Abstract

Multicolour lasing with wavelength varying from 578 nm to 640 nm is realized from a single bandgap-graded CdSSe alloy nanoribbon, by selecting the excited spot at room temperature. Though reabsorption is a serious problem to achieve lasing at short wavelength, multiple scatters on the nanoribbon form localized cavities, and thus lasing at different wavelengths is realized. By increasing the excitation area, multicolour lasing from the same nanoribbon is also observed simultaneously.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
    [CrossRef]
  2. J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
    [CrossRef] [PubMed]
  3. F. Qian, Y. Li, S. Gradečak, D. Wang, C. Barrelet, and C. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett.4(10), 1975–1979 (2004).
    [CrossRef]
  4. J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
    [CrossRef] [PubMed]
  5. R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
    [CrossRef] [PubMed]
  6. J. Zapien, Y. Liu, Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett.90(21), 213114 (2007).
    [CrossRef]
  7. A. Pan, W. Zhou, E. S. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett.9(2), 784–788 (2009).
    [CrossRef] [PubMed]
  8. J. Jie, W. Zhang, I. Bello, C. Lee, and S. Lee, “One-dimensional II—VI nanostructures: Synthesis, properties and optoelectronic applications,” Nano Today5(4), 313–336 (2010).
    [CrossRef]
  9. X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater.24(1), 13–33 (2012).
    [CrossRef] [PubMed]
  10. T. Takahashi, P. Nichols, K. Takei, A. C. Ford, A. Jamshidi, M. C. Wu, C. Z. Ning, and A. Javey, “Contact printing of compositionally graded CdSxSe1-x nanowire parallel arrays for tunable photodetectors,” Nanotechnology23(4), 045201 (2012).
    [CrossRef] [PubMed]
  11. F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc.133(7), 2037–2039 (2011).
    [CrossRef] [PubMed]
  12. F. Gu, H. Yu, W. Fang, and L. Tong, “Broad spectral response in composition-graded CdSSe single nanowires via waveguiding excitation,” Appl. Phys. Lett.99(18), 181111 (2011).
    [CrossRef]
  13. J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
    [CrossRef] [PubMed]
  14. Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express17(24), 21813–21818 (2009).
    [CrossRef] [PubMed]
  15. F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
    [CrossRef] [PubMed]
  16. H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
    [CrossRef]
  17. Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett.11(11), 5085–5089 (2011).
    [CrossRef] [PubMed]
  18. C. Zhang, Y. Yan, Y. Y. Jing, Q. Shi, Y. S. Zhao, and J. Yao, “One-dimensional organic photonic heterostructures: rational construction and spatial engineering of excitonic emission,” Adv. Mater.24(13), 1703–1708 (2012).
    [CrossRef] [PubMed]
  19. Q. Yang, X. Jiang, X. Guo, Y. Chen, and L. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett.94(10), 101108 (2009).
    [CrossRef]

2012

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater.24(1), 13–33 (2012).
[CrossRef] [PubMed]

T. Takahashi, P. Nichols, K. Takei, A. C. Ford, A. Jamshidi, M. C. Wu, C. Z. Ning, and A. Javey, “Contact printing of compositionally graded CdSxSe1-x nanowire parallel arrays for tunable photodetectors,” Nanotechnology23(4), 045201 (2012).
[CrossRef] [PubMed]

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

C. Zhang, Y. Yan, Y. Y. Jing, Q. Shi, Y. S. Zhao, and J. Yao, “One-dimensional organic photonic heterostructures: rational construction and spatial engineering of excitonic emission,” Adv. Mater.24(13), 1703–1708 (2012).
[CrossRef] [PubMed]

2011

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett.11(11), 5085–5089 (2011).
[CrossRef] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc.133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

F. Gu, H. Yu, W. Fang, and L. Tong, “Broad spectral response in composition-graded CdSSe single nanowires via waveguiding excitation,” Appl. Phys. Lett.99(18), 181111 (2011).
[CrossRef]

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

2010

J. Jie, W. Zhang, I. Bello, C. Lee, and S. Lee, “One-dimensional II—VI nanostructures: Synthesis, properties and optoelectronic applications,” Nano Today5(4), 313–336 (2010).
[CrossRef]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

2009

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

A. Pan, W. Zhou, E. S. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett.9(2), 784–788 (2009).
[CrossRef] [PubMed]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Q. Yang, X. Jiang, X. Guo, Y. Chen, and L. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett.94(10), 101108 (2009).
[CrossRef]

2007

J. Zapien, Y. Liu, Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett.90(21), 213114 (2007).
[CrossRef]

2004

F. Qian, Y. Li, S. Gradečak, D. Wang, C. Barrelet, and C. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett.4(10), 1975–1979 (2004).
[CrossRef]

2002

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

2001

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
[CrossRef] [PubMed]

1999

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

Barrelet, C.

F. Qian, Y. Li, S. Gradečak, D. Wang, C. Barrelet, and C. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett.4(10), 1975–1979 (2004).
[CrossRef]

Bello, I.

J. Jie, W. Zhang, I. Bello, C. Lee, and S. Lee, “One-dimensional II—VI nanostructures: Synthesis, properties and optoelectronic applications,” Nano Today5(4), 313–336 (2010).
[CrossRef]

Cao, H.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

Chang, R.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

Chen, Y.

Q. Yang, X. Jiang, X. Guo, Y. Chen, and L. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett.94(10), 101108 (2009).
[CrossRef]

Cheng, J.

Chin, A. H.

A. Pan, W. Zhou, E. S. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett.9(2), 784–788 (2009).
[CrossRef] [PubMed]

Choi, H. J.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

Choi, Y.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

Cui, Y.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
[CrossRef] [PubMed]

Ding, Y.

Duan, X.

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
[CrossRef] [PubMed]

Fan, C.

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

Fang, W.

F. Gu, H. Yu, W. Fang, and L. Tong, “Broad spectral response in composition-graded CdSSe single nanowires via waveguiding excitation,” Appl. Phys. Lett.99(18), 181111 (2011).
[CrossRef]

Ford, A. C.

T. Takahashi, P. Nichols, K. Takei, A. C. Ford, A. Jamshidi, M. C. Wu, C. Z. Ning, and A. Javey, “Contact printing of compositionally graded CdSxSe1-x nanowire parallel arrays for tunable photodetectors,” Nanotechnology23(4), 045201 (2012).
[CrossRef] [PubMed]

Fu, J.

Gargas, D.

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Gradecak, S.

F. Qian, Y. Li, S. Gradečak, D. Wang, C. Barrelet, and C. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett.4(10), 1975–1979 (2004).
[CrossRef]

Gu, F.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc.133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

F. Gu, H. Yu, W. Fang, and L. Tong, “Broad spectral response in composition-graded CdSSe single nanowires via waveguiding excitation,” Appl. Phys. Lett.99(18), 181111 (2011).
[CrossRef]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

Gudiksen, M. S.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
[CrossRef] [PubMed]

Guo, P.

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

Guo, X.

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

Q. Yang, X. Jiang, X. Guo, Y. Chen, and L. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett.94(10), 101108 (2009).
[CrossRef]

Heo, C. J.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

Ho, S.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

Hu, W.

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

Huang, W.

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

Jamshidi, A.

T. Takahashi, P. Nichols, K. Takei, A. C. Ford, A. Jamshidi, M. C. Wu, C. Z. Ning, and A. Javey, “Contact printing of compositionally graded CdSxSe1-x nanowire parallel arrays for tunable photodetectors,” Nanotechnology23(4), 045201 (2012).
[CrossRef] [PubMed]

Javey, A.

T. Takahashi, P. Nichols, K. Takei, A. C. Ford, A. Jamshidi, M. C. Wu, C. Z. Ning, and A. Javey, “Contact printing of compositionally graded CdSxSe1-x nanowire parallel arrays for tunable photodetectors,” Nanotechnology23(4), 045201 (2012).
[CrossRef] [PubMed]

Jiang, X.

Q. Yang, X. Jiang, X. Guo, Y. Chen, and L. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett.94(10), 101108 (2009).
[CrossRef]

Jie, J.

J. Jie, W. Zhang, I. Bello, C. Lee, and S. Lee, “One-dimensional II—VI nanostructures: Synthesis, properties and optoelectronic applications,” Nano Today5(4), 313–336 (2010).
[CrossRef]

Jing, Y. Y.

C. Zhang, Y. Yan, Y. Y. Jing, Q. Shi, Y. S. Zhao, and J. Yao, “One-dimensional organic photonic heterostructures: rational construction and spatial engineering of excitonic emission,” Adv. Mater.24(13), 1703–1708 (2012).
[CrossRef] [PubMed]

Johnson, J. C.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

Knutsen, K. P.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

Lee, C.

J. Jie, W. Zhang, I. Bello, C. Lee, and S. Lee, “One-dimensional II—VI nanostructures: Synthesis, properties and optoelectronic applications,” Nano Today5(4), 313–336 (2010).
[CrossRef]

Lee, C. S.

J. Zapien, Y. Liu, Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett.90(21), 213114 (2007).
[CrossRef]

Lee, L. P.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

Lee, S.

J. Jie, W. Zhang, I. Bello, C. Lee, and S. Lee, “One-dimensional II—VI nanostructures: Synthesis, properties and optoelectronic applications,” Nano Today5(4), 313–336 (2010).
[CrossRef]

Lee, S. T.

J. Zapien, Y. Liu, Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett.90(21), 213114 (2007).
[CrossRef]

Leong, E. S.

A. Pan, W. Zhou, E. S. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett.9(2), 784–788 (2009).
[CrossRef] [PubMed]

Li, Y.

F. Qian, Y. Li, S. Gradečak, D. Wang, C. Barrelet, and C. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett.4(10), 1975–1979 (2004).
[CrossRef]

Lieber, C.

F. Qian, Y. Li, S. Gradečak, D. Wang, C. Barrelet, and C. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett.4(10), 1975–1979 (2004).
[CrossRef]

Lieber, C. M.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
[CrossRef] [PubMed]

Liu, R.

A. Pan, W. Zhou, E. S. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett.9(2), 784–788 (2009).
[CrossRef] [PubMed]

Liu, Y.

J. Zapien, Y. Liu, Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett.90(21), 213114 (2007).
[CrossRef]

Nichols, P.

T. Takahashi, P. Nichols, K. Takei, A. C. Ford, A. Jamshidi, M. C. Wu, C. Z. Ning, and A. Javey, “Contact printing of compositionally graded CdSxSe1-x nanowire parallel arrays for tunable photodetectors,” Nanotechnology23(4), 045201 (2012).
[CrossRef] [PubMed]

Ning, C. Z.

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater.24(1), 13–33 (2012).
[CrossRef] [PubMed]

T. Takahashi, P. Nichols, K. Takei, A. C. Ford, A. Jamshidi, M. C. Wu, C. Z. Ning, and A. Javey, “Contact printing of compositionally graded CdSxSe1-x nanowire parallel arrays for tunable photodetectors,” Nanotechnology23(4), 045201 (2012).
[CrossRef] [PubMed]

A. Pan, W. Zhou, E. S. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett.9(2), 784–788 (2009).
[CrossRef] [PubMed]

Pan, A.

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater.24(1), 13–33 (2012).
[CrossRef] [PubMed]

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc.133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett.11(11), 5085–5089 (2011).
[CrossRef] [PubMed]

A. Pan, W. Zhou, E. S. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett.9(2), 784–788 (2009).
[CrossRef] [PubMed]

Park, J. H.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

Qian, F.

F. Qian, Y. Li, S. Gradečak, D. Wang, C. Barrelet, and C. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett.4(10), 1975–1979 (2004).
[CrossRef]

Saykally, R. J.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

Schaller, R. D.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

Seelig, E.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

Shan, Y.

J. Zapien, Y. Liu, Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett.90(21), 213114 (2007).
[CrossRef]

Shi, Q.

C. Zhang, Y. Yan, Y. Y. Jing, Q. Shi, Y. S. Zhao, and J. Yao, “One-dimensional organic photonic heterostructures: rational construction and spatial engineering of excitonic emission,” Adv. Mater.24(13), 1703–1708 (2012).
[CrossRef] [PubMed]

Takahashi, T.

T. Takahashi, P. Nichols, K. Takei, A. C. Ford, A. Jamshidi, M. C. Wu, C. Z. Ning, and A. Javey, “Contact printing of compositionally graded CdSxSe1-x nanowire parallel arrays for tunable photodetectors,” Nanotechnology23(4), 045201 (2012).
[CrossRef] [PubMed]

Takei, K.

T. Takahashi, P. Nichols, K. Takei, A. C. Ford, A. Jamshidi, M. C. Wu, C. Z. Ning, and A. Javey, “Contact printing of compositionally graded CdSxSe1-x nanowire parallel arrays for tunable photodetectors,” Nanotechnology23(4), 045201 (2012).
[CrossRef] [PubMed]

Tang, H.

J. Zapien, Y. Liu, Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett.90(21), 213114 (2007).
[CrossRef]

Tong, L.

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett.11(11), 5085–5089 (2011).
[CrossRef] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc.133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

F. Gu, H. Yu, W. Fang, and L. Tong, “Broad spectral response in composition-graded CdSSe single nanowires via waveguiding excitation,” Appl. Phys. Lett.99(18), 181111 (2011).
[CrossRef]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

Q. Yang, X. Jiang, X. Guo, Y. Chen, and L. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett.94(10), 101108 (2009).
[CrossRef]

Wan, Q.

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

Wang, D.

F. Qian, Y. Li, S. Gradečak, D. Wang, C. Barrelet, and C. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett.4(10), 1975–1979 (2004).
[CrossRef]

Wang, J.

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
[CrossRef] [PubMed]

Wang, P.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc.133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett.11(11), 5085–5089 (2011).
[CrossRef] [PubMed]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Wang, Q.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

Wang, S.

Wang, X.

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

Wu, M. C.

T. Takahashi, P. Nichols, K. Takei, A. C. Ford, A. Jamshidi, M. C. Wu, C. Z. Ning, and A. Javey, “Contact printing of compositionally graded CdSxSe1-x nanowire parallel arrays for tunable photodetectors,” Nanotechnology23(4), 045201 (2012).
[CrossRef] [PubMed]

Xu, J.

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc.133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett.11(11), 5085–5089 (2011).
[CrossRef] [PubMed]

Yan, R.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Yan, Y.

C. Zhang, Y. Yan, Y. Y. Jing, Q. Shi, Y. S. Zhao, and J. Yao, “One-dimensional organic photonic heterostructures: rational construction and spatial engineering of excitonic emission,” Adv. Mater.24(13), 1703–1708 (2012).
[CrossRef] [PubMed]

Yang, P.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

Yang, Q.

Q. Yang, X. Jiang, X. Guo, Y. Chen, and L. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett.94(10), 101108 (2009).
[CrossRef]

Y. Ding, Q. Yang, X. Guo, S. Wang, F. Gu, J. Fu, Q. Wan, J. Cheng, and L. Tong, “Nanowires/microfiber hybrid structure multicolor laser,” Opt. Express17(24), 21813–21818 (2009).
[CrossRef] [PubMed]

Yang, S. M.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

Yang, Z.

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett.11(11), 5085–5089 (2011).
[CrossRef] [PubMed]

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc.133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Yao, J.

C. Zhang, Y. Yan, Y. Y. Jing, Q. Shi, Y. S. Zhao, and J. Yao, “One-dimensional organic photonic heterostructures: rational construction and spatial engineering of excitonic emission,” Adv. Mater.24(13), 1703–1708 (2012).
[CrossRef] [PubMed]

Yu, H.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc.133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

F. Gu, H. Yu, W. Fang, and L. Tong, “Broad spectral response in composition-graded CdSSe single nanowires via waveguiding excitation,” Appl. Phys. Lett.99(18), 181111 (2011).
[CrossRef]

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Zapien, J.

J. Zapien, Y. Liu, Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett.90(21), 213114 (2007).
[CrossRef]

Zhang, C.

C. Zhang, Y. Yan, Y. Y. Jing, Q. Shi, Y. S. Zhao, and J. Yao, “One-dimensional organic photonic heterostructures: rational construction and spatial engineering of excitonic emission,” Adv. Mater.24(13), 1703–1708 (2012).
[CrossRef] [PubMed]

Zhang, Q.

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

Zhang, W.

J. Jie, W. Zhang, I. Bello, C. Lee, and S. Lee, “One-dimensional II—VI nanostructures: Synthesis, properties and optoelectronic applications,” Nano Today5(4), 313–336 (2010).
[CrossRef]

Zhao, Y.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

Zhao, Y. S.

C. Zhang, Y. Yan, Y. Y. Jing, Q. Shi, Y. S. Zhao, and J. Yao, “One-dimensional organic photonic heterostructures: rational construction and spatial engineering of excitonic emission,” Adv. Mater.24(13), 1703–1708 (2012).
[CrossRef] [PubMed]

Zhou, W.

A. Pan, W. Zhou, E. S. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett.9(2), 784–788 (2009).
[CrossRef] [PubMed]

Zhu, X.

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

Zhuang, X.

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater.24(1), 13–33 (2012).
[CrossRef] [PubMed]

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett.11(11), 5085–5089 (2011).
[CrossRef] [PubMed]

Zou, B.

A. Pan, W. Zhou, E. S. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett.9(2), 784–788 (2009).
[CrossRef] [PubMed]

ACS Nano

F. Gu, H. Yu, P. Wang, Z. Yang, and L. Tong, “Light-emitting polymer single nanofibers via waveguiding excitation,” ACS Nano4(9), 5332–5338 (2010).
[CrossRef] [PubMed]

Adv. Mater.

C. Zhang, Y. Yan, Y. Y. Jing, Q. Shi, Y. S. Zhao, and J. Yao, “One-dimensional organic photonic heterostructures: rational construction and spatial engineering of excitonic emission,” Adv. Mater.24(13), 1703–1708 (2012).
[CrossRef] [PubMed]

X. Zhuang, C. Z. Ning, and A. Pan, “Composition and bandgap-graded semiconductor alloy nanowires,” Adv. Mater.24(1), 13–33 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett.

J. Zapien, Y. Liu, Y. Shan, H. Tang, C. S. Lee, and S. T. Lee, “Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons,” Appl. Phys. Lett.90(21), 213114 (2007).
[CrossRef]

Q. Yang, X. Jiang, X. Guo, Y. Chen, and L. Tong, “Hybrid structure laser based on semiconductor nanowires and a silica microfiber knot cavity,” Appl. Phys. Lett.94(10), 101108 (2009).
[CrossRef]

F. Gu, H. Yu, W. Fang, and L. Tong, “Broad spectral response in composition-graded CdSSe single nanowires via waveguiding excitation,” Appl. Phys. Lett.99(18), 181111 (2011).
[CrossRef]

J. Am. Chem. Soc.

F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, and A. Pan, “Spatial bandgap engineering along single alloy nanowires,” J. Am. Chem. Soc.133(7), 2037–2039 (2011).
[CrossRef] [PubMed]

Nano Lett.

J. Xu, X. Zhuang, P. Guo, Q. Zhang, W. Huang, Q. Wan, W. Hu, X. Wang, X. Zhu, C. Fan, Z. Yang, L. Tong, X. Duan, and A. Pan, “Wavelength-converted/selective waveguiding based on composition-graded semiconductor nanowires,” Nano Lett.12(9), 5003–5007 (2012).
[CrossRef] [PubMed]

A. Pan, W. Zhou, E. S. Leong, R. Liu, A. H. Chin, B. Zou, and C. Z. Ning, “Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip,” Nano Lett.9(2), 784–788 (2009).
[CrossRef] [PubMed]

F. Qian, Y. Li, S. Gradečak, D. Wang, C. Barrelet, and C. Lieber, “Gallium nitride-based nanowire radial heterostructures for nanophotonics,” Nano Lett.4(10), 1975–1979 (2004).
[CrossRef]

Z. Yang, J. Xu, P. Wang, X. Zhuang, A. Pan, and L. Tong, “On-nanowire spatial band gap design for white light emission,” Nano Lett.11(11), 5085–5089 (2011).
[CrossRef] [PubMed]

Nano Today

J. Jie, W. Zhang, I. Bello, C. Lee, and S. Lee, “One-dimensional II—VI nanostructures: Synthesis, properties and optoelectronic applications,” Nano Today5(4), 313–336 (2010).
[CrossRef]

Nanotechnology

T. Takahashi, P. Nichols, K. Takei, A. C. Ford, A. Jamshidi, M. C. Wu, C. Z. Ning, and A. Javey, “Contact printing of compositionally graded CdSxSe1-x nanowire parallel arrays for tunable photodetectors,” Nanotechnology23(4), 045201 (2012).
[CrossRef] [PubMed]

Nat. Mater.

J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. Yang, and R. J. Saykally, “Single gallium nitride nanowire lasers,” Nat. Mater.1(2), 106–110 (2002).
[CrossRef] [PubMed]

Nat. Nanotechnol.

R. Yan, J. H. Park, Y. Choi, C. J. Heo, S. M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

Nat. Photonics

R. Yan, D. Gargas, and P. Yang, “Nanowire photonics,” Nat. Photonics3(10), 569–576 (2009).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

H. Cao, Y. Zhao, S. Ho, E. Seelig, Q. Wang, and R. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett.82(11), 2278–2281 (1999).
[CrossRef]

Science

J. Wang, M. S. Gudiksen, X. Duan, Y. Cui, and C. M. Lieber, “Highly polarized photoluminescence and photodetection from single indium phosphide nanowires,” Science293(5534), 1455–1457 (2001).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) SEM image of the selected single bandgap-graded alloy CdSSe nanoribbon. Scale bar, 10 µm. (b) PL image of the same nanoribbon illuminated by a defocused laser beam at 532 nm. White arrows indicate the positions of visible defects and indent on the nanoribbons. (c) Schematic diagram of the bandgap structure along the nanoribbon shown above. (d) The PL spectrum from the whole nanoribbon.

Fig. 2
Fig. 2

(a) Schematic diagram of moving the focused excitation spot along the nanoribbon. (b) The normalized lasing spectra (shown in green, yellow, orange, red lines) collected by changing excitation spot along the nanoribbon. The insets are the corresponding lasing images at different wavelengths.

Fig. 3
Fig. 3

The relationships between output laser intensity and excitation power density. The red line and the green line represent the laser intensities centered at 633 nm and 579 nm, respectively. The inset shows the evolution of the lasing spectra centered at 633 nm with increasing excitation power density.

Fig. 4
Fig. 4

(a) Lasing spectrum centered around 578 nm. The peaks indicating individual optical modes in the spectrum are labeled with numbers. The inset shows the equal-spacing of the optical modes in frequency domain. (b) The lasing spectrum around 621 nm shows optical modes with irregular intervals.

Fig. 5
Fig. 5

Multicolor lasing spectra from the BGCAN with two excitation positions.

Metrics