P. Zakharov and F. Scheffold, “Monitoring spatially heterogeneous dynamics in a drying colloidal thin film,” Soft Matter8, 102–113 (2010).
[CrossRef]

Schofield, A. B.

G. Brambilla, D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, and A. B. Schofield, “Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition,” Phys. Rev. Lett.102, 085703 (2009).
[CrossRef] [PubMed]

Secchi, E.

S. Buzzaccaro, E. Secchi, and R. Piazza, “Ghost particle velocimetry: accurate 3D flow visualization using standard lab equipment,” Phys. Rev. Lett.111048101 (2013).
[CrossRef] [PubMed]

Sessoms, D.

S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter6, 5514–5522 (2010).
[CrossRef]

Sessoms, D. A.

A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett.102, 085702 (2009).
[CrossRef] [PubMed]

Sillescu, H.

S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys.104, 1758–1761 (1996).
[CrossRef]

Simpkins, P. G.

T. D. Dudderar, R. Meynart, and P. G. Simpkins, “Full-field laser metrology for fluid velocity measurement,” Optics and Lasers in Engineering9, 163 (1988).
[CrossRef]

Spaepen, F.

P. Schall, D. A. Weitz, and F. Spaepen, “Structural rearrangements that govern flow in colloidal glasses,” Science318, 1895 (2007).

Spitzer, K.

T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: interpolation methods in medical image processing,” Ieee Transactions on Medical Imaging18, 1049–1075 (1999).
[CrossRef]

Steenbergen, W.

M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers in Medical Science24, 639 (2009).
[CrossRef]

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Takai, N.

T. Asakura and N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” App. Physics25, 179–194 (1981).
[CrossRef]

Tamarii, D.

T. Divoux, D. Tamarii, C. Barentin, and S. Manneville, “Transient shear banding in a simple yield stress fluid,” Phys. Rev. Lett.104, 208301 (2010).
[CrossRef] [PubMed]

Tearney, G. J.

G. J. Tearney and E. B. Bouma, “Optical methods and systems for tissue analysis,” Patent US20020183601 A1, 5December2002.

Teukolsky, S. A.

W. H. Press and S. A. Teukolsky, Numerical Recipes in C. (Cambridge University Press, 1992).

Tokumaru, P. T.

P. T. Tokumaru and P. E. Dimotakis, “Image correlation velocimetry,” Experiments In Fluids19, 115 (1995).
[CrossRef]

Trappe, V.

S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter6, 5514–5522 (2010).
[CrossRef]

A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett.102, 085702 (2009).
[CrossRef] [PubMed]

F. Giavazzi, D. Brogioli, V. Trappe, T. Bellini, and R. Cerbino, “Scattering information obtained by optical microscopy: Differential dynamic microscopy and beyond,” Phys. Rev. E80, 031403 (2009).
[CrossRef]

A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E72, 051401 (2005).
[CrossRef]

Vailati, A.

R. Cerbino and A. Vailati, “Near-field scattering techniques: Novel instrumentation and results from time and spatially resolved investigations of soft matter systems,” Current Opinion in Colloid & Interface Science14, 416 (2009).
[CrossRef]

van Megen, W.

P. N. Pusey and W. van Megen, “Observation of a glass-transition in suspensions of spherical colloidal particles,” Phys. Rev. Lett.59, 2083 (1987).
[CrossRef] [PubMed]

Wegdam, G.

V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, and P. Schall, “Long-range strain correlations in sheared colloidal glasses,” Phys. Rev. Lett.107, 198303 (2011).
[CrossRef] [PubMed]

Weitz, D. A.

P. Schall, D. A. Weitz, and F. Spaepen, “Structural rearrangements that govern flow in colloidal glasses,” Science318, 1895 (2007).

Willert, C. E.

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Experiments In Fluids10, 181193 (1991).
[CrossRef]

Wiltzius, P.

A. P. Y. Wong and P. Wiltzius, “Dynamic light-scattering with a CCD camera,” Rev. Sci. Instrum.64, 2547–2549 (1993).
[CrossRef]

Wong, A. P. Y.

A. P. Y. Wong and P. Wiltzius, “Dynamic light-scattering with a CCD camera,” Rev. Sci. Instrum.64, 2547–2549 (1993).
[CrossRef]

Zakharov, P.

P. Zakharov and F. Scheffold, “Monitoring spatially heterogeneous dynamics in a drying colloidal thin film,” Soft Matter8, 102–113 (2010).
[CrossRef]

App. Physics

T. Asakura and N. Takai, “Dynamic laser speckles and their application to velocity measurements of the diffuse object,” App. Physics25, 179–194 (1981).
[CrossRef]

Appl. Opt.

Current Opinion in Colloid & Interface Science

R. Cerbino and A. Vailati, “Near-field scattering techniques: Novel instrumentation and results from time and spatially resolved investigations of soft matter systems,” Current Opinion in Colloid & Interface Science14, 416 (2009).
[CrossRef]

Eur. Phys. J. E

J.-P. Bouchaud and E. Pitard, “Anomalous dynamical light scattering in soft glassy gels,” Eur. Phys. J. E6, 231 (2001).
[CrossRef]

Experiments In Fluids

C. E. Willert and M. Gharib, “Digital particle image velocimetry,” Experiments In Fluids10, 181193 (1991).
[CrossRef]

P. T. Tokumaru and P. E. Dimotakis, “Image correlation velocimetry,” Experiments In Fluids19, 115 (1995).
[CrossRef]

Ieee Transactions on Medical Imaging

T. M. Lehmann, C. Gonner, and K. Spitzer, “Survey: interpolation methods in medical image processing,” Ieee Transactions on Medical Imaging18, 1049–1075 (1999).
[CrossRef]

J. Chem. Phys.

D. E. Koppel, “Analysis of macromolecular polydispersity in intensity correlation spectroscopy: The method of cumulants,” J. Chem. Phys.57, 4814–4820 (1972).
[CrossRef]

S. Kirsch, V. Frenz, W. Schartl, E. Bartsch, and H. Sillescu, “Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes,” J. Chem. Phys.104, 1758–1761 (1996).
[CrossRef]

J. Phys.: Condens. Matter

D. El Masri, M. Pierno, L. Berthier, and L. Cipelletti, “Aging and ultra-slow equilibration in concentrated colloidal hard spheres,” J. Phys.: Condens. Matter17, S3543 (2005).
[CrossRef]

Lasers in Medical Science

M. Draijer, E. Hondebrink, T. Leeuwen, and W. Steenbergen, “Review of laser speckle contrast techniques for visualizing tissue perfusion,” Lasers in Medical Science24, 639 (2009).
[CrossRef]

Nature Materials

O. Lieleg, J. Kayser, G. Brambilla, L. Cipelletti, and A. R. Bausch, “Slow dynamics and internal stress relaxation in bundled cytoskeletal networks,” Nature Materials10, 236–242 (2011).
[CrossRef] [PubMed]

Optics and Lasers in Engineering

T. D. Dudderar, R. Meynart, and P. G. Simpkins, “Full-field laser metrology for fluid velocity measurement,” Optics and Lasers in Engineering9, 163 (1988).
[CrossRef]

Phys. Rev. E

A. Duri, H. Bissig, V. Trappe, and L. Cipelletti, “Time-resolved-correlation measurements of temporally heterogeneous dynamics,” Phys. Rev. E72, 051401 (2005).
[CrossRef]

F. Giavazzi, D. Brogioli, V. Trappe, T. Bellini, and R. Cerbino, “Scattering information obtained by optical microscopy: Differential dynamic microscopy and beyond,” Phys. Rev. E80, 031403 (2009).
[CrossRef]

Phys. Rev. Lett.

S. Buzzaccaro, E. Secchi, and R. Piazza, “Ghost particle velocimetry: accurate 3D flow visualization using standard lab equipment,” Phys. Rev. Lett.111048101 (2013).
[CrossRef] [PubMed]

P. Jop, V. Mansard, P. Chaudhuri, L. Bocquet, and A. Colin, “Microscale rheology of a soft glassy material close to yielding,” Phys. Rev. Lett.108, 148301 (2012)
[CrossRef] [PubMed]

G. Brambilla, D. El Masri, M. Pierno, L. Berthier, L. Cipelletti, G. Petekidis, and A. B. Schofield, “Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition,” Phys. Rev. Lett.102, 085703 (2009).
[CrossRef] [PubMed]

P. N. Pusey and W. van Megen, “Observation of a glass-transition in suspensions of spherical colloidal particles,” Phys. Rev. Lett.59, 2083 (1987).
[CrossRef] [PubMed]

V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, and P. Schall, “Long-range strain correlations in sheared colloidal glasses,” Phys. Rev. Lett.107, 198303 (2011).
[CrossRef] [PubMed]

T. Divoux, D. Tamarii, C. Barentin, and S. Manneville, “Transient shear banding in a simple yield stress fluid,” Phys. Rev. Lett.104, 208301 (2010).
[CrossRef] [PubMed]

A. Duri, D. A. Sessoms, V. Trappe, and L. Cipelletti, “Resolving long-range spatial correlations in jammed colloidal systems using photon correlation imaging,” Phys. Rev. Lett.102, 085702 (2009).
[CrossRef] [PubMed]

A. Amon, V. B. Nguyen, A. Bruand, J. Crassous, and E. Clement, “Hot spots in an athermal system,” Phys. Rev. Lett.108, 135502 (2012).
[CrossRef] [PubMed]

G. Brambilla, S. Buzzaccaro, R. Piazza, L. Berthier, and L. Cipelletti, “Highly nonlinear dynamics in a slowly sedimenting colloidal gel,” Phys. Rev. Lett.106, 118302 (2011).
[CrossRef] [PubMed]

Physiological Measurement

J. D. Briers, “Laser Doppler, speckle and related techniques for blood perfusion mapping and imaging,” Physiological Measurement22, R35–R66 (2001).
[CrossRef]

Proc. IEEE

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier-transform,” Proc. IEEE66, 5183 (1978).
[CrossRef]

Rev. Sci. Instrum.

A. P. Y. Wong and P. Wiltzius, “Dynamic light-scattering with a CCD camera,” Rev. Sci. Instrum.64, 2547–2549 (1993).
[CrossRef]

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum.76, 093110 (2005).
[CrossRef]

Science

P. Schall, D. A. Weitz, and F. Spaepen, “Structural rearrangements that govern flow in colloidal glasses,” Science318, 1895 (2007).

Soft Matter

S. Maccarrone, G. Brambilla, O. Pravaz, A. Duri, M. Ciccotti, J. M. Fromental, E. Pashkovski, A. Lips, D. Sessoms, V. Trappe, and L. Cipelletti, “Ultra-long range correlations of the dynamics of jammed soft matter,” Soft Matter6, 5514–5522 (2010).
[CrossRef]

P. Zakharov and F. Scheffold, “Monitoring spatially heterogeneous dynamics in a drying colloidal thin film,” Soft Matter8, 102–113 (2010).
[CrossRef]

Other

L. Cipelletti, “Method and device for characterizing the internal dynamics of a sample of material in the presence of a rigid displacement,” Patent WO 2012/076826, 14June2012.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications(Roberts and Company, Englewood, 2007).

R. K. Erf, Speckle Metrology(Academic, 1978).

B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, 1976).

W. H. Press and S. A. Teukolsky, Numerical Recipes in C. (Cambridge University Press, 1992).

G. J. Tearney and E. B. Bouma, “Optical methods and systems for tissue analysis,” Patent US20020183601 A1, 5December2002.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

a): schematic representation of an image J that is a shifted version of image I (only four pixels are shown for clarity). The intensity in a given pixel of J may be obtained as a linear combination of (up to) four pixels of I, with weights proportional to the colored areas. b): quadrant detection scheme for locating the direction of the shift. The nine elements closest to the peak of the cross-correlation between I and J are represented here. The shaded areas are (in pixel units) α1 = 0.485869913, α2 = 0.545406041, α3 = 0.25; see Sec. 6 for more details. c): typical speckle image obtained in a PCI experiment.

Fig. 2
Fig. 2

a)–c) spatial cross-correlation between speckle images generated by a diluted Brownian suspension that is translated along the y direction by a motor. The speckle patterns are recorded on a CCD using an imaging collection optics (see text for more details). As the delay τ between pair of images is increased, the peak position shifts to larger y and its height decreases, due to the relative motion of the Brownian particles. d) cut of the cross-correlation along the Δx = 0 line. Curves are labeled by τ. Inset: same data, replotted as a function of spatial shift with respect to the peak position. e) same as d), but for a ground glass, a scatterer whose internal dynamics are frozen. Note that the peak height remains essentially constant as the sample is translated.

Fig. 3
Fig. 3

a): displacement versus time, measured for a diluted Brownian suspension translated at a constant speed. The line is a linear fit to the data. b) Intensity correlation functions probing the microscopic dynamics. Solid squares: quiescent sample; open circles: raw g2 − 1 measured while translating the sample with a motor; crosses: same data, corrected for the contribution of the rigid motion of the speckle pattern.

Fig. 4
Fig. 4

a): velocity profiles for a sheared colloidal glass (symbols). Data are labeled by the time after initiating the shear. The dotted line indicates the position of the mobile wall, the solid line is the the velocity profile for uniform shear. The arrow indicates the location for which the data shown in b) have been measured. b) intensity correlation functions for the quiescent glass (crosses) and after applying a constant shear. Open (solid) symbols indicate the raw (corrected for drift) intensity correlation functions.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

g 2 ( τ ) 1 = I p ( t ) I p ( t + τ ) p I p ( t ) p I p ( t + τ ) p 1 t ,
corr [ J , I ] ( k , l ) = covar [ J , I ] ( k , l ) var [ J ] var [ I ]
covar [ J , I ] ( k , l ) = N 1 r , c J r , c I r + k , c + l N 2 r , c J r , c r , c I r + k , c + l
var [ I ] = N 1 r , c I r , c 2 ( N 1 r , c I r , c ) 2 .
J r , c = d 0 , 0 I r + k ¯ , c + l ¯ + d 1 , 0 I r + k ¯ + 1 , c + l ¯ + d 0 , 1 I r + k ¯ , c + l ¯ + 1 + d 1 , 1 I r + k ¯ + 1 , c + l ¯ + 1 + ε r , c .
χ 2 ( a ) = r , c i = 1 4 ( a i I r + k i , c + l i J r , c ) 2 ,
b i = covar [ J , I ] ( k i , l i )
M i , j = covar [ I , I ] ( k i k j , l i l j ) .
Δ x = a 2 + a 4 i = 1 4 a i + l 1
Δ y = a 3 + a 4 i = 1 4 a i + k 1
G 2 ( τ ) = N 1 r , c J r , c I r , c .
I r , c = k , l h ( r + Δ y k ) h ( c + Δ x l ) I k , l ,
Δ x = j x + δ x ˜
Δ y = i y + δ y ˜ ,
h ( x ) = w ( x ) sin ( π x ) / ( π x ) for | x | M / 2 h ( x ) = 0 elsewhere ,
w ( x ) = 0.42323 + 0.49755 cos ( 2 π x M ) + 0.07922 cos ( 4 π x M ) .
k , l = M / 2 + 1 M / 2 h ( x ) = 1 ,
I r , c = k , l = M / 2 + 1 M / 2 h ( δ y ˜ k ) h ( δ x ˜ l ) I k + r + i y , l + c + j x .
G 2 ( τ ) = k , l = M / 2 + 1 M / 2 h ( δ y ˜ k ) h ( δ x ˜ l ) [ N 1 r , c J r , c I r + k + i y , c + l + j x ] .
G 2 ( t , τ ) J ¯ I ¯ = k , l = M / 2 + 1 M / 2 h ( δ y ˜ k ) h ( δ x ˜ l ) covar [ J , I ] ( k + i y , l + j x )
g 2 ( t , τ ) 1 = k , l = M / 2 + 1 M / 2 h ( δ y ˜ k ) h ( δ x ˜ l ) covar [ J , I ] ( k + i y , l + j x ) J ¯ I ¯ ,
w A = α 2 corr [ J , I ] ( k ¯ 1 , l ¯ 1 ) + α 1 [ corr [ J , I ] ( k ¯ 1 , l ¯ ) + corr [ J , I ] ( k ¯ , l ¯ 1 ) + α 3 corr [ J , I ] ( k ¯ , l ¯ )
w B = α 2 corr [ J , I ] ( k ¯ 1 , l ¯ + 1 ) + α 1 [ corr [ J , I ] ( k ¯ 1 , l ¯ ) + corr [ J , I ] ( k ¯ , l ¯ + 1 ) + α 3 corr [ J , I ] ( k ¯ , l ¯ )
w C = α 2 corr [ J , I ] ( k ¯ + 1 , l ¯ 1 ) + α 1 [ corr [ J , I ] ( k ¯ , l ¯ 1 ) + corr [ J , I ] ( k ¯ + 1 , l ¯ ) + α 3 corr [ J , I ] ( k ¯ , l ¯ )
w D = α 2 corr [ J , I ] ( k ¯ + 1 , l ¯ + 1 ) + α 1 [ corr [ J , I ] ( k ¯ , l ¯ + 1 ) + corr [ J , I ] ( k ¯ + 1 , l ¯ ) + α 3 corr [ J , I ] ( k ¯ , l ¯ ) ,
k 1 = k 2 = floor ( k ¯ + δ r )
k 3 = k 4 = k 1 + 1
l 1 = l 3 = floor ( l ¯ + δ c )
l 2 = l 4 = l 1 + 1 ,
δ r = w C + w D w A w B w A + w B + w C + w D
δ c = w B + w D w A w C w A + w B + w C + w D .

Metrics