Abstract

This paper describes a mathematical model of fluorescent biological particles composed of bacteria, viruses, or proteins. The fluorescent and/or light absorbing molecules included in the model are amino acids (tryptophan, etc.); nucleic acids (DNA, RNA, etc.); coenzymes (nicotinamide adenine dinucleotides, flavins, and vitamins B6 and K and variants of these); and dipicolinates. The concentrations, absorptivities, and fluorescence quantum yields are estimated from the literature, often with large uncertainties. The bioparticles in the model are spherical and homogeneous. Calculated fluorescence cross sections for particles excited at 266, 280, and 355 nm are compared with measured values from the literature for several bacteria, bacterial spores and albumins. The calculated 266- and 280-nm excited fluorescence is within a factor of 3.2 of the measurements for the vegetative cells and proteins, but overestimates the fluorescence of spores by a factor of 10 or more. This is the first reported modeling of the fluorescence of bioaerosols in which the primary fluorophores and absorbing molecules are included.

© 2013 OSA

Full Article  |  PDF Article

Errata

Steven C. Hill, David C. Doughty, Yong-Le Pan, Chatt Williamson, Joshua L. Santarpia, and Hanna H. Hill, "Fluorescence of bioaerosols: mathematical model including primary fluorescing and absorbing molecules in bacteria: errata," Opt. Express 22, 22817-22819 (2014)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-22-19-22817

References

  • View by:
  • |
  • |
  • |

  1. V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012).
    [CrossRef]
  2. S. M. Burrows, T. Butler, P. Jockel, H. Tos, A. Kerkweg, U. Poschl, and M. G. Lawrence, “Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems,” Atmos. Chem. Phys.9(23), 9281–9297 (2009).
    [CrossRef]
  3. J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change, 2nd ed. (Wiley-Interscience, 2006), especially Chap. 24, and Fig. 23.12 with its error bar of 2 W/m2 for tropospheric aerosol indirect effects.
  4. J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
    [CrossRef] [PubMed]
  5. G. Vali, M. Christensen, R. W. Fresh, E. L. Galyan, L. R. Maki, and R. C. Schnell, “Biogenic ice nuclei. Part II: Bacterial sources,” J. Atmos. Sci.33(8), 1565–1570 (1976).
    [CrossRef]
  6. C. Hoose, J. E. Kristjansson, J.-P. Chen, and A. Hazra, “A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model,” J. Atmos. Sci.67(8), 2483–2503 (2010).
    [CrossRef]
  7. C. Pöhlker, J. A. Huffman, and U. Poschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech.5(1), 37–71 (2012).
    [CrossRef]
  8. A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforests,” Atmos. Chem. Phys.11(11), 5491–5504 (2011).
    [CrossRef]
  9. J. A. Huffman, B. Treutlein, and U. Pöschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys.10(7), 3215–3233 (2010).
    [CrossRef]
  10. J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Poschl, “Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08,” Atmos. Chem. Phys.12(24), 11997–12019 (2012).
    [CrossRef]
  11. R. Jaenicke, S. Matthias-Maser, and S. Gruber, “Omnipresence of biological material in the atmosphere,” Environ. Chem.4(4), 217–220 (2007).
    [CrossRef]
  12. A. G. Hallar, G. Chirokova, I. McCubbin, T. H. Painter, C. Wiedinmyer, and C. Dodson, “Atmospheric bioaerosols transported via dust storms in the western United States,” Geophys. Res. Lett.38(17), L17801 (2011).
    [CrossRef]
  13. G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt.36(4), 958–967 (1997).
    [CrossRef] [PubMed]
  14. M. Seaver, D. C. Roselle, J. F. Pinto, and J. D. Eversole, “Absolute emission spectra from Bacillus subtilis and Escherichia coli vegetative cells in solution,” Appl. Opt.37(22), 5344–5347 (1998).
    [CrossRef] [PubMed]
  15. V. Sivaprakasam, A. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express12(19), 4457–4466 (2004).
    [CrossRef] [PubMed]
  16. V. Sivaprakasam, H. B. Lin, A. L. Huston, and J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express19(7), 6191–6208 (2011).
    [CrossRef] [PubMed]
  17. R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact.19(3), 216–222 (2002).
    [CrossRef]
  18. R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol.23(4), 653–664 (1995).
    [CrossRef]
  19. J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, “Fluorescence quantum efficiency of dry Bacillus globigii spores,” Opt. Express13(22), 8969–8979 (2005).
    [CrossRef] [PubMed]
  20. A. Manninen, M. Putkiranta, J. Saarela, A. Rostedt, T. Sorvajärvi, J. Toivonen, M. Marjamäki, J. Keskinen, and R. Hernberg, “Fluorescence cross sections of bioaerosols and suspended biological agents,” Appl. Opt.48(22), 4320–4328 (2009).
    [CrossRef] [PubMed]
  21. V. Agranovsky, Z. D. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol.38(4), 354–364 (2004).
    [CrossRef]
  22. Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
    [CrossRef]
  23. K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010).
    [CrossRef]
  24. D. J. O’Connor, D. Iacopino, D. A. Healy, D. O’Sullivan, and J. R. Sodeau, “The intrinsic fluorescence spectra of selected pollen and fungal spores,” Atmos. Environ.45(35), 6451–6458 (2011).
    [CrossRef]
  25. A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdez, and H. Kulaga, “Aerosol characteristics in a subway environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
    [CrossRef]
  26. Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, CT and Las Cruces, NM, USA,” J. Geophys. Res.112, D24S19 (2007).
    [CrossRef]
  27. P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci.28(3), 471–482 (1997).
    [CrossRef] [PubMed]
  28. F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
    [CrossRef]
  29. M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999).
    [CrossRef]
  30. P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express13(10), 3583–3593 (2005).
    [CrossRef] [PubMed]
  31. D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ.60, 534–543 (2012).
    [CrossRef]
  32. N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosols data,” Atmos. Meas. Tech.6(2), 337–347 (2013).
    [CrossRef]
  33. E. Toprak and M. Schnaiter, “Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study,” Atmos. Chem. Phys.13(1), 225–243 (2013).
    [CrossRef]
  34. F. Taketani, Y. Kanaya, T. Nakamura, K. Koizumi, N. Moteki, and N. Takegawa, “Measurement of fluorescence spectra from atmospheric single submicron particle using laser-induced fluorescence technique,” J. Aerosol Sci.58, 1–8 (2013).
    [CrossRef]
  35. Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010).
    [CrossRef] [PubMed]
  36. F. T. Gucker, C. T. O’Konski, H. B. Pickard, and J. N. Pitts, “A photoelectronic counter for colloidal particles,” J. Am. Chem. Soc.69(10), 2422–2431 (1947).
    [CrossRef] [PubMed]
  37. J. L. Santarpia, Y. L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, and R. G. Pinnick, “Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging,” Opt. Express20(28), 29867–29881 (2012).
    [CrossRef] [PubMed]
  38. C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, and C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt.50(6), 788–796 (2011).
    [CrossRef] [PubMed]
  39. E. J. D’Sa and S. E. Lohrenz, “Theoretical treatment of fluorescence detection by a dual-fiber-optic sensor with consideration of sampling variability and package effects associated with particles,” Appl. Opt.38(12), 2524–2535 (1999).
    [CrossRef] [PubMed]
  40. S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
    [CrossRef] [PubMed]
  41. S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol.70(5), 2786–2790 (2004).
    [CrossRef] [PubMed]
  42. H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescence scattering by molecules embedded in small particles,” Phys. Rev. A13(1), 396–404 (1976).
    [CrossRef]
  43. I. Veselovskii, V. Griaznov, A. Kolgotin, and D. N. Whiteman, “Angle- and size-dependent characteristics of incoherent Raman and fluorescent scattering by microspheres. 2. Numerical simulation,” Appl. Opt.41(27), 5783–5791 (2002).
    [CrossRef] [PubMed]
  44. V. Boutou, C. Favre, S. C. Hill, Y. L. Pan, R. K. Chang, and J. P. Wolf, “Backward enhanced emission from multiphoton processes in aerosols,” Appl. Phys. B75(2-3), 145–152 (2002).
    [CrossRef]
  45. M. Carrera, R. O. Zandomeni, and J.-L. Sagripanti, “Wet and dry density of Bacillus anthracis and other Bacillus species,” J. Appl. Microbiol.105(1), 68–77 (2008).
    [CrossRef] [PubMed]
  46. J. A. Lindsay, T. C. Beaman, and P. Gerhardt, “Protoplast water content of bacterial spores determined by buoyant density sedimentation,” J. Bacteriol.163(2), 735–737 (1985).
    [PubMed]
  47. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  48. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
  49. N. Velesco, T. Kaiser, and G. Schweiger, “Computation of the internal field of a large spherical particle by use of the geometrical-optics approximation,” Appl. Opt.36(33), 8724–8728 (1997).
    [CrossRef] [PubMed]
  50. N. Velesco and G. Schweiger, “Geometrical optics calculation of inelastic scattering on large particles,” Appl. Opt.38(6), 1046–1052 (1999).
    [CrossRef] [PubMed]
  51. M. I. Mishchenko, L. D. Tracis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University, 2002), p. 294, and Chap. 6.
  52. S. C. Hill, “Method for integrating the absorption cross sections of spheres over wavelength or diameter,” Appl. Opt.42(21), 4381–4388 (2003).
    [CrossRef] [PubMed]
  53. F. C. Neidhardt and H. E. Umbarger, “Chemical Composition of Escherichia coli,” in Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1, F. C. Neidhardt, ed. in chief. (ASM, 1996), Chap. 3.
  54. B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van Dien, and J. D. Rabinowitz, “Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli,” Nat. Chem. Biol.5(8), 593–599 (2009).
    [CrossRef] [PubMed]
  55. W. G. Murrell, “Composition of spores and spore structures,” in G. W. Gould and A. Hurst, eds., The Bacterial Spore, (Academic, 1969), Chap. 3.
  56. P. Setlow and E. A. Johnson, “Spores and their significance,” in M. P. Doyle, L. R. Beuchat, and T. J. Montville, eds., Food Microbiology: Fundamentals and Frontiers, 2nd ed., (ASM, 1997), p. 40, Table 3.1.
  57. D. L. Nelson and A. Kornberg, “Biochemical studies of bacterial sporulation and germination. XIX. Phosphate metabolism during sporulation,” J. Biol. Chem.245(5), 1137–1145 (1970).
    [PubMed]
  58. M. J. Leggett, G. McDonnell, S. P. Denyer, P. Setlow, and J.-Y. Maillard, “Bacterial spore structures and their protective role in biocide resistance,” J. Appl. Microbiol.113(3), 485–498 (2012).
    [CrossRef] [PubMed]
  59. P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 num,” Appl. Opt.36(13), 2818–2824 (1997).
    [CrossRef] [PubMed]
  60. E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190-2.50 microm,” Biopolymers72(5), 391–398 (2003).
    [CrossRef] [PubMed]
  61. E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130-2.50 microm spectral region,” Biopolymers62(2), 122–128 (2001).
    [CrossRef] [PubMed]
  62. N. Shahab, F. Flett, S. G. Oliver, and P. R. Butler, “Growth rate control of protein and nucleic acid content in Streptomyces coelicolor A3(2) and Escherichia coli B/r,” Microbiology142(8), 1927–1935 (1996).
    [CrossRef] [PubMed]
  63. P. P. Dennis and H. Bremer, “Macromolecular composition during steady-state growth of Escherichia coli B-r,” J. Bacteriol.119(1), 270–281 (1974).
    [PubMed]
  64. P. Setlow, “I will survive: DNA protection in bacterial spores,” Trends Microbiol.15(4), 172–180 (2007).
    [CrossRef] [PubMed]
  65. J. London and M. Knight, “Concentrations of nicotinamide nucleotide coenzymes in micro-organisms,” J. Gen. Microbiol.44(2), 241–254 (1966).
    [CrossRef] [PubMed]
  66. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, 1983), pp. 341–343.
  67. J. W. Longworth, “Luminescence of Polypeptides and Proteins,” in Excited States of Proteins and Nucleic Acids, R. F. Steiner and I. Weinryb, eds. (Plenum, 1971), pp. 319–484.
  68. S. F. Verlick, “Fluorescence spectra and polarization of glyceraldehyde-3-phosphate and lactic dehydrogenase coenzyme complexes,” J. Biol. Chem.233(6), 1455–1467 (1958).
    [PubMed]
  69. P. Pajot, “Fluroescence of proteins in 6-M guanidine hydrochloride. a method for the quantitative determination of tryptophan,” Eur. J. Biochem.63(1), 263–269 (1976).
    [CrossRef] [PubMed]
  70. H. Mach and C. R. Middaugh, “Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy,” Anal. Biochem.222(2), 323–331 (1994).
    [CrossRef] [PubMed]
  71. H. Edelhoch, “Spectroscopic determination of tryptophan and tyrosine in proteins,” Biochemistry6(7), 1948–1954 (1967).
    [CrossRef] [PubMed]
  72. H. F. Hameka, J. O. Jensen, K. K. Ong, A. C. Samuels, and C. P. Vlahacos, “Fluorescence of cysteine and cystine,” J. Phys. Chem. A102(2), 361–367 (1998).
    [CrossRef]
  73. R. O. Eitenmiller and W. O. Landen, Vitamin Analysis for the Food and Health Sciences (CRC, 1999).
  74. R. M. C. Dawson, D. C. Elliott, W. H. Elliot, and K. M. Jones, Data for Biochemical Research, 3rd ed. (Clarendon, 1986), pp. 122–131.
  75. T. G. Scott, R. D. Spencer, N. J. Leonard, and G. Weber, “Emission properties of NADH. Studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH, and simplified synthetic models,” J. Am. Chem. Soc.92, 687–695 (1970).
    [CrossRef]
  76. C. Y. Lee, R. D. Eichner, and N. O. Kaplan, “Conformations of diphosphopyridine coenzymes upon binding to dehydrogenases,” Proc. Natl. Acad. Sci. U.S.A.70(5), 1593–1597 (1973).
    [CrossRef] [PubMed]
  77. G. Weber and F. W. J. Teale, “Determination of the absolute quantum yield of fluorescent solutions,” Trans. Faraday Soc.53, 646–655 (1957).
    [CrossRef]
  78. K. Bystra-Mieloszyk, A. Balter, and R. Drabent, “Fluorescence quenching for flavins interacting with egg white riboflavin-binding protein,” Photochem. Photobiol.41(2), 141–147 (1985).
    [CrossRef]
  79. A. Gordon-Walker, G. R. Penzer, and G. K. Radda, “Excited states of flavins characterised by absorption, prompt and delayed emission spectra,” Eur. J. Biochem.13(2), 313–321 (1970).
    [CrossRef] [PubMed]
  80. E. Dimant, D. R. Sanadi, and F. M. Huennekens, “The isolation of flavin nucleotides,” J. Am. Chem. Soc.74(21), 5440–5444 (1952).
    [CrossRef]
  81. J. F. Powell, “The changes in the total vitamin B6 and the pyridoxal phosphate content of cells of Bacillus sphaericus during growth and sporulation: their possible relationships with alphaepsilon-diaminopimelic acid metabolism,” Biochem. J.70(1), 91–96 (1958).
    [PubMed]
  82. W. B. Dempsey, “Control of pyridoxine biosynthesis in Escherichia coli,” J. Bacteriol.90, 431–437 (1965).
    [PubMed]
  83. IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. IV. Pyridoxal and pyridoxal-5-phosphate. Absorption spectra,” Biofizika12(3), 397–406 (1967).
    [PubMed]
  84. E. Metzler and E. E. Snell, “Spectra and ionization constants of the vitamin B6 group and related 3-hydroxypyridine derivatives,” J. Am. Chem. Soc.77(9), 2431–2437 (1955).
    [CrossRef]
  85. E. A. Peterson and H. A. Sober, “Preparation of crystalline phosphorylated derivatives of vitamin B6,” J. Am. Chem. Soc.76(1), 169–175 (1954).
    [CrossRef]
  86. R. F. Chen, “Fluorescence quantum yield measurements: vitamin B6 compounds,” Science150(3703), 1593–1595 (1965).
    [CrossRef] [PubMed]
  87. IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. V. Pyridoxal and pyridoxal-5′-phosphate. Luminescent properties,” Biofizika12(5), 773–781 (1967).
    [PubMed]
  88. N. P. Bazhulina, IuV. Morozov, M. Ia. Karpeĭskiĭ, V. I. Ivanov, and A. I. Kuklin, “The optical and luminescent properties of vitamin B6 and its derivatives. II. Pyridoxine and pyridoxine-5′-phosphate,” Biofizika11(1), 42–47 (1966).
    [PubMed]
  89. K. O. Honikel and N. B. Madsen, “Comparison of the absorbance spectra and fluorescence behavior of phosphorylase b with that of model pyridoxal phosphate derivatives in various solvents,” J. Biol. Chem.247(4), 1057–1064 (1972).
    [PubMed]
  90. D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry, 5th ed. (Freeman, 2008), pp. 677–680, and 870 for vitamin B6 and congeners, and pp. 689–691, 866, and 884 for folates.
  91. H. Hayashi, “Pyridoxal enzymes: mechanistic diversity and uniformity,” J. Biochem.118(3), 463–473 (1995).
    [PubMed]
  92. M. Arrio-Dupont, “Etude par fluorescence de bases de Schiff du pyridoxal, comparaison avec la l aspartate-aminotransferase,” Photochem. Photobiol.12(4), 297–315 (1970).
    [CrossRef] [PubMed]
  93. E. Eisenstein, “Energetics of cooperative ligand binding to the active sites of biosynthetic threonine deaminase from Escherichia coli,” J. Biol. Chem.269(47), 29416–29422 (1994).
    [PubMed]
  94. J. M. Cambron, T. Sevilla, Pineda, and M. Blazquez, “Fluorescence of the Schiff bases of pyridoxal and pyridoxal 5′-phosphate with L-isoleucine in aqueous solutions,” J. Fluoresc.6, 1–6 (1996).
  95. M. Cortijo, I. Z. Steinberg, and S. Shaltiel, “Fluorescence of glycogen phosphorylase b. structural transitions and energy transfer,” J. Biol. Chem.246(4), 933–938 (1971).
    [PubMed]
  96. T. Beeler and J. E. Churchich, “4-aminobutyrate aminotransferase fluorescence studies,” Eur. J. Biochem.85(2), 365–371 (1978).
    [CrossRef] [PubMed]
  97. K.-H. Jhee, T. Yoshimura, N. Esaki, K. Yonaha, and K. Soda, “Thermostable ornithine aminotransferase from Bacillus sp. YM-2: purification and characterization,” J. Biochem.118(1), 101–108 (1995).
    [PubMed]
  98. N. Burridge and J. E. Churchich, “Effects of potassium iodide on aspartate aminotransferase,” Eur. J. Biochem.41(3), 533–538 (1974).
    [CrossRef] [PubMed]
  99. M. T. Olmo, F. Sánchez-Jiménez, M. A. Medina, and H. Hayashi, “Spectroscopic analysis of recombinant rat histidine decarboxylase,” J. Biochem.132(3), 433–439 (2002).
    [CrossRef] [PubMed]
  100. Y. Morino and E. E. Snell, “The relation of spectral changes and tritium exchange reactions to the mechanism of tryptophanase-catalyzed reactions,” J. Biol. Chem.242(12), 2800–2809 (1967).
    [PubMed]
  101. J. Donoso, F. Muñoz, and F. Garcia Blanco, “Quantitative description of the absorption spectra of the coenzyme in glycogen phosphorylases based on log-normal distribution curves,” Biochem. J.292(Pt 1), 225–229 (1993).
    [PubMed]
  102. M. Bertoldi, B. Cellini, S. D’Aguanno, and C. Borri Voltattorni, “Lysine 238 is an essential residue for α,β-elimination catalyzed by Treponema denticola cystalysin,” J. Biol. Chem.278(39), 37336–37343 (2003).
    [CrossRef] [PubMed]
  103. M. C. C. Raman, K. A. Johnson, B. A. Yard, J. Lowther, L. G. Carter, J. H. Naismith, and D. J. Campopiano, “The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics,” J. Biol. Chem.284(25), 17328–17339 (2009).
    [CrossRef] [PubMed]
  104. H. Ikushiro, H. Hayashi, and H. Kagamiyama, “Bacterial serine palmitoyltransferase: a water-soluble homodimeric prototype of the eukaryotic enzyme,” Biochim. Biophys. Acta1647(1-2), 116–120 (2003).
    [CrossRef] [PubMed]
  105. S. Kochhar, W. L. Finlayson, J. F. Kirsch, and P. Christen, “The stereospecific labilization of the C-4′ pro-S hydrogen of pyridoxamine 5′-phosphate is abolished in (Lys258----Ala) aspartate aminotransferase,” J. Biol. Chem.262(24), 11446–11448 (1987).
    [PubMed]
  106. J. E. Churchich and J. G. Farrelly, “The interaction of pyridoxamine 5-phosphate with aspartate aminotransferase,” J. Biol. Chem.244(1), 72–76 (1969).
    [PubMed]
  107. T. D. Kempe and G. R. Stark, “Pyridoxal 5′-phosphate, a fluorescent probe in the active site of aspartate transcarbamylase,” J. Biol. Chem.250(17), 6861–6869 (1975).
    [PubMed]
  108. S. S. Gropper, J. L. Smith, and J. L. Groth, Advanced Nutrition and Human Metabolism, 4th ed. (Thompson Wadsworth, 2005), pp. 301–306.
  109. A. Tyagi, A. Penzkofer, A. Batschauer, and E. Wolf, “Fluorescence behavior of 5,10-methenyltetrahydrofolate, 10-formyltetrahydrofolate, 10-formyldihydrofolate, and 10-formylfolate in aqueous solution at pH 8,” Chem. Phys.361(1-2), 75–82 (2009).
    [CrossRef]
  110. M. P. Serrano, M. Vignoni, M. L. Dántola, E. Oliveros, C. Lorente, and A. H. Thomas, “Emission properties of dihydropterins in aqueous solutions,” Phys. Chem. Chem. Phys.13(16), 7419–7425 (2011).
    [CrossRef] [PubMed]
  111. F. M. Cabrerizo, G. Petroselli, C. Lorente, A. L. Capparelli, A. H. Thomas, A. M. Braun, and E. Oliveros, “Substituent effects on the photophysical properties of pterin derivatives in acidic and alkaline aqueous solutions,” Photochem. Photobiol.81(5), 1234–1240 (2005).
    [CrossRef] [PubMed]
  112. M. D’Urso-Scott, J. Uhoch, and J. R. Bertino, “Formation of 10-formylfolic acid, a potent inhibitor of dihydrofolate reductase, in rat liver slices incubated with folic acid,” Proc. Natl. Acad. Sci. U.S.A.71(7), 2736–2739 (1974).
    [CrossRef] [PubMed]
  113. M. D. Collins and D. Jones, “Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication,” Microbiol. Rev.45(2), 316–354 (1981).
    [PubMed]
  114. D. H. Bishop, K. P. Pandya, and H. K. King, “Ubiquinone and vitamin K in bacteria,” Biochem. J.83, 606–614 (1962).
    [PubMed]
  115. Y. Haroon, D. S. Bacon, and J. A. Sadowski, “Liquid-chromatographic determination of vitamin K1 in plasma, with fluorometric detection,” Clin. Chem.32(10), 1925–1929 (1986).
    [PubMed]
  116. A. Kröger and V. Dadák, “On the role of quinones in bacterial electron transport. The respiratory system of Bacillus megaterium,” Eur. J. Biochem.11(2), 328–340 (1969).
    [CrossRef] [PubMed]
  117. R. Bentley and R. Meganathan, “Biosynthesis of vitamin K (menaquinone) in bacteria,” Microbiol. Rev.46(3), 241–280 (1982).
    [PubMed]
  118. J. Kruk, K. Strzałka, and R. M. Leblanc, “Fluorescence properties of plastoquinol, ubiquinol and α-tocopherol quinol in solution and liposome membranes,” J. Photochem. Photobiol. B19(1), 33–38 (1993).
    [CrossRef] [PubMed]
  119. S. Sarasanandarajah, “Multiwavelength fluorescence studies of Bacillus bacterial spores,” PhD Dissertation, University of Canterbury, Christchurch, New Zealand (2007).
  120. T. Pérez-Ruiz, C. Martínez-Lozano, M. A. García, and J. Martín, “High-performance liquid chromatography: photochemical reduction in aerobic conditions for determination of K vitamins using fluorescence detection,” J. Chromatogr. A1141(1), 67–72 (2007).
    [CrossRef] [PubMed]
  121. D. M. Hercules and L. B. Rogers, “Absorption and fluorescence spectra of some mono- and di-hydroxy naphthalenes,” Spectrochim. Acta [A]15, 393–408 (1959).
    [CrossRef]
  122. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed. (Academic, 1971), p. 337.
  123. J. F. Powell, “Isolation of dipicolinic acid (pyridine-2:6-dicarboxylic acid) from spores of Bacillus megatherium,” Biochem. J.54(2), 210–211 (1953).
    [PubMed]
  124. J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate,” Anal. Biochem.19(2), 327–337 (1967).
    [CrossRef] [PubMed]
  125. A. Alimova, A. Katz, H. E. Savage, M. Shah, G. Minko, D. V. Will, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation,” Appl. Opt.42(19), 4080–4087 (2003).
    [CrossRef] [PubMed]
  126. A. J. Kungl, A. J. W. G. Visser, H. F. Kauffmann, and M. Breitenbach, “Time-resolved fluorescence studies of dityrosine in the outer layer of intact yeast Ascospores,” Biophys. J.67(1), 309–317 (1994).
    [CrossRef] [PubMed]
  127. N. K. Pandey and A. I. Aronson, “Properties of the Bacillus subtilis spore coat,” J. Bacteriol.137(3), 1208–1218 (1979).
    [PubMed]
  128. R. C. Goldman and D. J. Tipper, “Bacillus subtilis spore coats: complexity and purification of a unique polypeptide component,” J. Bacteriol.135(3), 1091–1106 (1978).
    [PubMed]
  129. J. R. Stephens, “Measurements of the ultraviolet fluorescence cross sections and spectra of Bacillus anthracis simulants,” Los Alamos National Lab, Report Number: LAUR-98–4173, MAY 1999.
  130. J. Atkins, M. E. Thomas, and R. I. Joseph, “Spectrally resolved fluorescence cross sections of BG and BT with a 266-nm pump wavelength,” Chemical and Biological Sensing VIII, ed. A. W. Fountain III, Proc. of SPIE 6554, 65540T, (2007).
  131. Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.
  132. Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt.41, 2994–2999 (2002). Fig. 3, p. 2997.
  133. J. Kunnil, B. Swartz, and L. Reinisch, “Changes in the luminescence between dried and wet bacillus spores,” Appl. Opt.43(28), 5404–5409 (2004).
    [CrossRef] [PubMed]
  134. S. Sarasanandarajah, J. Kunnil, E. Chako, B. V. Bronk, and L. Reinisch, “Reversible changes in fluorescence of bacterial endospores found in aerosols due to hydration/drying,” J. Aerosol Sci.36(5-6), 689–699 (2005).
    [CrossRef]
  135. P. R. Callis, A. Petrenko, P. L. Muino, and J. R. Tusell, “Ab Initio prediction of tryptophan fluorescence quenching by protein electric field enabled electron transfer,” J. Phys. Chem. Biol. Lett.111, 10339–10355 (2007).
  136. A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. U.S.A.100(6), 3461–3466 (2003).
    [CrossRef] [PubMed]
  137. D. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf.112(13), 2182–2192 (2011).
    [CrossRef]
  138. D. Petrov, Y. Shkuratov, and G. Videen, “Analytic light-scattering solution of two merging spheres using Sh-matricies,” Opt. Commun.281(9), 2411–2423 (2008).
    [CrossRef]

2013 (4)

J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
[CrossRef] [PubMed]

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosols data,” Atmos. Meas. Tech.6(2), 337–347 (2013).
[CrossRef]

E. Toprak and M. Schnaiter, “Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study,” Atmos. Chem. Phys.13(1), 225–243 (2013).
[CrossRef]

F. Taketani, Y. Kanaya, T. Nakamura, K. Koizumi, N. Moteki, and N. Takegawa, “Measurement of fluorescence spectra from atmospheric single submicron particle using laser-induced fluorescence technique,” J. Aerosol Sci.58, 1–8 (2013).
[CrossRef]

2012 (6)

D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ.60, 534–543 (2012).
[CrossRef]

V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012).
[CrossRef]

C. Pöhlker, J. A. Huffman, and U. Poschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech.5(1), 37–71 (2012).
[CrossRef]

J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Poschl, “Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08,” Atmos. Chem. Phys.12(24), 11997–12019 (2012).
[CrossRef]

J. L. Santarpia, Y. L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, and R. G. Pinnick, “Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging,” Opt. Express20(28), 29867–29881 (2012).
[CrossRef] [PubMed]

M. J. Leggett, G. McDonnell, S. P. Denyer, P. Setlow, and J.-Y. Maillard, “Bacterial spore structures and their protective role in biocide resistance,” J. Appl. Microbiol.113(3), 485–498 (2012).
[CrossRef] [PubMed]

2011 (8)

C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, and C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt.50(6), 788–796 (2011).
[CrossRef] [PubMed]

A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforests,” Atmos. Chem. Phys.11(11), 5491–5504 (2011).
[CrossRef]

A. G. Hallar, G. Chirokova, I. McCubbin, T. H. Painter, C. Wiedinmyer, and C. Dodson, “Atmospheric bioaerosols transported via dust storms in the western United States,” Geophys. Res. Lett.38(17), L17801 (2011).
[CrossRef]

V. Sivaprakasam, H. B. Lin, A. L. Huston, and J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express19(7), 6191–6208 (2011).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

D. J. O’Connor, D. Iacopino, D. A. Healy, D. O’Sullivan, and J. R. Sodeau, “The intrinsic fluorescence spectra of selected pollen and fungal spores,” Atmos. Environ.45(35), 6451–6458 (2011).
[CrossRef]

M. P. Serrano, M. Vignoni, M. L. Dántola, E. Oliveros, C. Lorente, and A. H. Thomas, “Emission properties of dihydropterins in aqueous solutions,” Phys. Chem. Chem. Phys.13(16), 7419–7425 (2011).
[CrossRef] [PubMed]

D. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf.112(13), 2182–2192 (2011).
[CrossRef]

2010 (4)

K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

C. Hoose, J. E. Kristjansson, J.-P. Chen, and A. Hazra, “A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model,” J. Atmos. Sci.67(8), 2483–2503 (2010).
[CrossRef]

J. A. Huffman, B. Treutlein, and U. Pöschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys.10(7), 3215–3233 (2010).
[CrossRef]

2009 (5)

S. M. Burrows, T. Butler, P. Jockel, H. Tos, A. Kerkweg, U. Poschl, and M. G. Lawrence, “Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems,” Atmos. Chem. Phys.9(23), 9281–9297 (2009).
[CrossRef]

A. Manninen, M. Putkiranta, J. Saarela, A. Rostedt, T. Sorvajärvi, J. Toivonen, M. Marjamäki, J. Keskinen, and R. Hernberg, “Fluorescence cross sections of bioaerosols and suspended biological agents,” Appl. Opt.48(22), 4320–4328 (2009).
[CrossRef] [PubMed]

B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van Dien, and J. D. Rabinowitz, “Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli,” Nat. Chem. Biol.5(8), 593–599 (2009).
[CrossRef] [PubMed]

A. Tyagi, A. Penzkofer, A. Batschauer, and E. Wolf, “Fluorescence behavior of 5,10-methenyltetrahydrofolate, 10-formyltetrahydrofolate, 10-formyldihydrofolate, and 10-formylfolate in aqueous solution at pH 8,” Chem. Phys.361(1-2), 75–82 (2009).
[CrossRef]

M. C. C. Raman, K. A. Johnson, B. A. Yard, J. Lowther, L. G. Carter, J. H. Naismith, and D. J. Campopiano, “The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics,” J. Biol. Chem.284(25), 17328–17339 (2009).
[CrossRef] [PubMed]

2008 (2)

D. Petrov, Y. Shkuratov, and G. Videen, “Analytic light-scattering solution of two merging spheres using Sh-matricies,” Opt. Commun.281(9), 2411–2423 (2008).
[CrossRef]

M. Carrera, R. O. Zandomeni, and J.-L. Sagripanti, “Wet and dry density of Bacillus anthracis and other Bacillus species,” J. Appl. Microbiol.105(1), 68–77 (2008).
[CrossRef] [PubMed]

2007 (5)

P. Setlow, “I will survive: DNA protection in bacterial spores,” Trends Microbiol.15(4), 172–180 (2007).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, CT and Las Cruces, NM, USA,” J. Geophys. Res.112, D24S19 (2007).
[CrossRef]

R. Jaenicke, S. Matthias-Maser, and S. Gruber, “Omnipresence of biological material in the atmosphere,” Environ. Chem.4(4), 217–220 (2007).
[CrossRef]

P. R. Callis, A. Petrenko, P. L. Muino, and J. R. Tusell, “Ab Initio prediction of tryptophan fluorescence quenching by protein electric field enabled electron transfer,” J. Phys. Chem. Biol. Lett.111, 10339–10355 (2007).

T. Pérez-Ruiz, C. Martínez-Lozano, M. A. García, and J. Martín, “High-performance liquid chromatography: photochemical reduction in aerobic conditions for determination of K vitamins using fluorescence detection,” J. Chromatogr. A1141(1), 67–72 (2007).
[CrossRef] [PubMed]

2005 (4)

S. Sarasanandarajah, J. Kunnil, E. Chako, B. V. Bronk, and L. Reinisch, “Reversible changes in fluorescence of bacterial endospores found in aerosols due to hydration/drying,” J. Aerosol Sci.36(5-6), 689–699 (2005).
[CrossRef]

F. M. Cabrerizo, G. Petroselli, C. Lorente, A. L. Capparelli, A. H. Thomas, A. M. Braun, and E. Oliveros, “Substituent effects on the photophysical properties of pterin derivatives in acidic and alkaline aqueous solutions,” Photochem. Photobiol.81(5), 1234–1240 (2005).
[CrossRef] [PubMed]

J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, “Fluorescence quantum efficiency of dry Bacillus globigii spores,” Opt. Express13(22), 8969–8979 (2005).
[CrossRef] [PubMed]

P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express13(10), 3583–3593 (2005).
[CrossRef] [PubMed]

2004 (4)

V. Agranovsky, Z. D. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol.38(4), 354–364 (2004).
[CrossRef]

V. Sivaprakasam, A. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express12(19), 4457–4466 (2004).
[CrossRef] [PubMed]

S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol.70(5), 2786–2790 (2004).
[CrossRef] [PubMed]

J. Kunnil, B. Swartz, and L. Reinisch, “Changes in the luminescence between dried and wet bacillus spores,” Appl. Opt.43(28), 5404–5409 (2004).
[CrossRef] [PubMed]

2003 (7)

A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. U.S.A.100(6), 3461–3466 (2003).
[CrossRef] [PubMed]

A. Alimova, A. Katz, H. E. Savage, M. Shah, G. Minko, D. V. Will, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation,” Appl. Opt.42(19), 4080–4087 (2003).
[CrossRef] [PubMed]

H. Ikushiro, H. Hayashi, and H. Kagamiyama, “Bacterial serine palmitoyltransferase: a water-soluble homodimeric prototype of the eukaryotic enzyme,” Biochim. Biophys. Acta1647(1-2), 116–120 (2003).
[CrossRef] [PubMed]

M. Bertoldi, B. Cellini, S. D’Aguanno, and C. Borri Voltattorni, “Lysine 238 is an essential residue for α,β-elimination catalyzed by Treponema denticola cystalysin,” J. Biol. Chem.278(39), 37336–37343 (2003).
[CrossRef] [PubMed]

S. C. Hill, “Method for integrating the absorption cross sections of spheres over wavelength or diameter,” Appl. Opt.42(21), 4381–4388 (2003).
[CrossRef] [PubMed]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190-2.50 microm,” Biopolymers72(5), 391–398 (2003).
[CrossRef] [PubMed]

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdez, and H. Kulaga, “Aerosol characteristics in a subway environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

2002 (5)

R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact.19(3), 216–222 (2002).
[CrossRef]

I. Veselovskii, V. Griaznov, A. Kolgotin, and D. N. Whiteman, “Angle- and size-dependent characteristics of incoherent Raman and fluorescent scattering by microspheres. 2. Numerical simulation,” Appl. Opt.41(27), 5783–5791 (2002).
[CrossRef] [PubMed]

V. Boutou, C. Favre, S. C. Hill, Y. L. Pan, R. K. Chang, and J. P. Wolf, “Backward enhanced emission from multiphoton processes in aerosols,” Appl. Phys. B75(2-3), 145–152 (2002).
[CrossRef]

M. T. Olmo, F. Sánchez-Jiménez, M. A. Medina, and H. Hayashi, “Spectroscopic analysis of recombinant rat histidine decarboxylase,” J. Biochem.132(3), 433–439 (2002).
[CrossRef] [PubMed]

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt.41, 2994–2999 (2002). Fig. 3, p. 2997.

2001 (2)

1999 (4)

N. Velesco and G. Schweiger, “Geometrical optics calculation of inelastic scattering on large particles,” Appl. Opt.38(6), 1046–1052 (1999).
[CrossRef] [PubMed]

E. J. D’Sa and S. E. Lohrenz, “Theoretical treatment of fluorescence detection by a dual-fiber-optic sensor with consideration of sampling variability and package effects associated with particles,” Appl. Opt.38(12), 2524–2535 (1999).
[CrossRef] [PubMed]

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999).
[CrossRef]

1998 (2)

M. Seaver, D. C. Roselle, J. F. Pinto, and J. D. Eversole, “Absolute emission spectra from Bacillus subtilis and Escherichia coli vegetative cells in solution,” Appl. Opt.37(22), 5344–5347 (1998).
[CrossRef] [PubMed]

H. F. Hameka, J. O. Jensen, K. K. Ong, A. C. Samuels, and C. P. Vlahacos, “Fluorescence of cysteine and cystine,” J. Phys. Chem. A102(2), 361–367 (1998).
[CrossRef]

1997 (4)

1996 (2)

N. Shahab, F. Flett, S. G. Oliver, and P. R. Butler, “Growth rate control of protein and nucleic acid content in Streptomyces coelicolor A3(2) and Escherichia coli B/r,” Microbiology142(8), 1927–1935 (1996).
[CrossRef] [PubMed]

J. M. Cambron, T. Sevilla, Pineda, and M. Blazquez, “Fluorescence of the Schiff bases of pyridoxal and pyridoxal 5′-phosphate with L-isoleucine in aqueous solutions,” J. Fluoresc.6, 1–6 (1996).

1995 (3)

K.-H. Jhee, T. Yoshimura, N. Esaki, K. Yonaha, and K. Soda, “Thermostable ornithine aminotransferase from Bacillus sp. YM-2: purification and characterization,” J. Biochem.118(1), 101–108 (1995).
[PubMed]

H. Hayashi, “Pyridoxal enzymes: mechanistic diversity and uniformity,” J. Biochem.118(3), 463–473 (1995).
[PubMed]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol.23(4), 653–664 (1995).
[CrossRef]

1994 (3)

H. Mach and C. R. Middaugh, “Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy,” Anal. Biochem.222(2), 323–331 (1994).
[CrossRef] [PubMed]

E. Eisenstein, “Energetics of cooperative ligand binding to the active sites of biosynthetic threonine deaminase from Escherichia coli,” J. Biol. Chem.269(47), 29416–29422 (1994).
[PubMed]

A. J. Kungl, A. J. W. G. Visser, H. F. Kauffmann, and M. Breitenbach, “Time-resolved fluorescence studies of dityrosine in the outer layer of intact yeast Ascospores,” Biophys. J.67(1), 309–317 (1994).
[CrossRef] [PubMed]

1993 (2)

J. Kruk, K. Strzałka, and R. M. Leblanc, “Fluorescence properties of plastoquinol, ubiquinol and α-tocopherol quinol in solution and liposome membranes,” J. Photochem. Photobiol. B19(1), 33–38 (1993).
[CrossRef] [PubMed]

J. Donoso, F. Muñoz, and F. Garcia Blanco, “Quantitative description of the absorption spectra of the coenzyme in glycogen phosphorylases based on log-normal distribution curves,” Biochem. J.292(Pt 1), 225–229 (1993).
[PubMed]

1987 (1)

S. Kochhar, W. L. Finlayson, J. F. Kirsch, and P. Christen, “The stereospecific labilization of the C-4′ pro-S hydrogen of pyridoxamine 5′-phosphate is abolished in (Lys258----Ala) aspartate aminotransferase,” J. Biol. Chem.262(24), 11446–11448 (1987).
[PubMed]

1986 (1)

Y. Haroon, D. S. Bacon, and J. A. Sadowski, “Liquid-chromatographic determination of vitamin K1 in plasma, with fluorometric detection,” Clin. Chem.32(10), 1925–1929 (1986).
[PubMed]

1985 (2)

K. Bystra-Mieloszyk, A. Balter, and R. Drabent, “Fluorescence quenching for flavins interacting with egg white riboflavin-binding protein,” Photochem. Photobiol.41(2), 141–147 (1985).
[CrossRef]

J. A. Lindsay, T. C. Beaman, and P. Gerhardt, “Protoplast water content of bacterial spores determined by buoyant density sedimentation,” J. Bacteriol.163(2), 735–737 (1985).
[PubMed]

1982 (1)

R. Bentley and R. Meganathan, “Biosynthesis of vitamin K (menaquinone) in bacteria,” Microbiol. Rev.46(3), 241–280 (1982).
[PubMed]

1981 (1)

M. D. Collins and D. Jones, “Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication,” Microbiol. Rev.45(2), 316–354 (1981).
[PubMed]

1979 (1)

N. K. Pandey and A. I. Aronson, “Properties of the Bacillus subtilis spore coat,” J. Bacteriol.137(3), 1208–1218 (1979).
[PubMed]

1978 (2)

R. C. Goldman and D. J. Tipper, “Bacillus subtilis spore coats: complexity and purification of a unique polypeptide component,” J. Bacteriol.135(3), 1091–1106 (1978).
[PubMed]

T. Beeler and J. E. Churchich, “4-aminobutyrate aminotransferase fluorescence studies,” Eur. J. Biochem.85(2), 365–371 (1978).
[CrossRef] [PubMed]

1976 (3)

H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescence scattering by molecules embedded in small particles,” Phys. Rev. A13(1), 396–404 (1976).
[CrossRef]

P. Pajot, “Fluroescence of proteins in 6-M guanidine hydrochloride. a method for the quantitative determination of tryptophan,” Eur. J. Biochem.63(1), 263–269 (1976).
[CrossRef] [PubMed]

G. Vali, M. Christensen, R. W. Fresh, E. L. Galyan, L. R. Maki, and R. C. Schnell, “Biogenic ice nuclei. Part II: Bacterial sources,” J. Atmos. Sci.33(8), 1565–1570 (1976).
[CrossRef]

1975 (1)

T. D. Kempe and G. R. Stark, “Pyridoxal 5′-phosphate, a fluorescent probe in the active site of aspartate transcarbamylase,” J. Biol. Chem.250(17), 6861–6869 (1975).
[PubMed]

1974 (3)

M. D’Urso-Scott, J. Uhoch, and J. R. Bertino, “Formation of 10-formylfolic acid, a potent inhibitor of dihydrofolate reductase, in rat liver slices incubated with folic acid,” Proc. Natl. Acad. Sci. U.S.A.71(7), 2736–2739 (1974).
[CrossRef] [PubMed]

N. Burridge and J. E. Churchich, “Effects of potassium iodide on aspartate aminotransferase,” Eur. J. Biochem.41(3), 533–538 (1974).
[CrossRef] [PubMed]

P. P. Dennis and H. Bremer, “Macromolecular composition during steady-state growth of Escherichia coli B-r,” J. Bacteriol.119(1), 270–281 (1974).
[PubMed]

1973 (1)

C. Y. Lee, R. D. Eichner, and N. O. Kaplan, “Conformations of diphosphopyridine coenzymes upon binding to dehydrogenases,” Proc. Natl. Acad. Sci. U.S.A.70(5), 1593–1597 (1973).
[CrossRef] [PubMed]

1972 (1)

K. O. Honikel and N. B. Madsen, “Comparison of the absorbance spectra and fluorescence behavior of phosphorylase b with that of model pyridoxal phosphate derivatives in various solvents,” J. Biol. Chem.247(4), 1057–1064 (1972).
[PubMed]

1971 (1)

M. Cortijo, I. Z. Steinberg, and S. Shaltiel, “Fluorescence of glycogen phosphorylase b. structural transitions and energy transfer,” J. Biol. Chem.246(4), 933–938 (1971).
[PubMed]

1970 (4)

M. Arrio-Dupont, “Etude par fluorescence de bases de Schiff du pyridoxal, comparaison avec la l aspartate-aminotransferase,” Photochem. Photobiol.12(4), 297–315 (1970).
[CrossRef] [PubMed]

T. G. Scott, R. D. Spencer, N. J. Leonard, and G. Weber, “Emission properties of NADH. Studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH, and simplified synthetic models,” J. Am. Chem. Soc.92, 687–695 (1970).
[CrossRef]

A. Gordon-Walker, G. R. Penzer, and G. K. Radda, “Excited states of flavins characterised by absorption, prompt and delayed emission spectra,” Eur. J. Biochem.13(2), 313–321 (1970).
[CrossRef] [PubMed]

D. L. Nelson and A. Kornberg, “Biochemical studies of bacterial sporulation and germination. XIX. Phosphate metabolism during sporulation,” J. Biol. Chem.245(5), 1137–1145 (1970).
[PubMed]

1969 (2)

A. Kröger and V. Dadák, “On the role of quinones in bacterial electron transport. The respiratory system of Bacillus megaterium,” Eur. J. Biochem.11(2), 328–340 (1969).
[CrossRef] [PubMed]

J. E. Churchich and J. G. Farrelly, “The interaction of pyridoxamine 5-phosphate with aspartate aminotransferase,” J. Biol. Chem.244(1), 72–76 (1969).
[PubMed]

1967 (5)

IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. V. Pyridoxal and pyridoxal-5′-phosphate. Luminescent properties,” Biofizika12(5), 773–781 (1967).
[PubMed]

IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. IV. Pyridoxal and pyridoxal-5-phosphate. Absorption spectra,” Biofizika12(3), 397–406 (1967).
[PubMed]

Y. Morino and E. E. Snell, “The relation of spectral changes and tritium exchange reactions to the mechanism of tryptophanase-catalyzed reactions,” J. Biol. Chem.242(12), 2800–2809 (1967).
[PubMed]

J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate,” Anal. Biochem.19(2), 327–337 (1967).
[CrossRef] [PubMed]

H. Edelhoch, “Spectroscopic determination of tryptophan and tyrosine in proteins,” Biochemistry6(7), 1948–1954 (1967).
[CrossRef] [PubMed]

1966 (2)

J. London and M. Knight, “Concentrations of nicotinamide nucleotide coenzymes in micro-organisms,” J. Gen. Microbiol.44(2), 241–254 (1966).
[CrossRef] [PubMed]

N. P. Bazhulina, IuV. Morozov, M. Ia. Karpeĭskiĭ, V. I. Ivanov, and A. I. Kuklin, “The optical and luminescent properties of vitamin B6 and its derivatives. II. Pyridoxine and pyridoxine-5′-phosphate,” Biofizika11(1), 42–47 (1966).
[PubMed]

1965 (2)

W. B. Dempsey, “Control of pyridoxine biosynthesis in Escherichia coli,” J. Bacteriol.90, 431–437 (1965).
[PubMed]

R. F. Chen, “Fluorescence quantum yield measurements: vitamin B6 compounds,” Science150(3703), 1593–1595 (1965).
[CrossRef] [PubMed]

1962 (1)

D. H. Bishop, K. P. Pandya, and H. K. King, “Ubiquinone and vitamin K in bacteria,” Biochem. J.83, 606–614 (1962).
[PubMed]

1959 (1)

D. M. Hercules and L. B. Rogers, “Absorption and fluorescence spectra of some mono- and di-hydroxy naphthalenes,” Spectrochim. Acta [A]15, 393–408 (1959).
[CrossRef]

1958 (2)

S. F. Verlick, “Fluorescence spectra and polarization of glyceraldehyde-3-phosphate and lactic dehydrogenase coenzyme complexes,” J. Biol. Chem.233(6), 1455–1467 (1958).
[PubMed]

J. F. Powell, “The changes in the total vitamin B6 and the pyridoxal phosphate content of cells of Bacillus sphaericus during growth and sporulation: their possible relationships with alphaepsilon-diaminopimelic acid metabolism,” Biochem. J.70(1), 91–96 (1958).
[PubMed]

1957 (1)

G. Weber and F. W. J. Teale, “Determination of the absolute quantum yield of fluorescent solutions,” Trans. Faraday Soc.53, 646–655 (1957).
[CrossRef]

1955 (1)

E. Metzler and E. E. Snell, “Spectra and ionization constants of the vitamin B6 group and related 3-hydroxypyridine derivatives,” J. Am. Chem. Soc.77(9), 2431–2437 (1955).
[CrossRef]

1954 (1)

E. A. Peterson and H. A. Sober, “Preparation of crystalline phosphorylated derivatives of vitamin B6,” J. Am. Chem. Soc.76(1), 169–175 (1954).
[CrossRef]

1953 (1)

J. F. Powell, “Isolation of dipicolinic acid (pyridine-2:6-dicarboxylic acid) from spores of Bacillus megatherium,” Biochem. J.54(2), 210–211 (1953).
[PubMed]

1952 (1)

E. Dimant, D. R. Sanadi, and F. M. Huennekens, “The isolation of flavin nucleotides,” J. Am. Chem. Soc.74(21), 5440–5444 (1952).
[CrossRef]

1947 (1)

F. T. Gucker, C. T. O’Konski, H. B. Pickard, and J. N. Pitts, “A photoelectronic counter for colloidal particles,” J. Am. Chem. Soc.69(10), 2422–2431 (1947).
[CrossRef] [PubMed]

Agranovsky, V.

V. Agranovsky, Z. D. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol.38(4), 354–364 (2004).
[CrossRef]

Alfano, R. R.

Alimova, A.

Allan, J. D.

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosols data,” Atmos. Meas. Tech.6(2), 337–347 (2013).
[CrossRef]

Alvarez, B.

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Andreae, M. O.

V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012).
[CrossRef]

J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Poschl, “Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08,” Atmos. Chem. Phys.12(24), 11997–12019 (2012).
[CrossRef]

Aoyagi, H.

K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010).
[CrossRef]

Arakawa, E. T.

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190-2.50 microm,” Biopolymers72(5), 391–398 (2003).
[CrossRef] [PubMed]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130-2.50 microm spectral region,” Biopolymers62(2), 122–128 (2001).
[CrossRef] [PubMed]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 num,” Appl. Opt.36(13), 2818–2824 (1997).
[CrossRef] [PubMed]

Aronson, A. I.

N. K. Pandey and A. I. Aronson, “Properties of the Bacillus subtilis spore coat,” J. Bacteriol.137(3), 1208–1218 (1979).
[PubMed]

Arrio-Dupont, M.

M. Arrio-Dupont, “Etude par fluorescence de bases de Schiff du pyridoxal, comparaison avec la l aspartate-aminotransferase,” Photochem. Photobiol.12(4), 297–315 (1970).
[CrossRef] [PubMed]

Artaxo, P.

J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Poschl, “Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08,” Atmos. Chem. Phys.12(24), 11997–12019 (2012).
[CrossRef]

Ayoko, G. A.

V. Agranovsky, Z. D. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol.38(4), 354–364 (2004).
[CrossRef]

Bacon, D. S.

Y. Haroon, D. S. Bacon, and J. A. Sadowski, “Liquid-chromatographic determination of vitamin K1 in plasma, with fluorometric detection,” Clin. Chem.32(10), 1925–1929 (1986).
[PubMed]

Baker, N.

J. L. Santarpia, Y. L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, and R. G. Pinnick, “Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging,” Opt. Express20(28), 29867–29881 (2012).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Balter, A.

K. Bystra-Mieloszyk, A. Balter, and R. Drabent, “Fluorescence quenching for flavins interacting with egg white riboflavin-binding protein,” Photochem. Photobiol.41(2), 141–147 (1985).
[CrossRef]

Barrington, S. J.

Batschauer, A.

A. Tyagi, A. Penzkofer, A. Batschauer, and E. Wolf, “Fluorescence behavior of 5,10-methenyltetrahydrofolate, 10-formyltetrahydrofolate, 10-formyldihydrofolate, and 10-formylfolate in aqueous solution at pH 8,” Chem. Phys.361(1-2), 75–82 (2009).
[CrossRef]

Baxter, K. L.

Bazhulina, N. P.

IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. IV. Pyridoxal and pyridoxal-5-phosphate. Absorption spectra,” Biofizika12(3), 397–406 (1967).
[PubMed]

IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. V. Pyridoxal and pyridoxal-5′-phosphate. Luminescent properties,” Biofizika12(5), 773–781 (1967).
[PubMed]

N. P. Bazhulina, IuV. Morozov, M. Ia. Karpeĭskiĭ, V. I. Ivanov, and A. I. Kuklin, “The optical and luminescent properties of vitamin B6 and its derivatives. II. Pyridoxine and pyridoxine-5′-phosphate,” Biofizika11(1), 42–47 (1966).
[PubMed]

Beaman, T. C.

J. A. Lindsay, T. C. Beaman, and P. Gerhardt, “Protoplast water content of bacterial spores determined by buoyant density sedimentation,” J. Bacteriol.163(2), 735–737 (1985).
[PubMed]

Beeler, T.

T. Beeler and J. E. Churchich, “4-aminobutyrate aminotransferase fluorescence studies,” Eur. J. Biochem.85(2), 365–371 (1978).
[CrossRef] [PubMed]

Bennett, B. D.

B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van Dien, and J. D. Rabinowitz, “Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli,” Nat. Chem. Biol.5(8), 593–599 (2009).
[CrossRef] [PubMed]

Bentley, R.

R. Bentley and R. Meganathan, “Biosynthesis of vitamin K (menaquinone) in bacteria,” Microbiol. Rev.46(3), 241–280 (1982).
[PubMed]

Bertino, J. R.

M. D’Urso-Scott, J. Uhoch, and J. R. Bertino, “Formation of 10-formylfolic acid, a potent inhibitor of dihydrofolate reductase, in rat liver slices incubated with folic acid,” Proc. Natl. Acad. Sci. U.S.A.71(7), 2736–2739 (1974).
[CrossRef] [PubMed]

Bertoldi, M.

M. Bertoldi, B. Cellini, S. D’Aguanno, and C. Borri Voltattorni, “Lysine 238 is an essential residue for α,β-elimination catalyzed by Treponema denticola cystalysin,” J. Biol. Chem.278(39), 37336–37343 (2003).
[CrossRef] [PubMed]

Birenzvige, A.

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdez, and H. Kulaga, “Aerosol characteristics in a subway environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

Bishop, D. H.

D. H. Bishop, K. P. Pandya, and H. K. King, “Ubiquinone and vitamin K in bacteria,” Biochem. J.83, 606–614 (1962).
[PubMed]

Blazquez, M.

J. M. Cambron, T. Sevilla, Pineda, and M. Blazquez, “Fluorescence of the Schiff bases of pyridoxal and pyridoxal 5′-phosphate with L-isoleucine in aqueous solutions,” J. Fluoresc.6, 1–6 (1996).

Borri Voltattorni, C.

M. Bertoldi, B. Cellini, S. D’Aguanno, and C. Borri Voltattorni, “Lysine 238 is an essential residue for α,β-elimination catalyzed by Treponema denticola cystalysin,” J. Biol. Chem.278(39), 37336–37343 (2003).
[CrossRef] [PubMed]

Bottiger, J.

Bottiger, J. R.

Boutou, V.

V. Boutou, C. Favre, S. C. Hill, Y. L. Pan, R. K. Chang, and J. P. Wolf, “Backward enhanced emission from multiphoton processes in aerosols,” Appl. Phys. B75(2-3), 145–152 (2002).
[CrossRef]

Braun, A. M.

F. M. Cabrerizo, G. Petroselli, C. Lorente, A. L. Capparelli, A. H. Thomas, A. M. Braun, and E. Oliveros, “Substituent effects on the photophysical properties of pterin derivatives in acidic and alkaline aqueous solutions,” Photochem. Photobiol.81(5), 1234–1240 (2005).
[CrossRef] [PubMed]

Breitenbach, M.

A. J. Kungl, A. J. W. G. Visser, H. F. Kauffmann, and M. Breitenbach, “Time-resolved fluorescence studies of dityrosine in the outer layer of intact yeast Ascospores,” Biophys. J.67(1), 309–317 (1994).
[CrossRef] [PubMed]

Bremer, H.

P. P. Dennis and H. Bremer, “Macromolecular composition during steady-state growth of Escherichia coli B-r,” J. Bacteriol.119(1), 270–281 (1974).
[PubMed]

Brinkley, K.

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Bronk, B. V.

S. Sarasanandarajah, J. Kunnil, E. Chako, B. V. Bronk, and L. Reinisch, “Reversible changes in fluorescence of bacterial endospores found in aerosols due to hydration/drying,” J. Aerosol Sci.36(5-6), 689–699 (2005).
[CrossRef]

S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol.70(5), 2786–2790 (2004).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
[CrossRef] [PubMed]

G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt.36(4), 958–967 (1997).
[CrossRef] [PubMed]

Bruno, J. G.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol.23(4), 653–664 (1995).
[CrossRef]

Burke, A. M.

D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ.60, 534–543 (2012).
[CrossRef]

Burke, S. A.

S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol.70(5), 2786–2790 (2004).
[CrossRef] [PubMed]

Burridge, N.

N. Burridge and J. E. Churchich, “Effects of potassium iodide on aspartate aminotransferase,” Eur. J. Biochem.41(3), 533–538 (1974).
[CrossRef] [PubMed]

Burrows, S. M.

V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012).
[CrossRef]

S. M. Burrows, T. Butler, P. Jockel, H. Tos, A. Kerkweg, U. Poschl, and M. G. Lawrence, “Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems,” Atmos. Chem. Phys.9(23), 9281–9297 (2009).
[CrossRef]

Buryak, G.

V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012).
[CrossRef]

Buteau, S.

Butler, P. R.

N. Shahab, F. Flett, S. G. Oliver, and P. R. Butler, “Growth rate control of protein and nucleic acid content in Streptomyces coelicolor A3(2) and Escherichia coli B/r,” Microbiology142(8), 1927–1935 (1996).
[CrossRef] [PubMed]

Butler, T.

S. M. Burrows, T. Butler, P. Jockel, H. Tos, A. Kerkweg, U. Poschl, and M. G. Lawrence, “Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems,” Atmos. Chem. Phys.9(23), 9281–9297 (2009).
[CrossRef]

Bystra-Mieloszyk, K.

K. Bystra-Mieloszyk, A. Balter, and R. Drabent, “Fluorescence quenching for flavins interacting with egg white riboflavin-binding protein,” Photochem. Photobiol.41(2), 141–147 (1985).
[CrossRef]

Cabrerizo, F. M.

F. M. Cabrerizo, G. Petroselli, C. Lorente, A. L. Capparelli, A. H. Thomas, A. M. Braun, and E. Oliveros, “Substituent effects on the photophysical properties of pterin derivatives in acidic and alkaline aqueous solutions,” Photochem. Photobiol.81(5), 1234–1240 (2005).
[CrossRef] [PubMed]

Callis, P. R.

P. R. Callis, A. Petrenko, P. L. Muino, and J. R. Tusell, “Ab Initio prediction of tryptophan fluorescence quenching by protein electric field enabled electron transfer,” J. Phys. Chem. Biol. Lett.111, 10339–10355 (2007).

Cambron, J. M.

J. M. Cambron, T. Sevilla, Pineda, and M. Blazquez, “Fluorescence of the Schiff bases of pyridoxal and pyridoxal 5′-phosphate with L-isoleucine in aqueous solutions,” J. Fluoresc.6, 1–6 (1996).

Campopiano, D. J.

M. C. C. Raman, K. A. Johnson, B. A. Yard, J. Lowther, L. G. Carter, J. H. Naismith, and D. J. Campopiano, “The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics,” J. Biol. Chem.284(25), 17328–17339 (2009).
[CrossRef] [PubMed]

Capparelli, A. L.

F. M. Cabrerizo, G. Petroselli, C. Lorente, A. L. Capparelli, A. H. Thomas, A. M. Braun, and E. Oliveros, “Substituent effects on the photophysical properties of pterin derivatives in acidic and alkaline aqueous solutions,” Photochem. Photobiol.81(5), 1234–1240 (2005).
[CrossRef] [PubMed]

Carrera, M.

M. Carrera, R. O. Zandomeni, and J.-L. Sagripanti, “Wet and dry density of Bacillus anthracis and other Bacillus species,” J. Appl. Microbiol.105(1), 68–77 (2008).
[CrossRef] [PubMed]

Carter, L. G.

M. C. C. Raman, K. A. Johnson, B. A. Yard, J. Lowther, L. G. Carter, J. H. Naismith, and D. J. Campopiano, “The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics,” J. Biol. Chem.284(25), 17328–17339 (2009).
[CrossRef] [PubMed]

Cary, W. K.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999).
[CrossRef]

Cazorla, A.

J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
[CrossRef] [PubMed]

Cellini, B.

M. Bertoldi, B. Cellini, S. D’Aguanno, and C. Borri Voltattorni, “Lysine 238 is an essential residue for α,β-elimination catalyzed by Treponema denticola cystalysin,” J. Biol. Chem.278(39), 37336–37343 (2003).
[CrossRef] [PubMed]

Chacko, E.

Chako, E.

S. Sarasanandarajah, J. Kunnil, E. Chako, B. V. Bronk, and L. Reinisch, “Reversible changes in fluorescence of bacterial endospores found in aerosols due to hydration/drying,” J. Aerosol Sci.36(5-6), 689–699 (2005).
[CrossRef]

Chang, R. K.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, CT and Las Cruces, NM, USA,” J. Geophys. Res.112, D24S19 (2007).
[CrossRef]

V. Boutou, C. Favre, S. C. Hill, Y. L. Pan, R. K. Chang, and J. P. Wolf, “Backward enhanced emission from multiphoton processes in aerosols,” Appl. Phys. B75(2-3), 145–152 (2002).
[CrossRef]

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt.41, 2994–2999 (2002). Fig. 3, p. 2997.

S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
[CrossRef] [PubMed]

Chen, J.-P.

C. Hoose, J. E. Kristjansson, J.-P. Chen, and A. Hazra, “A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model,” J. Atmos. Sci.67(8), 2483–2503 (2010).
[CrossRef]

Chen, R. F.

R. F. Chen, “Fluorescence quantum yield measurements: vitamin B6 compounds,” Science150(3703), 1593–1595 (1965).
[CrossRef] [PubMed]

Cherkashina, L. P.

IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. V. Pyridoxal and pyridoxal-5′-phosphate. Luminescent properties,” Biofizika12(5), 773–781 (1967).
[PubMed]

IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. IV. Pyridoxal and pyridoxal-5-phosphate. Absorption spectra,” Biofizika12(3), 397–406 (1967).
[PubMed]

Chew, H.

H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescence scattering by molecules embedded in small particles,” Phys. Rev. A13(1), 396–404 (1976).
[CrossRef]

Chirokova, G.

A. G. Hallar, G. Chirokova, I. McCubbin, T. H. Painter, C. Wiedinmyer, and C. Dodson, “Atmospheric bioaerosols transported via dust storms in the western United States,” Geophys. Res. Lett.38(17), L17801 (2011).
[CrossRef]

Christen, P.

S. Kochhar, W. L. Finlayson, J. F. Kirsch, and P. Christen, “The stereospecific labilization of the C-4′ pro-S hydrogen of pyridoxamine 5′-phosphate is abolished in (Lys258----Ala) aspartate aminotransferase,” J. Biol. Chem.262(24), 11446–11448 (1987).
[PubMed]

Christensen, M.

G. Vali, M. Christensen, R. W. Fresh, E. L. Galyan, L. R. Maki, and R. C. Schnell, “Biogenic ice nuclei. Part II: Bacterial sources,” J. Atmos. Sci.33(8), 1565–1570 (1976).
[CrossRef]

Churchich, J. E.

T. Beeler and J. E. Churchich, “4-aminobutyrate aminotransferase fluorescence studies,” Eur. J. Biochem.85(2), 365–371 (1978).
[CrossRef] [PubMed]

N. Burridge and J. E. Churchich, “Effects of potassium iodide on aspartate aminotransferase,” Eur. J. Biochem.41(3), 533–538 (1974).
[CrossRef] [PubMed]

J. E. Churchich and J. G. Farrelly, “The interaction of pyridoxamine 5-phosphate with aspartate aminotransferase,” J. Biol. Chem.244(1), 72–76 (1969).
[PubMed]

Coleman, M.

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Collins, M. D.

M. D. Collins and D. Jones, “Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication,” Microbiol. Rev.45(2), 316–354 (1981).
[PubMed]

Comstock, J. M.

J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
[CrossRef] [PubMed]

Copeland, R. A.

Cortijo, M.

M. Cortijo, I. Z. Steinberg, and S. Shaltiel, “Fluorescence of glycogen phosphorylase b. structural transitions and energy transfer,” J. Biol. Chem.246(4), 933–938 (1971).
[PubMed]

Cottrell, B.

Creamean, J. M.

J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
[CrossRef] [PubMed]

D’Aguanno, S.

M. Bertoldi, B. Cellini, S. D’Aguanno, and C. Borri Voltattorni, “Lysine 238 is an essential residue for α,β-elimination catalyzed by Treponema denticola cystalysin,” J. Biol. Chem.278(39), 37336–37343 (2003).
[CrossRef] [PubMed]

D’Sa, E. J.

D’Urso-Scott, M.

M. D’Urso-Scott, J. Uhoch, and J. R. Bertino, “Formation of 10-formylfolic acid, a potent inhibitor of dihydrofolate reductase, in rat liver slices incubated with folic acid,” Proc. Natl. Acad. Sci. U.S.A.71(7), 2736–2739 (1974).
[CrossRef] [PubMed]

Dadák, V.

A. Kröger and V. Dadák, “On the role of quinones in bacterial electron transport. The respiratory system of Bacillus megaterium,” Eur. J. Biochem.11(2), 328–340 (1969).
[CrossRef] [PubMed]

Dántola, M. L.

M. P. Serrano, M. Vignoni, M. L. Dántola, E. Oliveros, C. Lorente, and A. H. Thomas, “Emission properties of dihydropterins in aqueous solutions,” Phys. Chem. Chem. Phys.13(16), 7419–7425 (2011).
[CrossRef] [PubMed]

DeMott, P. J.

J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
[CrossRef] [PubMed]

Dempsey, W. B.

W. B. Dempsey, “Control of pyridoxine biosynthesis in Escherichia coli,” J. Bacteriol.90, 431–437 (1965).
[PubMed]

Dennis, P. P.

P. P. Dennis and H. Bremer, “Macromolecular composition during steady-state growth of Escherichia coli B-r,” J. Bacteriol.119(1), 270–281 (1974).
[PubMed]

Denyer, S. P.

M. J. Leggett, G. McDonnell, S. P. Denyer, P. Setlow, and J.-Y. Maillard, “Bacterial spore structures and their protective role in biocide resistance,” J. Appl. Microbiol.113(3), 485–498 (2012).
[CrossRef] [PubMed]

Déry, B.

Despres, V. R.

V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012).
[CrossRef]

Dimant, E.

E. Dimant, D. R. Sanadi, and F. M. Huennekens, “The isolation of flavin nucleotides,” J. Am. Chem. Soc.74(21), 5440–5444 (1952).
[CrossRef]

Dodson, C.

A. G. Hallar, G. Chirokova, I. McCubbin, T. H. Painter, C. Wiedinmyer, and C. Dodson, “Atmospheric bioaerosols transported via dust storms in the western United States,” Geophys. Res. Lett.38(17), L17801 (2011).
[CrossRef]

Donoso, J.

J. Donoso, F. Muñoz, and F. Garcia Blanco, “Quantitative description of the absorption spectra of the coenzyme in glycogen phosphorylases based on log-normal distribution curves,” Biochem. J.292(Pt 1), 225–229 (1993).
[PubMed]

Drabent, R.

K. Bystra-Mieloszyk, A. Balter, and R. Drabent, “Fluorescence quenching for flavins interacting with egg white riboflavin-binding protein,” Photochem. Photobiol.41(2), 141–147 (1985).
[CrossRef]

Duchaine, C.

Edelhoch, H.

H. Edelhoch, “Spectroscopic determination of tryptophan and tyrosine in proteins,” Biochemistry6(7), 1948–1954 (1967).
[CrossRef] [PubMed]

Eichner, R. D.

C. Y. Lee, R. D. Eichner, and N. O. Kaplan, “Conformations of diphosphopyridine coenzymes upon binding to dehydrogenases,” Proc. Natl. Acad. Sci. U.S.A.70(5), 1593–1597 (1973).
[CrossRef] [PubMed]

Eisenstein, E.

E. Eisenstein, “Energetics of cooperative ligand binding to the active sites of biosynthetic threonine deaminase from Escherichia coli,” J. Biol. Chem.269(47), 29416–29422 (1994).
[PubMed]

Elbert, W.

V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012).
[CrossRef]

Esaki, N.

K.-H. Jhee, T. Yoshimura, N. Esaki, K. Yonaha, and K. Soda, “Thermostable ornithine aminotransferase from Bacillus sp. YM-2: purification and characterization,” J. Biochem.118(1), 101–108 (1995).
[PubMed]

Eschbaugh, J.

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Eversole, J.

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdez, and H. Kulaga, “Aerosol characteristics in a subway environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

Eversole, J. D.

Faris, G. W.

Farrelly, J. G.

J. E. Churchich and J. G. Farrelly, “The interaction of pyridoxamine 5-phosphate with aspartate aminotransferase,” J. Biol. Chem.244(1), 72–76 (1969).
[PubMed]

Favre, C.

V. Boutou, C. Favre, S. C. Hill, Y. L. Pan, R. K. Chang, and J. P. Wolf, “Backward enhanced emission from multiphoton processes in aerosols,” Appl. Phys. B75(2-3), 145–152 (2002).
[CrossRef]

Fell, N. F.

Felton, M.

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Fernandez, G. L.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol.23(4), 653–664 (1995).
[CrossRef]

Finlayson, W. L.

S. Kochhar, W. L. Finlayson, J. F. Kirsch, and P. Christen, “The stereospecific labilization of the C-4′ pro-S hydrogen of pyridoxamine 5′-phosphate is abolished in (Lys258----Ala) aspartate aminotransferase,” J. Biol. Chem.262(24), 11446–11448 (1987).
[PubMed]

Flagan, R. C.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

Flett, F.

N. Shahab, F. Flett, S. G. Oliver, and P. R. Butler, “Growth rate control of protein and nucleic acid content in Streptomyces coelicolor A3(2) and Escherichia coli B/r,” Microbiology142(8), 1927–1935 (1996).
[CrossRef] [PubMed]

Foot, E. V.

Foot, V. E.

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosols data,” Atmos. Meas. Tech.6(2), 337–347 (2013).
[CrossRef]

Francesconi, S.

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdez, and H. Kulaga, “Aerosol characteristics in a subway environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

Fresh, R. W.

G. Vali, M. Christensen, R. W. Fresh, E. L. Galyan, L. R. Maki, and R. C. Schnell, “Biogenic ice nuclei. Part II: Bacterial sources,” J. Atmos. Sci.33(8), 1565–1570 (1976).
[CrossRef]

Frohlich-Nowoisky, J.

V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012).
[CrossRef]

Gabey, A. M.

A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforests,” Atmos. Chem. Phys.11(11), 5491–5504 (2011).
[CrossRef]

Gallagher, M.

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosols data,” Atmos. Meas. Tech.6(2), 337–347 (2013).
[CrossRef]

Gallagher, M. W.

A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforests,” Atmos. Chem. Phys.11(11), 5491–5504 (2011).
[CrossRef]

Galyan, E. L.

G. Vali, M. Christensen, R. W. Fresh, E. L. Galyan, L. R. Maki, and R. C. Schnell, “Biogenic ice nuclei. Part II: Bacterial sources,” J. Atmos. Sci.33(8), 1565–1570 (1976).
[CrossRef]

Gao, M.

B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van Dien, and J. D. Rabinowitz, “Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli,” Nat. Chem. Biol.5(8), 593–599 (2009).
[CrossRef] [PubMed]

García, M. A.

T. Pérez-Ruiz, C. Martínez-Lozano, M. A. García, and J. Martín, “High-performance liquid chromatography: photochemical reduction in aerobic conditions for determination of K vitamins using fluorescence detection,” J. Chromatogr. A1141(1), 67–72 (2007).
[CrossRef] [PubMed]

Garcia Blanco, F.

J. Donoso, F. Muñoz, and F. Garcia Blanco, “Quantitative description of the absorption spectra of the coenzyme in glycogen phosphorylases based on log-normal distribution curves,” Biochem. J.292(Pt 1), 225–229 (1993).
[PubMed]

Gardner, W.

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Garland, R. M.

J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Poschl, “Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08,” Atmos. Chem. Phys.12(24), 11997–12019 (2012).
[CrossRef]

Gerhardt, P.

J. A. Lindsay, T. C. Beaman, and P. Gerhardt, “Protoplast water content of bacterial spores determined by buoyant density sedimentation,” J. Bacteriol.163(2), 735–737 (1985).
[PubMed]

Goldman, R. C.

R. C. Goldman and D. J. Tipper, “Bacillus subtilis spore coats: complexity and purification of a unique polypeptide component,” J. Bacteriol.135(3), 1091–1106 (1978).
[PubMed]

Gordon-Walker, A.

A. Gordon-Walker, G. R. Penzer, and G. K. Radda, “Excited states of flavins characterised by absorption, prompt and delayed emission spectra,” Eur. J. Biochem.13(2), 313–321 (1970).
[CrossRef] [PubMed]

Griaznov, V.

Gruber, S.

R. Jaenicke, S. Matthias-Maser, and S. Gruber, “Omnipresence of biological material in the atmosphere,” Environ. Chem.4(4), 217–220 (2007).
[CrossRef]

Gucker, F. T.

F. T. Gucker, C. T. O’Konski, H. B. Pickard, and J. N. Pitts, “A photoelectronic counter for colloidal particles,” J. Am. Chem. Soc.69(10), 2422–2431 (1947).
[CrossRef] [PubMed]

Gunthe, S. S.

J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Poschl, “Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08,” Atmos. Chem. Phys.12(24), 11997–12019 (2012).
[CrossRef]

Gurton, K.

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Hahn, J.

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Hairston, P. P.

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci.28(3), 471–482 (1997).
[CrossRef] [PubMed]

Hallar, A. G.

A. G. Hallar, G. Chirokova, I. McCubbin, T. H. Painter, C. Wiedinmyer, and C. Dodson, “Atmospheric bioaerosols transported via dust storms in the western United States,” Geophys. Res. Lett.38(17), L17801 (2011).
[CrossRef]

Hameka, H. F.

H. F. Hameka, J. O. Jensen, K. K. Ong, A. C. Samuels, and C. P. Vlahacos, “Fluorescence of cysteine and cystine,” J. Phys. Chem. A102(2), 361–367 (1998).
[CrossRef]

Hardgrove, J. J.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999).
[CrossRef]

Haroon, Y.

Y. Haroon, D. S. Bacon, and J. A. Sadowski, “Liquid-chromatographic determination of vitamin K1 in plasma, with fluorometric detection,” Clin. Chem.32(10), 1925–1929 (1986).
[PubMed]

Hayashi, H.

H. Ikushiro, H. Hayashi, and H. Kagamiyama, “Bacterial serine palmitoyltransferase: a water-soluble homodimeric prototype of the eukaryotic enzyme,” Biochim. Biophys. Acta1647(1-2), 116–120 (2003).
[CrossRef] [PubMed]

M. T. Olmo, F. Sánchez-Jiménez, M. A. Medina, and H. Hayashi, “Spectroscopic analysis of recombinant rat histidine decarboxylase,” J. Biochem.132(3), 433–439 (2002).
[CrossRef] [PubMed]

H. Hayashi, “Pyridoxal enzymes: mechanistic diversity and uniformity,” J. Biochem.118(3), 463–473 (1995).
[PubMed]

Hazra, A.

C. Hoose, J. E. Kristjansson, J.-P. Chen, and A. Hazra, “A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model,” J. Atmos. Sci.67(8), 2483–2503 (2010).
[CrossRef]

Healy, D. A.

D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ.60, 534–543 (2012).
[CrossRef]

D. J. O’Connor, D. Iacopino, D. A. Healy, D. O’Sullivan, and J. R. Sodeau, “The intrinsic fluorescence spectra of selected pollen and fungal spores,” Atmos. Environ.45(35), 6451–6458 (2011).
[CrossRef]

Hercules, D. M.

D. M. Hercules and L. B. Rogers, “Absorption and fluorescence spectra of some mono- and di-hydroxy naphthalenes,” Spectrochim. Acta [A]15, 393–408 (1959).
[CrossRef]

Hernberg, R.

Hill, S. C.

J. L. Santarpia, Y. L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, and R. G. Pinnick, “Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging,” Opt. Express20(28), 29867–29881 (2012).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, CT and Las Cruces, NM, USA,” J. Geophys. Res.112, D24S19 (2007).
[CrossRef]

S. C. Hill, “Method for integrating the absorption cross sections of spheres over wavelength or diameter,” Appl. Opt.42(21), 4381–4388 (2003).
[CrossRef] [PubMed]

V. Boutou, C. Favre, S. C. Hill, Y. L. Pan, R. K. Chang, and J. P. Wolf, “Backward enhanced emission from multiphoton processes in aerosols,” Appl. Phys. B75(2-3), 145–152 (2002).
[CrossRef]

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt.41, 2994–2999 (2002). Fig. 3, p. 2997.

S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
[CrossRef] [PubMed]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol.23(4), 653–664 (1995).
[CrossRef]

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Hirst, E.

Ho, J.

C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, and C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt.50(6), 788–796 (2011).
[CrossRef] [PubMed]

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci.28(3), 471–482 (1997).
[CrossRef] [PubMed]

Holler, S.

Honikel, K. O.

K. O. Honikel and N. B. Madsen, “Comparison of the absorbance spectra and fluorescence behavior of phosphorylase b with that of model pyridoxal phosphate derivatives in various solvents,” J. Biol. Chem.247(4), 1057–1064 (1972).
[PubMed]

Hoose, C.

V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012).
[CrossRef]

C. Hoose, J. E. Kristjansson, J.-P. Chen, and A. Hazra, “A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model,” J. Atmos. Sci.67(8), 2483–2503 (2010).
[CrossRef]

Houle, O.

House, J. M.

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

Huang, H.

Huennekens, F. M.

E. Dimant, D. R. Sanadi, and F. M. Huennekens, “The isolation of flavin nucleotides,” J. Am. Chem. Soc.74(21), 5440–5444 (1952).
[CrossRef]

Huffman, A. J.

V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012).
[CrossRef]

Huffman, J. A.

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosols data,” Atmos. Meas. Tech.6(2), 337–347 (2013).
[CrossRef]

C. Pöhlker, J. A. Huffman, and U. Poschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech.5(1), 37–71 (2012).
[CrossRef]

J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Poschl, “Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08,” Atmos. Chem. Phys.12(24), 11997–12019 (2012).
[CrossRef]

J. A. Huffman, B. Treutlein, and U. Pöschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys.10(7), 3215–3233 (2010).
[CrossRef]

Huston, A.

Huston, A. L.

Iacopino, D.

D. J. O’Connor, D. Iacopino, D. A. Healy, D. O’Sullivan, and J. R. Sodeau, “The intrinsic fluorescence spectra of selected pollen and fungal spores,” Atmos. Environ.45(35), 6451–6458 (2011).
[CrossRef]

Ikushiro, H.

H. Ikushiro, H. Hayashi, and H. Kagamiyama, “Bacterial serine palmitoyltransferase: a water-soluble homodimeric prototype of the eukaryotic enzyme,” Biochim. Biophys. Acta1647(1-2), 116–120 (2003).
[CrossRef] [PubMed]

Ivanov, V. I.

N. P. Bazhulina, IuV. Morozov, M. Ia. Karpeĭskiĭ, V. I. Ivanov, and A. I. Kuklin, “The optical and luminescent properties of vitamin B6 and its derivatives. II. Pyridoxine and pyridoxine-5′-phosphate,” Biofizika11(1), 42–47 (1966).
[PubMed]

Jaenicke, R.

V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012).
[CrossRef]

R. Jaenicke, S. Matthias-Maser, and S. Gruber, “Omnipresence of biological material in the atmosphere,” Environ. Chem.4(4), 217–220 (2007).
[CrossRef]

Jensen, J. O.

H. F. Hameka, J. O. Jensen, K. K. Ong, A. C. Samuels, and C. P. Vlahacos, “Fluorescence of cysteine and cystine,” J. Phys. Chem. A102(2), 361–367 (1998).
[CrossRef]

Jeys, T. H.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

Jhee, K.-H.

K.-H. Jhee, T. Yoshimura, N. Esaki, K. Yonaha, and K. Soda, “Thermostable ornithine aminotransferase from Bacillus sp. YM-2: purification and characterization,” J. Biochem.118(1), 101–108 (1995).
[PubMed]

Jockel, P.

S. M. Burrows, T. Butler, P. Jockel, H. Tos, A. Kerkweg, U. Poschl, and M. G. Lawrence, “Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems,” Atmos. Chem. Phys.9(23), 9281–9297 (2009).
[CrossRef]

Johnson, K. A.

M. C. C. Raman, K. A. Johnson, B. A. Yard, J. Lowther, L. G. Carter, J. H. Naismith, and D. J. Campopiano, “The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics,” J. Biol. Chem.284(25), 17328–17339 (2009).
[CrossRef] [PubMed]

Jones, D.

M. D. Collins and D. Jones, “Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication,” Microbiol. Rev.45(2), 316–354 (1981).
[PubMed]

Kagamiyama, H.

H. Ikushiro, H. Hayashi, and H. Kagamiyama, “Bacterial serine palmitoyltransferase: a water-soluble homodimeric prototype of the eukaryotic enzyme,” Biochim. Biophys. Acta1647(1-2), 116–120 (2003).
[CrossRef] [PubMed]

Kaiser, T.

Kanaya, Y.

F. Taketani, Y. Kanaya, T. Nakamura, K. Koizumi, N. Moteki, and N. Takegawa, “Measurement of fluorescence spectra from atmospheric single submicron particle using laser-induced fluorescence technique,” J. Aerosol Sci.58, 1–8 (2013).
[CrossRef]

Kaplan, N. O.

C. Y. Lee, R. D. Eichner, and N. O. Kaplan, “Conformations of diphosphopyridine coenzymes upon binding to dehydrogenases,” Proc. Natl. Acad. Sci. U.S.A.70(5), 1593–1597 (1973).
[CrossRef] [PubMed]

Karpeiskii, M. Ia.

IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. IV. Pyridoxal and pyridoxal-5-phosphate. Absorption spectra,” Biofizika12(3), 397–406 (1967).
[PubMed]

IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. V. Pyridoxal and pyridoxal-5′-phosphate. Luminescent properties,” Biofizika12(5), 773–781 (1967).
[PubMed]

N. P. Bazhulina, IuV. Morozov, M. Ia. Karpeĭskiĭ, V. I. Ivanov, and A. I. Kuklin, “The optical and luminescent properties of vitamin B6 and its derivatives. II. Pyridoxine and pyridoxine-5′-phosphate,” Biofizika11(1), 42–47 (1966).
[PubMed]

Katz, A.

Kauffmann, H. F.

A. J. Kungl, A. J. W. G. Visser, H. F. Kauffmann, and M. Breitenbach, “Time-resolved fluorescence studies of dityrosine in the outer layer of intact yeast Ascospores,” Biophys. J.67(1), 309–317 (1994).
[CrossRef] [PubMed]

Kaye, P. H.

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosols data,” Atmos. Meas. Tech.6(2), 337–347 (2013).
[CrossRef]

A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforests,” Atmos. Chem. Phys.11(11), 5491–5504 (2011).
[CrossRef]

P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express13(10), 3583–3593 (2005).
[CrossRef] [PubMed]

Kempe, T. D.

T. D. Kempe and G. R. Stark, “Pyridoxal 5′-phosphate, a fluorescent probe in the active site of aspartate transcarbamylase,” J. Biol. Chem.250(17), 6861–6869 (1975).
[PubMed]

Kerker, M.

H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescence scattering by molecules embedded in small particles,” Phys. Rev. A13(1), 396–404 (1976).
[CrossRef]

Kerkweg, A.

S. M. Burrows, T. Butler, P. Jockel, H. Tos, A. Kerkweg, U. Poschl, and M. G. Lawrence, “Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems,” Atmos. Chem. Phys.9(23), 9281–9297 (2009).
[CrossRef]

Keskinen, J.

Khare, B. N.

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190-2.50 microm,” Biopolymers72(5), 391–398 (2003).
[CrossRef] [PubMed]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130-2.50 microm spectral region,” Biopolymers62(2), 122–128 (2001).
[CrossRef] [PubMed]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 num,” Appl. Opt.36(13), 2818–2824 (1997).
[CrossRef] [PubMed]

Kimball, E. H.

B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van Dien, and J. D. Rabinowitz, “Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli,” Nat. Chem. Biol.5(8), 593–599 (2009).
[CrossRef] [PubMed]

King, H. K.

D. H. Bishop, K. P. Pandya, and H. K. King, “Ubiquinone and vitamin K in bacteria,” Biochem. J.83, 606–614 (1962).
[PubMed]

Kirsch, J. F.

S. Kochhar, W. L. Finlayson, J. F. Kirsch, and P. Christen, “The stereospecific labilization of the C-4′ pro-S hydrogen of pyridoxamine 5′-phosphate is abolished in (Lys258----Ala) aspartate aminotransferase,” J. Biol. Chem.262(24), 11446–11448 (1987).
[PubMed]

Klemm, W.

R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact.19(3), 216–222 (2002).
[CrossRef]

Knight, M.

J. London and M. Knight, “Concentrations of nicotinamide nucleotide coenzymes in micro-organisms,” J. Gen. Microbiol.44(2), 241–254 (1966).
[CrossRef] [PubMed]

Kobayashi, K.

K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010).
[CrossRef]

Kochhar, S.

S. Kochhar, W. L. Finlayson, J. F. Kirsch, and P. Christen, “The stereospecific labilization of the C-4′ pro-S hydrogen of pyridoxamine 5′-phosphate is abolished in (Lys258----Ala) aspartate aminotransferase,” J. Biol. Chem.262(24), 11446–11448 (1987).
[PubMed]

Koizumi, K.

F. Taketani, Y. Kanaya, T. Nakamura, K. Koizumi, N. Moteki, and N. Takegawa, “Measurement of fluorescence spectra from atmospheric single submicron particle using laser-induced fluorescence technique,” J. Aerosol Sci.58, 1–8 (2013).
[CrossRef]

Kolgotin, A.

Kornberg, A.

D. L. Nelson and A. Kornberg, “Biochemical studies of bacterial sporulation and germination. XIX. Phosphate metabolism during sporulation,” J. Biol. Chem.245(5), 1137–1145 (1970).
[PubMed]

Kristjansson, J. E.

C. Hoose, J. E. Kristjansson, J.-P. Chen, and A. Hazra, “A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model,” J. Atmos. Sci.67(8), 2483–2503 (2010).
[CrossRef]

Kröger, A.

A. Kröger and V. Dadák, “On the role of quinones in bacterial electron transport. The respiratory system of Bacillus megaterium,” Eur. J. Biochem.11(2), 328–340 (1969).
[CrossRef] [PubMed]

Kruk, J.

J. Kruk, K. Strzałka, and R. M. Leblanc, “Fluorescence properties of plastoquinol, ubiquinol and α-tocopherol quinol in solution and liposome membranes,” J. Photochem. Photobiol. B19(1), 33–38 (1993).
[CrossRef] [PubMed]

Kuklin, A. I.

N. P. Bazhulina, IuV. Morozov, M. Ia. Karpeĭskiĭ, V. I. Ivanov, and A. I. Kuklin, “The optical and luminescent properties of vitamin B6 and its derivatives. II. Pyridoxine and pyridoxine-5′-phosphate,” Biofizika11(1), 42–47 (1966).
[PubMed]

Kulaga, H.

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdez, and H. Kulaga, “Aerosol characteristics in a subway environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

Kungl, A. J.

A. J. Kungl, A. J. W. G. Visser, H. F. Kauffmann, and M. Breitenbach, “Time-resolved fluorescence studies of dityrosine in the outer layer of intact yeast Ascospores,” Biophys. J.67(1), 309–317 (1994).
[CrossRef] [PubMed]

Kunnil, J.

Laflamme, C.

Lahaie, P.

Lawrence, M. G.

S. M. Burrows, T. Butler, P. Jockel, H. Tos, A. Kerkweg, U. Poschl, and M. G. Lawrence, “Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems,” Atmos. Chem. Phys.9(23), 9281–9297 (2009).
[CrossRef]

Leblanc, R. M.

J. Kruk, K. Strzałka, and R. M. Leblanc, “Fluorescence properties of plastoquinol, ubiquinol and α-tocopherol quinol in solution and liposome membranes,” J. Photochem. Photobiol. B19(1), 33–38 (1993).
[CrossRef] [PubMed]

Lee, C. Y.

C. Y. Lee, R. D. Eichner, and N. O. Kaplan, “Conformations of diphosphopyridine coenzymes upon binding to dehydrogenases,” Proc. Natl. Acad. Sci. U.S.A.70(5), 1593–1597 (1973).
[CrossRef] [PubMed]

Legenhausen, K.

R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact.19(3), 216–222 (2002).
[CrossRef]

Leggett, M. J.

M. J. Leggett, G. McDonnell, S. P. Denyer, P. Setlow, and J.-Y. Maillard, “Bacterial spore structures and their protective role in biocide resistance,” J. Appl. Microbiol.113(3), 485–498 (2012).
[CrossRef] [PubMed]

Leighton, T. J.

A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. U.S.A.100(6), 3461–3466 (2003).
[CrossRef] [PubMed]

Leonard, N. J.

T. G. Scott, R. D. Spencer, N. J. Leonard, and G. Weber, “Emission properties of NADH. Studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH, and simplified synthetic models,” J. Am. Chem. Soc.92, 687–695 (1970).
[CrossRef]

Lewis, J. C.

J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate,” Anal. Biochem.19(2), 327–337 (1967).
[CrossRef] [PubMed]

Lin, H. B.

Lindsay, J. A.

J. A. Lindsay, T. C. Beaman, and P. Gerhardt, “Protoplast water content of bacterial spores determined by buoyant density sedimentation,” J. Bacteriol.163(2), 735–737 (1985).
[PubMed]

Lohrenz, S. E.

London, J.

J. London and M. Knight, “Concentrations of nicotinamide nucleotide coenzymes in micro-organisms,” J. Gen. Microbiol.44(2), 241–254 (1966).
[CrossRef] [PubMed]

Lorente, C.

M. P. Serrano, M. Vignoni, M. L. Dántola, E. Oliveros, C. Lorente, and A. H. Thomas, “Emission properties of dihydropterins in aqueous solutions,” Phys. Chem. Chem. Phys.13(16), 7419–7425 (2011).
[CrossRef] [PubMed]

F. M. Cabrerizo, G. Petroselli, C. Lorente, A. L. Capparelli, A. H. Thomas, A. M. Braun, and E. Oliveros, “Substituent effects on the photophysical properties of pterin derivatives in acidic and alkaline aqueous solutions,” Photochem. Photobiol.81(5), 1234–1240 (2005).
[CrossRef] [PubMed]

Lowther, J.

M. C. C. Raman, K. A. Johnson, B. A. Yard, J. Lowther, L. G. Carter, J. H. Naismith, and D. J. Campopiano, “The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics,” J. Biol. Chem.284(25), 17328–17339 (2009).
[CrossRef] [PubMed]

Mach, H.

H. Mach and C. R. Middaugh, “Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy,” Anal. Biochem.222(2), 323–331 (1994).
[CrossRef] [PubMed]

Mackowski, D.

D. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf.112(13), 2182–2192 (2011).
[CrossRef]

Madsen, N. B.

K. O. Honikel and N. B. Madsen, “Comparison of the absorbance spectra and fluorescence behavior of phosphorylase b with that of model pyridoxal phosphate derivatives in various solvents,” J. Biol. Chem.247(4), 1057–1064 (1972).
[PubMed]

Maillard, J.-Y.

M. J. Leggett, G. McDonnell, S. P. Denyer, P. Setlow, and J.-Y. Maillard, “Bacterial spore structures and their protective role in biocide resistance,” J. Appl. Microbiol.113(3), 485–498 (2012).
[CrossRef] [PubMed]

Maki, L. R.

G. Vali, M. Christensen, R. W. Fresh, E. L. Galyan, L. R. Maki, and R. C. Schnell, “Biogenic ice nuclei. Part II: Bacterial sources,” J. Atmos. Sci.33(8), 1565–1570 (1976).
[CrossRef]

Manninen, A.

Marjamäki, M.

Martin, S. T.

J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Poschl, “Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08,” Atmos. Chem. Phys.12(24), 11997–12019 (2012).
[CrossRef]

Martín, J.

T. Pérez-Ruiz, C. Martínez-Lozano, M. A. García, and J. Martín, “High-performance liquid chromatography: photochemical reduction in aerobic conditions for determination of K vitamins using fluorescence detection,” J. Chromatogr. A1141(1), 67–72 (2007).
[CrossRef] [PubMed]

Martínez-Lozano, C.

T. Pérez-Ruiz, C. Martínez-Lozano, M. A. García, and J. Martín, “High-performance liquid chromatography: photochemical reduction in aerobic conditions for determination of K vitamins using fluorescence detection,” J. Chromatogr. A1141(1), 67–72 (2007).
[CrossRef] [PubMed]

Mathieu, P.

Matthias-Maser, S.

R. Jaenicke, S. Matthias-Maser, and S. Gruber, “Omnipresence of biological material in the atmosphere,” Environ. Chem.4(4), 217–220 (2007).
[CrossRef]

Mayo, M. W.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol.23(4), 653–664 (1995).
[CrossRef]

McCormick, S. A.

McCubbin, I.

A. G. Hallar, G. Chirokova, I. McCubbin, T. H. Painter, C. Wiedinmyer, and C. Dodson, “Atmospheric bioaerosols transported via dust storms in the western United States,” Geophys. Res. Lett.38(17), L17801 (2011).
[CrossRef]

McDonnell, G.

M. J. Leggett, G. McDonnell, S. P. Denyer, P. Setlow, and J.-Y. Maillard, “Bacterial spore structures and their protective role in biocide resistance,” J. Appl. Microbiol.113(3), 485–498 (2012).
[CrossRef] [PubMed]

McKee, L.

McNulty, P. J.

H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescence scattering by molecules embedded in small particles,” Phys. Rev. A13(1), 396–404 (1976).
[CrossRef]

Medina, M. A.

M. T. Olmo, F. Sánchez-Jiménez, M. A. Medina, and H. Hayashi, “Spectroscopic analysis of recombinant rat histidine decarboxylase,” J. Biochem.132(3), 433–439 (2002).
[CrossRef] [PubMed]

Meganathan, R.

R. Bentley and R. Meganathan, “Biosynthesis of vitamin K (menaquinone) in bacteria,” Microbiol. Rev.46(3), 241–280 (1982).
[PubMed]

Metzler, E.

E. Metzler and E. E. Snell, “Spectra and ionization constants of the vitamin B6 group and related 3-hydroxypyridine derivatives,” J. Am. Chem. Soc.77(9), 2431–2437 (1955).
[CrossRef]

Middaugh, C. R.

H. Mach and C. R. Middaugh, “Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy,” Anal. Biochem.222(2), 323–331 (1994).
[CrossRef] [PubMed]

Milham, M. E.

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190-2.50 microm,” Biopolymers72(5), 391–398 (2003).
[CrossRef] [PubMed]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130-2.50 microm spectral region,” Biopolymers62(2), 122–128 (2001).
[CrossRef] [PubMed]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 num,” Appl. Opt.36(13), 2818–2824 (1997).
[CrossRef] [PubMed]

Minko, G.

Minnis, P.

J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
[CrossRef] [PubMed]

Mishchenko, M. I.

D. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf.112(13), 2182–2192 (2011).
[CrossRef]

Mitsumoto, K.

K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010).
[CrossRef]

Morawska, L.

V. Agranovsky, Z. D. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol.38(4), 354–364 (2004).
[CrossRef]

Morino, Y.

Y. Morino and E. E. Snell, “The relation of spectral changes and tritium exchange reactions to the mechanism of tryptophanase-catalyzed reactions,” J. Biol. Chem.242(12), 2800–2809 (1967).
[PubMed]

Morozov, IuV.

IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. V. Pyridoxal and pyridoxal-5′-phosphate. Luminescent properties,” Biofizika12(5), 773–781 (1967).
[PubMed]

IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. IV. Pyridoxal and pyridoxal-5-phosphate. Absorption spectra,” Biofizika12(3), 397–406 (1967).
[PubMed]

N. P. Bazhulina, IuV. Morozov, M. Ia. Karpeĭskiĭ, V. I. Ivanov, and A. I. Kuklin, “The optical and luminescent properties of vitamin B6 and its derivatives. II. Pyridoxine and pyridoxine-5′-phosphate,” Biofizika11(1), 42–47 (1966).
[PubMed]

Mortelmans, K.

Moteki, N.

F. Taketani, Y. Kanaya, T. Nakamura, K. Koizumi, N. Moteki, and N. Takegawa, “Measurement of fluorescence spectra from atmospheric single submicron particle using laser-induced fluorescence technique,” J. Aerosol Sci.58, 1–8 (2013).
[CrossRef]

Muino, P. L.

P. R. Callis, A. Petrenko, P. L. Muino, and J. R. Tusell, “Ab Initio prediction of tryptophan fluorescence quenching by protein electric field enabled electron transfer,” J. Phys. Chem. Biol. Lett.111, 10339–10355 (2007).

Muñoz, F.

J. Donoso, F. Muñoz, and F. Garcia Blanco, “Quantitative description of the absorption spectra of the coenzyme in glycogen phosphorylases based on log-normal distribution curves,” Biochem. J.292(Pt 1), 225–229 (1993).
[PubMed]

Nachman, P.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol.23(4), 653–664 (1995).
[CrossRef]

Nadeau, D.

Naismith, J. H.

M. C. C. Raman, K. A. Johnson, B. A. Yard, J. Lowther, L. G. Carter, J. H. Naismith, and D. J. Campopiano, “The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics,” J. Biol. Chem.284(25), 17328–17339 (2009).
[CrossRef] [PubMed]

Nakamura, T.

F. Taketani, Y. Kanaya, T. Nakamura, K. Koizumi, N. Moteki, and N. Takegawa, “Measurement of fluorescence spectra from atmospheric single submicron particle using laser-induced fluorescence technique,” J. Aerosol Sci.58, 1–8 (2013).
[CrossRef]

Nelson, D. L.

D. L. Nelson and A. Kornberg, “Biochemical studies of bacterial sporulation and germination. XIX. Phosphate metabolism during sporulation,” J. Biol. Chem.245(5), 1137–1145 (1970).
[PubMed]

Newbury, N. R.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

Niles, S.

O’Connor, D. J.

D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ.60, 534–543 (2012).
[CrossRef]

D. J. O’Connor, D. Iacopino, D. A. Healy, D. O’Sullivan, and J. R. Sodeau, “The intrinsic fluorescence spectra of selected pollen and fungal spores,” Atmos. Environ.45(35), 6451–6458 (2011).
[CrossRef]

O’Konski, C. T.

F. T. Gucker, C. T. O’Konski, H. B. Pickard, and J. N. Pitts, “A photoelectronic counter for colloidal particles,” J. Am. Chem. Soc.69(10), 2422–2431 (1947).
[CrossRef] [PubMed]

O’Sullivan, D.

D. J. O’Connor, D. Iacopino, D. A. Healy, D. O’Sullivan, and J. R. Sodeau, “The intrinsic fluorescence spectra of selected pollen and fungal spores,” Atmos. Environ.45(35), 6451–6458 (2011).
[CrossRef]

Oliver, S. G.

N. Shahab, F. Flett, S. G. Oliver, and P. R. Butler, “Growth rate control of protein and nucleic acid content in Streptomyces coelicolor A3(2) and Escherichia coli B/r,” Microbiology142(8), 1927–1935 (1996).
[CrossRef] [PubMed]

Oliveros, E.

M. P. Serrano, M. Vignoni, M. L. Dántola, E. Oliveros, C. Lorente, and A. H. Thomas, “Emission properties of dihydropterins in aqueous solutions,” Phys. Chem. Chem. Phys.13(16), 7419–7425 (2011).
[CrossRef] [PubMed]

F. M. Cabrerizo, G. Petroselli, C. Lorente, A. L. Capparelli, A. H. Thomas, A. M. Braun, and E. Oliveros, “Substituent effects on the photophysical properties of pterin derivatives in acidic and alkaline aqueous solutions,” Photochem. Photobiol.81(5), 1234–1240 (2005).
[CrossRef] [PubMed]

Olmo, M. T.

M. T. Olmo, F. Sánchez-Jiménez, M. A. Medina, and H. Hayashi, “Spectroscopic analysis of recombinant rat histidine decarboxylase,” J. Biochem.132(3), 433–439 (2002).
[CrossRef] [PubMed]

Ong, K. K.

H. F. Hameka, J. O. Jensen, K. K. Ong, A. C. Samuels, and C. P. Vlahacos, “Fluorescence of cysteine and cystine,” J. Phys. Chem. A102(2), 361–367 (1998).
[CrossRef]

Osterhout, R.

B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van Dien, and J. D. Rabinowitz, “Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli,” Nat. Chem. Biol.5(8), 593–599 (2009).
[CrossRef] [PubMed]

Painter, T. H.

A. G. Hallar, G. Chirokova, I. McCubbin, T. H. Painter, C. Wiedinmyer, and C. Dodson, “Atmospheric bioaerosols transported via dust storms in the western United States,” Geophys. Res. Lett.38(17), L17801 (2011).
[CrossRef]

Pajot, P.

P. Pajot, “Fluroescence of proteins in 6-M guanidine hydrochloride. a method for the quantitative determination of tryptophan,” Eur. J. Biochem.63(1), 263–269 (1976).
[CrossRef] [PubMed]

Pan, Y. L.

J. L. Santarpia, Y. L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, and R. G. Pinnick, “Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging,” Opt. Express20(28), 29867–29881 (2012).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, CT and Las Cruces, NM, USA,” J. Geophys. Res.112, D24S19 (2007).
[CrossRef]

V. Boutou, C. Favre, S. C. Hill, Y. L. Pan, R. K. Chang, and J. P. Wolf, “Backward enhanced emission from multiphoton processes in aerosols,” Appl. Phys. B75(2-3), 145–152 (2002).
[CrossRef]

S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Pan, Y.-L.

Pandey, N. K.

N. K. Pandey and A. I. Aronson, “Properties of the Bacillus subtilis spore coat,” J. Bacteriol.137(3), 1208–1218 (1979).
[PubMed]

Pandya, K. P.

D. H. Bishop, K. P. Pandya, and H. K. King, “Ubiquinone and vitamin K in bacteria,” Biochem. J.83, 606–614 (1962).
[PubMed]

Pawellek, C.

R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact.19(3), 216–222 (2002).
[CrossRef]

Pendleton, J. D.

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol.23(4), 653–664 (1995).
[CrossRef]

Penzer, G. R.

A. Gordon-Walker, G. R. Penzer, and G. K. Radda, “Excited states of flavins characterised by absorption, prompt and delayed emission spectra,” Eur. J. Biochem.13(2), 313–321 (1970).
[CrossRef] [PubMed]

Penzkofer, A.

A. Tyagi, A. Penzkofer, A. Batschauer, and E. Wolf, “Fluorescence behavior of 5,10-methenyltetrahydrofolate, 10-formyltetrahydrofolate, 10-formyldihydrofolate, and 10-formylfolate in aqueous solution at pH 8,” Chem. Phys.361(1-2), 75–82 (2009).
[CrossRef]

Pérez-Ruiz, T.

T. Pérez-Ruiz, C. Martínez-Lozano, M. A. García, and J. Martín, “High-performance liquid chromatography: photochemical reduction in aerobic conditions for determination of K vitamins using fluorescence detection,” J. Chromatogr. A1141(1), 67–72 (2007).
[CrossRef] [PubMed]

Peterson, E. A.

E. A. Peterson and H. A. Sober, “Preparation of crystalline phosphorylated derivatives of vitamin B6,” J. Am. Chem. Soc.76(1), 169–175 (1954).
[CrossRef]

Petrenko, A.

P. R. Callis, A. Petrenko, P. L. Muino, and J. R. Tusell, “Ab Initio prediction of tryptophan fluorescence quenching by protein electric field enabled electron transfer,” J. Phys. Chem. Biol. Lett.111, 10339–10355 (2007).

Petroselli, G.

F. M. Cabrerizo, G. Petroselli, C. Lorente, A. L. Capparelli, A. H. Thomas, A. M. Braun, and E. Oliveros, “Substituent effects on the photophysical properties of pterin derivatives in acidic and alkaline aqueous solutions,” Photochem. Photobiol.81(5), 1234–1240 (2005).
[CrossRef] [PubMed]

Petrov, D.

D. Petrov, Y. Shkuratov, and G. Videen, “Analytic light-scattering solution of two merging spheres using Sh-matricies,” Opt. Commun.281(9), 2411–2423 (2008).
[CrossRef]

Pickard, H. B.

F. T. Gucker, C. T. O’Konski, H. B. Pickard, and J. N. Pitts, “A photoelectronic counter for colloidal particles,” J. Am. Chem. Soc.69(10), 2422–2431 (1947).
[CrossRef] [PubMed]

Pineda,

J. M. Cambron, T. Sevilla, Pineda, and M. Blazquez, “Fluorescence of the Schiff bases of pyridoxal and pyridoxal 5′-phosphate with L-isoleucine in aqueous solutions,” J. Fluoresc.6, 1–6 (1996).

Pinnick, R. G.

J. L. Santarpia, Y. L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, and R. G. Pinnick, “Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging,” Opt. Express20(28), 29867–29881 (2012).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, CT and Las Cruces, NM, USA,” J. Geophys. Res.112, D24S19 (2007).
[CrossRef]

S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
[CrossRef] [PubMed]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol.23(4), 653–664 (1995).
[CrossRef]

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Pinto, J. F.

Pitts, J. N.

F. T. Gucker, C. T. O’Konski, H. B. Pickard, and J. N. Pitts, “A photoelectronic counter for colloidal particles,” J. Am. Chem. Soc.69(10), 2422–2431 (1947).
[CrossRef] [PubMed]

Pöhlker, C.

C. Pöhlker, J. A. Huffman, and U. Poschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech.5(1), 37–71 (2012).
[CrossRef]

Poschl, U.

C. Pöhlker, J. A. Huffman, and U. Poschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech.5(1), 37–71 (2012).
[CrossRef]

J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Poschl, “Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08,” Atmos. Chem. Phys.12(24), 11997–12019 (2012).
[CrossRef]

V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012).
[CrossRef]

S. M. Burrows, T. Butler, P. Jockel, H. Tos, A. Kerkweg, U. Poschl, and M. G. Lawrence, “Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems,” Atmos. Chem. Phys.9(23), 9281–9297 (2009).
[CrossRef]

Pöschl, U.

J. A. Huffman, B. Treutlein, and U. Pöschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys.10(7), 3215–3233 (2010).
[CrossRef]

Powell, J. F.

J. F. Powell, “The changes in the total vitamin B6 and the pyridoxal phosphate content of cells of Bacillus sphaericus during growth and sporulation: their possible relationships with alphaepsilon-diaminopimelic acid metabolism,” Biochem. J.70(1), 91–96 (1958).
[PubMed]

J. F. Powell, “Isolation of dipicolinic acid (pyridine-2:6-dicarboxylic acid) from spores of Bacillus megatherium,” Biochem. J.54(2), 210–211 (1953).
[PubMed]

Prather, K. A.

J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
[CrossRef] [PubMed]

Price, P. B.

A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. U.S.A.100(6), 3461–3466 (2003).
[CrossRef] [PubMed]

Primmerman, C. A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

Prugh, A.

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Putkiranta, M.

Quant, F. R.

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci.28(3), 471–482 (1997).
[CrossRef] [PubMed]

Querry, M. R.

Rabinowitz, J. D.

B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van Dien, and J. D. Rabinowitz, “Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli,” Nat. Chem. Biol.5(8), 593–599 (2009).
[CrossRef] [PubMed]

Radda, G. K.

A. Gordon-Walker, G. R. Penzer, and G. K. Radda, “Excited states of flavins characterised by absorption, prompt and delayed emission spectra,” Eur. J. Biochem.13(2), 313–321 (1970).
[CrossRef] [PubMed]

Ralph, F. M.

J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
[CrossRef] [PubMed]

Raman, M. C. C.

M. C. C. Raman, K. A. Johnson, B. A. Yard, J. Lowther, L. G. Carter, J. H. Naismith, and D. J. Campopiano, “The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics,” J. Biol. Chem.284(25), 17328–17339 (2009).
[CrossRef] [PubMed]

Ratnesar-Shumate, S.

Reinisch, L.

Reyes, F. L.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

Ristovski, Z. D.

V. Agranovsky, Z. D. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol.38(4), 354–364 (2004).
[CrossRef]

Robinson, M. K.

S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol.70(5), 2786–2790 (2004).
[CrossRef] [PubMed]

Robinson, N. H.

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosols data,” Atmos. Meas. Tech.6(2), 337–347 (2013).
[CrossRef]

Rogers, L. B.

D. M. Hercules and L. B. Rogers, “Absorption and fluorescence spectra of some mono- and di-hydroxy naphthalenes,” Spectrochim. Acta [A]15, 393–408 (1959).
[CrossRef]

Roselle, D. C.

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999).
[CrossRef]

M. Seaver, D. C. Roselle, J. F. Pinto, and J. D. Eversole, “Absolute emission spectra from Bacillus subtilis and Escherichia coli vegetative cells in solution,” Appl. Opt.37(22), 5344–5347 (1998).
[CrossRef] [PubMed]

Rosen, J. M.

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, CT and Las Cruces, NM, USA,” J. Geophys. Res.112, D24S19 (2007).
[CrossRef]

Rosen, R. B.

Rosenfeld, D.

J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
[CrossRef] [PubMed]

Rostedt, A.

Rowe, G. S.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

Roy, G.

Saarela, J.

Sadowski, J. A.

Y. Haroon, D. S. Bacon, and J. A. Sadowski, “Liquid-chromatographic determination of vitamin K1 in plasma, with fluorometric detection,” Clin. Chem.32(10), 1925–1929 (1986).
[PubMed]

Safatov, A.

V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012).
[CrossRef]

Sagripanti, J.-L.

M. Carrera, R. O. Zandomeni, and J.-L. Sagripanti, “Wet and dry density of Bacillus anthracis and other Bacillus species,” J. Appl. Microbiol.105(1), 68–77 (2008).
[CrossRef] [PubMed]

Samuels, A. C.

H. F. Hameka, J. O. Jensen, K. K. Ong, A. C. Samuels, and C. P. Vlahacos, “Fluorescence of cysteine and cystine,” J. Phys. Chem. A102(2), 361–367 (1998).
[CrossRef]

Sanadi, D. R.

E. Dimant, D. R. Sanadi, and F. M. Huennekens, “The isolation of flavin nucleotides,” J. Am. Chem. Soc.74(21), 5440–5444 (1952).
[CrossRef]

Sanchez, A.

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

Sánchez-Jiménez, F.

M. T. Olmo, F. Sánchez-Jiménez, M. A. Medina, and H. Hayashi, “Spectroscopic analysis of recombinant rat histidine decarboxylase,” J. Biochem.132(3), 433–439 (2002).
[CrossRef] [PubMed]

Santarpia, J. L.

J. L. Santarpia, Y. L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, and R. G. Pinnick, “Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging,” Opt. Express20(28), 29867–29881 (2012).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Sarasanandarajah, S.

S. Sarasanandarajah, J. Kunnil, E. Chako, B. V. Bronk, and L. Reinisch, “Reversible changes in fluorescence of bacterial endospores found in aerosols due to hydration/drying,” J. Aerosol Sci.36(5-6), 689–699 (2005).
[CrossRef]

J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, “Fluorescence quantum efficiency of dry Bacillus globigii spores,” Opt. Express13(22), 8969–8979 (2005).
[CrossRef] [PubMed]

Savage, H. E.

Schnaiter, M.

E. Toprak and M. Schnaiter, “Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study,” Atmos. Chem. Phys.13(1), 225–243 (2013).
[CrossRef]

Schnell, R. C.

G. Vali, M. Christensen, R. W. Fresh, E. L. Galyan, L. R. Maki, and R. C. Schnell, “Biogenic ice nuclei. Part II: Bacterial sources,” J. Atmos. Sci.33(8), 1565–1570 (1976).
[CrossRef]

Schweiger, G.

Scott, T. G.

T. G. Scott, R. D. Spencer, N. J. Leonard, and G. Weber, “Emission properties of NADH. Studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH, and simplified synthetic models,” J. Am. Chem. Soc.92, 687–695 (1970).
[CrossRef]

Scotto, C.

Seaver, M.

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdez, and H. Kulaga, “Aerosol characteristics in a subway environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999).
[CrossRef]

M. Seaver, D. C. Roselle, J. F. Pinto, and J. D. Eversole, “Absolute emission spectra from Bacillus subtilis and Escherichia coli vegetative cells in solution,” Appl. Opt.37(22), 5344–5347 (1998).
[CrossRef] [PubMed]

Serrano, M. P.

M. P. Serrano, M. Vignoni, M. L. Dántola, E. Oliveros, C. Lorente, and A. H. Thomas, “Emission properties of dihydropterins in aqueous solutions,” Phys. Chem. Chem. Phys.13(16), 7419–7425 (2011).
[CrossRef] [PubMed]

Setlow, P.

M. J. Leggett, G. McDonnell, S. P. Denyer, P. Setlow, and J.-Y. Maillard, “Bacterial spore structures and their protective role in biocide resistance,” J. Appl. Microbiol.113(3), 485–498 (2012).
[CrossRef] [PubMed]

P. Setlow, “I will survive: DNA protection in bacterial spores,” Trends Microbiol.15(4), 172–180 (2007).
[CrossRef] [PubMed]

Sevilla, T.

J. M. Cambron, T. Sevilla, Pineda, and M. Blazquez, “Fluorescence of the Schiff bases of pyridoxal and pyridoxal 5′-phosphate with L-isoleucine in aqueous solutions,” J. Fluoresc.6, 1–6 (1996).

Shah, M.

Shahab, N.

N. Shahab, F. Flett, S. G. Oliver, and P. R. Butler, “Growth rate control of protein and nucleic acid content in Streptomyces coelicolor A3(2) and Escherichia coli B/r,” Microbiology142(8), 1927–1935 (1996).
[CrossRef] [PubMed]

Shaltiel, S.

M. Cortijo, I. Z. Steinberg, and S. Shaltiel, “Fluorescence of glycogen phosphorylase b. structural transitions and energy transfer,” J. Biol. Chem.246(4), 933–938 (1971).
[PubMed]

Shkuratov, Y.

D. Petrov, Y. Shkuratov, and G. Videen, “Analytic light-scattering solution of two merging spheres using Sh-matricies,” Opt. Commun.281(9), 2411–2423 (2008).
[CrossRef]

Sickler, T.

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Simard, J.-R.

Sinha, B.

J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Poschl, “Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08,” Atmos. Chem. Phys.12(24), 11997–12019 (2012).
[CrossRef]

Sivaprakasam, V.

Smith, E.

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Snee-Pollmann, A.

J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Poschl, “Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08,” Atmos. Chem. Phys.12(24), 11997–12019 (2012).
[CrossRef]

Snell, E. E.

Y. Morino and E. E. Snell, “The relation of spectral changes and tritium exchange reactions to the mechanism of tryptophanase-catalyzed reactions,” J. Biol. Chem.242(12), 2800–2809 (1967).
[PubMed]

E. Metzler and E. E. Snell, “Spectra and ionization constants of the vitamin B6 group and related 3-hydroxypyridine derivatives,” J. Am. Chem. Soc.77(9), 2431–2437 (1955).
[CrossRef]

Sober, H. A.

E. A. Peterson and H. A. Sober, “Preparation of crystalline phosphorylated derivatives of vitamin B6,” J. Am. Chem. Soc.76(1), 169–175 (1954).
[CrossRef]

Soda, K.

K.-H. Jhee, T. Yoshimura, N. Esaki, K. Yonaha, and K. Soda, “Thermostable ornithine aminotransferase from Bacillus sp. YM-2: purification and characterization,” J. Biochem.118(1), 101–108 (1995).
[PubMed]

Sodeau, J. R.

D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ.60, 534–543 (2012).
[CrossRef]

D. J. O’Connor, D. Iacopino, D. A. Healy, D. O’Sullivan, and J. R. Sodeau, “The intrinsic fluorescence spectra of selected pollen and fungal spores,” Atmos. Environ.45(35), 6451–6458 (2011).
[CrossRef]

Sorvajärvi, T.

Spencer, R. D.

T. G. Scott, R. D. Spencer, N. J. Leonard, and G. Weber, “Emission properties of NADH. Studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH, and simplified synthetic models,” J. Am. Chem. Soc.92, 687–695 (1970).
[CrossRef]

Stanley, W. R.

A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforests,” Atmos. Chem. Phys.11(11), 5491–5504 (2011).
[CrossRef]

P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express13(10), 3583–3593 (2005).
[CrossRef] [PubMed]

Stark, G. R.

T. D. Kempe and G. R. Stark, “Pyridoxal 5′-phosphate, a fluorescent probe in the active site of aspartate transcarbamylase,” J. Biol. Chem.250(17), 6861–6869 (1975).
[PubMed]

Steinberg, I. Z.

M. Cortijo, I. Z. Steinberg, and S. Shaltiel, “Fluorescence of glycogen phosphorylase b. structural transitions and energy transfer,” J. Biol. Chem.246(4), 933–938 (1971).
[PubMed]

Strzalka, K.

J. Kruk, K. Strzałka, and R. M. Leblanc, “Fluorescence properties of plastoquinol, ubiquinol and α-tocopherol quinol in solution and liposome membranes,” J. Photochem. Photobiol. B19(1), 33–38 (1993).
[CrossRef] [PubMed]

Sullivan, R. C.

J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
[CrossRef] [PubMed]

Suski, K. J.

J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
[CrossRef] [PubMed]

Swartz, B.

Takegawa, N.

F. Taketani, Y. Kanaya, T. Nakamura, K. Koizumi, N. Moteki, and N. Takegawa, “Measurement of fluorescence spectra from atmospheric single submicron particle using laser-induced fluorescence technique,” J. Aerosol Sci.58, 1–8 (2013).
[CrossRef]

Taketani, F.

F. Taketani, Y. Kanaya, T. Nakamura, K. Koizumi, N. Moteki, and N. Takegawa, “Measurement of fluorescence spectra from atmospheric single submicron particle using laser-induced fluorescence technique,” J. Aerosol Sci.58, 1–8 (2013).
[CrossRef]

Teale, F. W. J.

G. Weber and F. W. J. Teale, “Determination of the absolute quantum yield of fluorescent solutions,” Trans. Faraday Soc.53, 646–655 (1957).
[CrossRef]

Thomas, A. H.

M. P. Serrano, M. Vignoni, M. L. Dántola, E. Oliveros, C. Lorente, and A. H. Thomas, “Emission properties of dihydropterins in aqueous solutions,” Phys. Chem. Chem. Phys.13(16), 7419–7425 (2011).
[CrossRef] [PubMed]

F. M. Cabrerizo, G. Petroselli, C. Lorente, A. L. Capparelli, A. H. Thomas, A. M. Braun, and E. Oliveros, “Substituent effects on the photophysical properties of pterin derivatives in acidic and alkaline aqueous solutions,” Photochem. Photobiol.81(5), 1234–1240 (2005).
[CrossRef] [PubMed]

Tipper, D. J.

R. C. Goldman and D. J. Tipper, “Bacillus subtilis spore coats: complexity and purification of a unique polypeptide component,” J. Bacteriol.135(3), 1091–1106 (1978).
[PubMed]

Toivonen, J.

Tomlinson, J. M.

J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
[CrossRef] [PubMed]

Toprak, E.

E. Toprak and M. Schnaiter, “Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study,” Atmos. Chem. Phys.13(1), 225–243 (2013).
[CrossRef]

Tos, H.

S. M. Burrows, T. Butler, P. Jockel, H. Tos, A. Kerkweg, U. Poschl, and M. G. Lawrence, “Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems,” Atmos. Chem. Phys.9(23), 9281–9297 (2009).
[CrossRef]

Treutlein, B.

J. A. Huffman, B. Treutlein, and U. Pöschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys.10(7), 3215–3233 (2010).
[CrossRef]

Tuminello, P. S.

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190-2.50 microm,” Biopolymers72(5), 391–398 (2003).
[CrossRef] [PubMed]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130-2.50 microm spectral region,” Biopolymers62(2), 122–128 (2001).
[CrossRef] [PubMed]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 num,” Appl. Opt.36(13), 2818–2824 (1997).
[CrossRef] [PubMed]

Tusell, J. R.

P. R. Callis, A. Petrenko, P. L. Muino, and J. R. Tusell, “Ab Initio prediction of tryptophan fluorescence quenching by protein electric field enabled electron transfer,” J. Phys. Chem. Biol. Lett.111, 10339–10355 (2007).

Tyagi, A.

A. Tyagi, A. Penzkofer, A. Batschauer, and E. Wolf, “Fluorescence behavior of 5,10-methenyltetrahydrofolate, 10-formyltetrahydrofolate, 10-formyldihydrofolate, and 10-formylfolate in aqueous solution at pH 8,” Chem. Phys.361(1-2), 75–82 (2009).
[CrossRef]

Uhoch, J.

M. D’Urso-Scott, J. Uhoch, and J. R. Bertino, “Formation of 10-formylfolic acid, a potent inhibitor of dihydrofolate reductase, in rat liver slices incubated with folic acid,” Proc. Natl. Acad. Sci. U.S.A.71(7), 2736–2739 (1974).
[CrossRef] [PubMed]

Valdez, E.

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdez, and H. Kulaga, “Aerosol characteristics in a subway environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

Vali, G.

G. Vali, M. Christensen, R. W. Fresh, E. L. Galyan, L. R. Maki, and R. C. Schnell, “Biogenic ice nuclei. Part II: Bacterial sources,” J. Atmos. Sci.33(8), 1565–1570 (1976).
[CrossRef]

Van Dien, S. J.

B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van Dien, and J. D. Rabinowitz, “Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli,” Nat. Chem. Biol.5(8), 593–599 (2009).
[CrossRef] [PubMed]

Velesco, N.

Verlick, S. F.

S. F. Verlick, “Fluorescence spectra and polarization of glyceraldehyde-3-phosphate and lactic dehydrogenase coenzyme complexes,” J. Biol. Chem.233(6), 1455–1467 (1958).
[PubMed]

Veselovskii, I.

Videen, G.

D. Petrov, Y. Shkuratov, and G. Videen, “Analytic light-scattering solution of two merging spheres using Sh-matricies,” Opt. Commun.281(9), 2411–2423 (2008).
[CrossRef]

Vignoni, M.

M. P. Serrano, M. Vignoni, M. L. Dántola, E. Oliveros, C. Lorente, and A. H. Thomas, “Emission properties of dihydropterins in aqueous solutions,” Phys. Chem. Chem. Phys.13(16), 7419–7425 (2011).
[CrossRef] [PubMed]

Visser, A. J. W. G.

A. J. Kungl, A. J. W. G. Visser, H. F. Kauffmann, and M. Breitenbach, “Time-resolved fluorescence studies of dityrosine in the outer layer of intact yeast Ascospores,” Biophys. J.67(1), 309–317 (1994).
[CrossRef] [PubMed]

Vlahacos, C. P.

H. F. Hameka, J. O. Jensen, K. K. Ong, A. C. Samuels, and C. P. Vlahacos, “Fluorescence of cysteine and cystine,” J. Phys. Chem. A102(2), 361–367 (1998).
[CrossRef]

Warren, R. L.

S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol.70(5), 2786–2790 (2004).
[CrossRef] [PubMed]

Weber, G.

T. G. Scott, R. D. Spencer, N. J. Leonard, and G. Weber, “Emission properties of NADH. Studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH, and simplified synthetic models,” J. Am. Chem. Soc.92, 687–695 (1970).
[CrossRef]

G. Weber and F. W. J. Teale, “Determination of the absolute quantum yield of fluorescent solutions,” Trans. Faraday Soc.53, 646–655 (1957).
[CrossRef]

Weichert, R.

R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact.19(3), 216–222 (2002).
[CrossRef]

Westphal, A. J.

A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. U.S.A.100(6), 3461–3466 (2003).
[CrossRef] [PubMed]

Wheeler, K. E.

A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. U.S.A.100(6), 3461–3466 (2003).
[CrossRef] [PubMed]

White, A. B.

J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
[CrossRef] [PubMed]

Whiteman, D. N.

Wiedinmyer, C.

A. G. Hallar, G. Chirokova, I. McCubbin, T. H. Painter, C. Wiedinmyer, and C. Dodson, “Atmospheric bioaerosols transported via dust storms in the western United States,” Geophys. Res. Lett.38(17), L17801 (2011).
[CrossRef]

Will, D. V.

Wolf, E.

A. Tyagi, A. Penzkofer, A. Batschauer, and E. Wolf, “Fluorescence behavior of 5,10-methenyltetrahydrofolate, 10-formyltetrahydrofolate, 10-formyldihydrofolate, and 10-formylfolate in aqueous solution at pH 8,” Chem. Phys.361(1-2), 75–82 (2009).
[CrossRef]

Wolf, J. P.

V. Boutou, C. Favre, S. C. Hill, Y. L. Pan, R. K. Chang, and J. P. Wolf, “Backward enhanced emission from multiphoton processes in aerosols,” Appl. Phys. B75(2-3), 145–152 (2002).
[CrossRef]

Wolf, J.-P.

Wright, J. D.

S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol.70(5), 2786–2790 (2004).
[CrossRef] [PubMed]

Wrobel, J. M.

Yabusaki, K.

K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010).
[CrossRef]

Yard, B. A.

M. C. C. Raman, K. A. Johnson, B. A. Yard, J. Lowther, L. G. Carter, J. H. Naismith, and D. J. Campopiano, “The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics,” J. Biol. Chem.284(25), 17328–17339 (2009).
[CrossRef] [PubMed]

Yonaha, K.

K.-H. Jhee, T. Yoshimura, N. Esaki, K. Yonaha, and K. Soda, “Thermostable ornithine aminotransferase from Bacillus sp. YM-2: purification and characterization,” J. Biochem.118(1), 101–108 (1995).
[PubMed]

Yoshimura, T.

K.-H. Jhee, T. Yoshimura, N. Esaki, K. Yonaha, and K. Soda, “Thermostable ornithine aminotransferase from Bacillus sp. YM-2: purification and characterization,” J. Biochem.118(1), 101–108 (1995).
[PubMed]

Zandomeni, R. O.

M. Carrera, R. O. Zandomeni, and J.-L. Sagripanti, “Wet and dry density of Bacillus anthracis and other Bacillus species,” J. Appl. Microbiol.105(1), 68–77 (2008).
[CrossRef] [PubMed]

Aerobiologia (1)

K. Mitsumoto, K. Yabusaki, K. Kobayashi, and H. Aoyagi, “Development of a novel real-time pollen-sorting counter using species-specific pollen autofluorescence,” Aerobiologia26(2), 99–111 (2010).
[CrossRef]

Aerosol Sci. Technol. (4)

A. Birenzvige, J. Eversole, M. Seaver, S. Francesconi, E. Valdez, and H. Kulaga, “Aerosol characteristics in a subway environment,” Aerosol Sci. Technol.37(3), 210–220 (2003).
[CrossRef]

V. Agranovsky, Z. D. Ristovski, G. A. Ayoko, and L. Morawska, “Performance evaluation of the UVAPS in measuring biological aerosols: fluorescence spectra from NAD(P)H coenzymes and riboflavin,” Aerosol Sci. Technol.38(4), 354–364 (2004).
[CrossRef]

M. Seaver, J. D. Eversole, J. J. Hardgrove, W. K. Cary, and D. C. Roselle, “Size and fluorescence measurements for field detection of biological aerosols,” Aerosol Sci. Technol.30(2), 174–185 (1999).
[CrossRef]

R. G. Pinnick, S. C. Hill, P. Nachman, J. D. Pendleton, G. L. Fernandez, M. W. Mayo, and J. G. Bruno, “Fluorescence particle counter for detecting airborne bacteria and other biological particles,” Aerosol Sci. Technol.23(4), 653–664 (1995).
[CrossRef]

Anal. Biochem. (2)

H. Mach and C. R. Middaugh, “Simultaneous monitoring of the environment of tryptophan, tyrosine, and phenylalanine residues in proteins by near-ultraviolet second-derivative spectroscopy,” Anal. Biochem.222(2), 323–331 (1994).
[CrossRef] [PubMed]

J. C. Lewis, “Determination of dipicolinic acid in bacterial spores by ultraviolet spectrometry of the calcium chelate,” Anal. Biochem.19(2), 327–337 (1967).
[CrossRef] [PubMed]

Appl. Environ. Microbiol. (1)

S. A. Burke, J. D. Wright, M. K. Robinson, B. V. Bronk, and R. L. Warren, “Detection of molecular diversity in Bacillus atrophaeus by amplified fragment length polymorphism analysis,” Appl. Environ. Microbiol.70(5), 2786–2790 (2004).
[CrossRef] [PubMed]

Appl. Opt. (14)

N. Velesco, T. Kaiser, and G. Schweiger, “Computation of the internal field of a large spherical particle by use of the geometrical-optics approximation,” Appl. Opt.36(33), 8724–8728 (1997).
[CrossRef] [PubMed]

N. Velesco and G. Schweiger, “Geometrical optics calculation of inelastic scattering on large particles,” Appl. Opt.38(6), 1046–1052 (1999).
[CrossRef] [PubMed]

S. C. Hill, “Method for integrating the absorption cross sections of spheres over wavelength or diameter,” Appl. Opt.42(21), 4381–4388 (2003).
[CrossRef] [PubMed]

C. Laflamme, J.-R. Simard, S. Buteau, P. Lahaie, D. Nadeau, B. Déry, O. Houle, P. Mathieu, G. Roy, J. Ho, and C. Duchaine, “Effect of growth media and washing on the spectral signatures of aerosolized biological simulants,” Appl. Opt.50(6), 788–796 (2011).
[CrossRef] [PubMed]

E. J. D’Sa and S. E. Lohrenz, “Theoretical treatment of fluorescence detection by a dual-fiber-optic sensor with consideration of sampling variability and package effects associated with particles,” Appl. Opt.38(12), 2524–2535 (1999).
[CrossRef] [PubMed]

S. C. Hill, R. G. Pinnick, S. Niles, N. F. Fell, Y. L. Pan, J. Bottiger, B. V. Bronk, S. Holler, and R. K. Chang, “Fluorescence from airborne microparticles: dependence on size, concentration of fluorophores, and illumination intensity,” Appl. Opt.40(18), 3005–3013 (2001).
[CrossRef] [PubMed]

I. Veselovskii, V. Griaznov, A. Kolgotin, and D. N. Whiteman, “Angle- and size-dependent characteristics of incoherent Raman and fluorescent scattering by microspheres. 2. Numerical simulation,” Appl. Opt.41(27), 5783–5791 (2002).
[CrossRef] [PubMed]

P. S. Tuminello, E. T. Arakawa, B. N. Khare, J. M. Wrobel, M. R. Querry, and M. E. Milham, “Optical properties of Bacillus subtilis spores from 0.2 to 2.5 num,” Appl. Opt.36(13), 2818–2824 (1997).
[CrossRef] [PubMed]

G. W. Faris, R. A. Copeland, K. Mortelmans, and B. V. Bronk, “Spectrally resolved absolute fluorescence cross sections for bacillus spores,” Appl. Opt.36(4), 958–967 (1997).
[CrossRef] [PubMed]

M. Seaver, D. C. Roselle, J. F. Pinto, and J. D. Eversole, “Absolute emission spectra from Bacillus subtilis and Escherichia coli vegetative cells in solution,” Appl. Opt.37(22), 5344–5347 (1998).
[CrossRef] [PubMed]

A. Manninen, M. Putkiranta, J. Saarela, A. Rostedt, T. Sorvajärvi, J. Toivonen, M. Marjamäki, J. Keskinen, and R. Hernberg, “Fluorescence cross sections of bioaerosols and suspended biological agents,” Appl. Opt.48(22), 4320–4328 (2009).
[CrossRef] [PubMed]

A. Alimova, A. Katz, H. E. Savage, M. Shah, G. Minko, D. V. Will, R. B. Rosen, S. A. McCormick, and R. R. Alfano, “Native fluorescence and excitation spectroscopic changes in Bacillus subtilis and Staphylococcus aureus bacteria subjected to conditions of starvation,” Appl. Opt.42(19), 4080–4087 (2003).
[CrossRef] [PubMed]

Y.-L. Pan, S. C. Hill, J.-P. Wolf, S. Holler, R. K. Chang, and J. R. Bottiger, “Backward enhanced fluorescence from clusters of microspheres and particles of tryptophan,” Appl. Opt.41, 2994–2999 (2002). Fig. 3, p. 2997.

J. Kunnil, B. Swartz, and L. Reinisch, “Changes in the luminescence between dried and wet bacillus spores,” Appl. Opt.43(28), 5404–5409 (2004).
[CrossRef] [PubMed]

Appl. Phys. B (1)

V. Boutou, C. Favre, S. C. Hill, Y. L. Pan, R. K. Chang, and J. P. Wolf, “Backward enhanced emission from multiphoton processes in aerosols,” Appl. Phys. B75(2-3), 145–152 (2002).
[CrossRef]

Atmos. Chem. Phys. (5)

E. Toprak and M. Schnaiter, “Fluorescent biological aerosol particles measured with the Waveband Integrated Bioaerosol Sensor WIBS-4: laboratory tests combined with a one year field study,” Atmos. Chem. Phys.13(1), 225–243 (2013).
[CrossRef]

S. M. Burrows, T. Butler, P. Jockel, H. Tos, A. Kerkweg, U. Poschl, and M. G. Lawrence, “Bacteria in the global atmosphere – Part 2: Modeling of emissions and transport between different ecosystems,” Atmos. Chem. Phys.9(23), 9281–9297 (2009).
[CrossRef]

A. M. Gabey, W. R. Stanley, M. W. Gallagher, and P. H. Kaye, “The fluorescence properties of aerosol larger than 0.8 μm in urban and tropical rainforests,” Atmos. Chem. Phys.11(11), 5491–5504 (2011).
[CrossRef]

J. A. Huffman, B. Treutlein, and U. Pöschl, “Fluorescent biological aerosol particle concentrations and size distributions measured with an Ultraviolet Aerodynamic Particle Sizer (UV-APS) in Central Europe,” Atmos. Chem. Phys.10(7), 3215–3233 (2010).
[CrossRef]

J. A. Huffman, B. Sinha, R. M. Garland, A. Snee-Pollmann, S. S. Gunthe, P. Artaxo, S. T. Martin, M. O. Andreae, and U. Poschl, “Size distributions and temporal variations of biological aerosol particles in the Amazon rainforest characterized by microscopy and real-time UV-APS fluorescence techniques during AMAZE-08,” Atmos. Chem. Phys.12(24), 11997–12019 (2012).
[CrossRef]

Atmos. Environ. (3)

D. A. Healy, D. J. O’Connor, A. M. Burke, and J. R. Sodeau, “A laboratory assessment of the Waveband Integrated Bioaerosol Sensor (WIBS-4) using individual samples of pollen and fungal spore material,” Atmos. Environ.60, 534–543 (2012).
[CrossRef]

Y. L. Pan, S. C. Hill, R. G. Pinnick, J. M. House, R. C. Flagan, and R. K. Chang, “Dual-excitation-wavelength fluorescence spectra and elastic scattering for differentiation of single airborne pollen and fungal particles,” Atmos. Environ.45(8), 1555–1563 (2011).
[CrossRef]

D. J. O’Connor, D. Iacopino, D. A. Healy, D. O’Sullivan, and J. R. Sodeau, “The intrinsic fluorescence spectra of selected pollen and fungal spores,” Atmos. Environ.45(35), 6451–6458 (2011).
[CrossRef]

Atmos. Meas. Tech. (2)

C. Pöhlker, J. A. Huffman, and U. Poschl, “Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences,” Atmos. Meas. Tech.5(1), 37–71 (2012).
[CrossRef]

N. H. Robinson, J. D. Allan, J. A. Huffman, P. H. Kaye, V. E. Foot, and M. Gallagher, “Cluster analysis of WIBS single-particle bioaerosols data,” Atmos. Meas. Tech.6(2), 337–347 (2013).
[CrossRef]

Biochem. J. (4)

J. F. Powell, “Isolation of dipicolinic acid (pyridine-2:6-dicarboxylic acid) from spores of Bacillus megatherium,” Biochem. J.54(2), 210–211 (1953).
[PubMed]

D. H. Bishop, K. P. Pandya, and H. K. King, “Ubiquinone and vitamin K in bacteria,” Biochem. J.83, 606–614 (1962).
[PubMed]

J. F. Powell, “The changes in the total vitamin B6 and the pyridoxal phosphate content of cells of Bacillus sphaericus during growth and sporulation: their possible relationships with alphaepsilon-diaminopimelic acid metabolism,” Biochem. J.70(1), 91–96 (1958).
[PubMed]

J. Donoso, F. Muñoz, and F. Garcia Blanco, “Quantitative description of the absorption spectra of the coenzyme in glycogen phosphorylases based on log-normal distribution curves,” Biochem. J.292(Pt 1), 225–229 (1993).
[PubMed]

Biochemistry (1)

H. Edelhoch, “Spectroscopic determination of tryptophan and tyrosine in proteins,” Biochemistry6(7), 1948–1954 (1967).
[CrossRef] [PubMed]

Biochim. Biophys. Acta (1)

H. Ikushiro, H. Hayashi, and H. Kagamiyama, “Bacterial serine palmitoyltransferase: a water-soluble homodimeric prototype of the eukaryotic enzyme,” Biochim. Biophys. Acta1647(1-2), 116–120 (2003).
[CrossRef] [PubMed]

Biofizika (3)

IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. V. Pyridoxal and pyridoxal-5′-phosphate. Luminescent properties,” Biofizika12(5), 773–781 (1967).
[PubMed]

N. P. Bazhulina, IuV. Morozov, M. Ia. Karpeĭskiĭ, V. I. Ivanov, and A. I. Kuklin, “The optical and luminescent properties of vitamin B6 and its derivatives. II. Pyridoxine and pyridoxine-5′-phosphate,” Biofizika11(1), 42–47 (1966).
[PubMed]

IuV. Morozov, N. P. Bazhulina, L. P. Cherkashina, and M. Ia. Karpeĭskiĭ, “Optical and luminescent properties of vitamin B6 and its derivatives. IV. Pyridoxal and pyridoxal-5-phosphate. Absorption spectra,” Biofizika12(3), 397–406 (1967).
[PubMed]

Biophys. J. (1)

A. J. Kungl, A. J. W. G. Visser, H. F. Kauffmann, and M. Breitenbach, “Time-resolved fluorescence studies of dityrosine in the outer layer of intact yeast Ascospores,” Biophys. J.67(1), 309–317 (1994).
[CrossRef] [PubMed]

Biopolymers (2)

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of Erwinia herbicola bacteria at 0.190-2.50 microm,” Biopolymers72(5), 391–398 (2003).
[CrossRef] [PubMed]

E. T. Arakawa, P. S. Tuminello, B. N. Khare, and M. E. Milham, “Optical properties of ovalbumin in 0.130-2.50 microm spectral region,” Biopolymers62(2), 122–128 (2001).
[CrossRef] [PubMed]

Chem. Phys. (1)

A. Tyagi, A. Penzkofer, A. Batschauer, and E. Wolf, “Fluorescence behavior of 5,10-methenyltetrahydrofolate, 10-formyltetrahydrofolate, 10-formyldihydrofolate, and 10-formylfolate in aqueous solution at pH 8,” Chem. Phys.361(1-2), 75–82 (2009).
[CrossRef]

Clin. Chem. (1)

Y. Haroon, D. S. Bacon, and J. A. Sadowski, “Liquid-chromatographic determination of vitamin K1 in plasma, with fluorometric detection,” Clin. Chem.32(10), 1925–1929 (1986).
[PubMed]

Environ. Chem. (1)

R. Jaenicke, S. Matthias-Maser, and S. Gruber, “Omnipresence of biological material in the atmosphere,” Environ. Chem.4(4), 217–220 (2007).
[CrossRef]

Eur. J. Biochem. (5)

P. Pajot, “Fluroescence of proteins in 6-M guanidine hydrochloride. a method for the quantitative determination of tryptophan,” Eur. J. Biochem.63(1), 263–269 (1976).
[CrossRef] [PubMed]

A. Kröger and V. Dadák, “On the role of quinones in bacterial electron transport. The respiratory system of Bacillus megaterium,” Eur. J. Biochem.11(2), 328–340 (1969).
[CrossRef] [PubMed]

T. Beeler and J. E. Churchich, “4-aminobutyrate aminotransferase fluorescence studies,” Eur. J. Biochem.85(2), 365–371 (1978).
[CrossRef] [PubMed]

N. Burridge and J. E. Churchich, “Effects of potassium iodide on aspartate aminotransferase,” Eur. J. Biochem.41(3), 533–538 (1974).
[CrossRef] [PubMed]

A. Gordon-Walker, G. R. Penzer, and G. K. Radda, “Excited states of flavins characterised by absorption, prompt and delayed emission spectra,” Eur. J. Biochem.13(2), 313–321 (1970).
[CrossRef] [PubMed]

Field Anal. Chem. Technol. (1)

F. L. Reyes, T. H. Jeys, N. R. Newbury, C. A. Primmerman, G. S. Rowe, and A. Sanchez, “Bio-aerosol fluorescence sensor,” Field Anal. Chem. Technol.3(4-5), 240–248 (1999).
[CrossRef]

Geophys. Res. Lett. (1)

A. G. Hallar, G. Chirokova, I. McCubbin, T. H. Painter, C. Wiedinmyer, and C. Dodson, “Atmospheric bioaerosols transported via dust storms in the western United States,” Geophys. Res. Lett.38(17), L17801 (2011).
[CrossRef]

J. Aerosol Sci. (3)

P. P. Hairston, J. Ho, and F. R. Quant, “Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence,” J. Aerosol Sci.28(3), 471–482 (1997).
[CrossRef] [PubMed]

F. Taketani, Y. Kanaya, T. Nakamura, K. Koizumi, N. Moteki, and N. Takegawa, “Measurement of fluorescence spectra from atmospheric single submicron particle using laser-induced fluorescence technique,” J. Aerosol Sci.58, 1–8 (2013).
[CrossRef]

S. Sarasanandarajah, J. Kunnil, E. Chako, B. V. Bronk, and L. Reinisch, “Reversible changes in fluorescence of bacterial endospores found in aerosols due to hydration/drying,” J. Aerosol Sci.36(5-6), 689–699 (2005).
[CrossRef]

J. Am. Chem. Soc. (5)

E. Dimant, D. R. Sanadi, and F. M. Huennekens, “The isolation of flavin nucleotides,” J. Am. Chem. Soc.74(21), 5440–5444 (1952).
[CrossRef]

T. G. Scott, R. D. Spencer, N. J. Leonard, and G. Weber, “Emission properties of NADH. Studies of fluorescence lifetimes and quantum efficiencies of NADH, AcPyADH, and simplified synthetic models,” J. Am. Chem. Soc.92, 687–695 (1970).
[CrossRef]

E. Metzler and E. E. Snell, “Spectra and ionization constants of the vitamin B6 group and related 3-hydroxypyridine derivatives,” J. Am. Chem. Soc.77(9), 2431–2437 (1955).
[CrossRef]

E. A. Peterson and H. A. Sober, “Preparation of crystalline phosphorylated derivatives of vitamin B6,” J. Am. Chem. Soc.76(1), 169–175 (1954).
[CrossRef]

F. T. Gucker, C. T. O’Konski, H. B. Pickard, and J. N. Pitts, “A photoelectronic counter for colloidal particles,” J. Am. Chem. Soc.69(10), 2422–2431 (1947).
[CrossRef] [PubMed]

J. Appl. Microbiol. (2)

M. Carrera, R. O. Zandomeni, and J.-L. Sagripanti, “Wet and dry density of Bacillus anthracis and other Bacillus species,” J. Appl. Microbiol.105(1), 68–77 (2008).
[CrossRef] [PubMed]

M. J. Leggett, G. McDonnell, S. P. Denyer, P. Setlow, and J.-Y. Maillard, “Bacterial spore structures and their protective role in biocide resistance,” J. Appl. Microbiol.113(3), 485–498 (2012).
[CrossRef] [PubMed]

J. Atmos. Sci. (2)

G. Vali, M. Christensen, R. W. Fresh, E. L. Galyan, L. R. Maki, and R. C. Schnell, “Biogenic ice nuclei. Part II: Bacterial sources,” J. Atmos. Sci.33(8), 1565–1570 (1976).
[CrossRef]

C. Hoose, J. E. Kristjansson, J.-P. Chen, and A. Hazra, “A classical-theory-based parameterization of heterogeneous ice nucleation by mineral dust, soot, and biological particles in a global climate model,” J. Atmos. Sci.67(8), 2483–2503 (2010).
[CrossRef]

J. Bacteriol. (5)

P. P. Dennis and H. Bremer, “Macromolecular composition during steady-state growth of Escherichia coli B-r,” J. Bacteriol.119(1), 270–281 (1974).
[PubMed]

J. A. Lindsay, T. C. Beaman, and P. Gerhardt, “Protoplast water content of bacterial spores determined by buoyant density sedimentation,” J. Bacteriol.163(2), 735–737 (1985).
[PubMed]

W. B. Dempsey, “Control of pyridoxine biosynthesis in Escherichia coli,” J. Bacteriol.90, 431–437 (1965).
[PubMed]

N. K. Pandey and A. I. Aronson, “Properties of the Bacillus subtilis spore coat,” J. Bacteriol.137(3), 1208–1218 (1979).
[PubMed]

R. C. Goldman and D. J. Tipper, “Bacillus subtilis spore coats: complexity and purification of a unique polypeptide component,” J. Bacteriol.135(3), 1091–1106 (1978).
[PubMed]

J. Biochem. (3)

H. Hayashi, “Pyridoxal enzymes: mechanistic diversity and uniformity,” J. Biochem.118(3), 463–473 (1995).
[PubMed]

M. T. Olmo, F. Sánchez-Jiménez, M. A. Medina, and H. Hayashi, “Spectroscopic analysis of recombinant rat histidine decarboxylase,” J. Biochem.132(3), 433–439 (2002).
[CrossRef] [PubMed]

K.-H. Jhee, T. Yoshimura, N. Esaki, K. Yonaha, and K. Soda, “Thermostable ornithine aminotransferase from Bacillus sp. YM-2: purification and characterization,” J. Biochem.118(1), 101–108 (1995).
[PubMed]

J. Biol. Chem. (11)

Y. Morino and E. E. Snell, “The relation of spectral changes and tritium exchange reactions to the mechanism of tryptophanase-catalyzed reactions,” J. Biol. Chem.242(12), 2800–2809 (1967).
[PubMed]

E. Eisenstein, “Energetics of cooperative ligand binding to the active sites of biosynthetic threonine deaminase from Escherichia coli,” J. Biol. Chem.269(47), 29416–29422 (1994).
[PubMed]

M. Cortijo, I. Z. Steinberg, and S. Shaltiel, “Fluorescence of glycogen phosphorylase b. structural transitions and energy transfer,” J. Biol. Chem.246(4), 933–938 (1971).
[PubMed]

M. Bertoldi, B. Cellini, S. D’Aguanno, and C. Borri Voltattorni, “Lysine 238 is an essential residue for α,β-elimination catalyzed by Treponema denticola cystalysin,” J. Biol. Chem.278(39), 37336–37343 (2003).
[CrossRef] [PubMed]

M. C. C. Raman, K. A. Johnson, B. A. Yard, J. Lowther, L. G. Carter, J. H. Naismith, and D. J. Campopiano, “The external aldimine form of serine palmitoyltransferase: structural, kinetic, and spectroscopic analysis of the wild-type enzyme and HSAN1 mutant mimics,” J. Biol. Chem.284(25), 17328–17339 (2009).
[CrossRef] [PubMed]

S. Kochhar, W. L. Finlayson, J. F. Kirsch, and P. Christen, “The stereospecific labilization of the C-4′ pro-S hydrogen of pyridoxamine 5′-phosphate is abolished in (Lys258----Ala) aspartate aminotransferase,” J. Biol. Chem.262(24), 11446–11448 (1987).
[PubMed]

J. E. Churchich and J. G. Farrelly, “The interaction of pyridoxamine 5-phosphate with aspartate aminotransferase,” J. Biol. Chem.244(1), 72–76 (1969).
[PubMed]

T. D. Kempe and G. R. Stark, “Pyridoxal 5′-phosphate, a fluorescent probe in the active site of aspartate transcarbamylase,” J. Biol. Chem.250(17), 6861–6869 (1975).
[PubMed]

K. O. Honikel and N. B. Madsen, “Comparison of the absorbance spectra and fluorescence behavior of phosphorylase b with that of model pyridoxal phosphate derivatives in various solvents,” J. Biol. Chem.247(4), 1057–1064 (1972).
[PubMed]

D. L. Nelson and A. Kornberg, “Biochemical studies of bacterial sporulation and germination. XIX. Phosphate metabolism during sporulation,” J. Biol. Chem.245(5), 1137–1145 (1970).
[PubMed]

S. F. Verlick, “Fluorescence spectra and polarization of glyceraldehyde-3-phosphate and lactic dehydrogenase coenzyme complexes,” J. Biol. Chem.233(6), 1455–1467 (1958).
[PubMed]

J. Chromatogr. A (1)

T. Pérez-Ruiz, C. Martínez-Lozano, M. A. García, and J. Martín, “High-performance liquid chromatography: photochemical reduction in aerobic conditions for determination of K vitamins using fluorescence detection,” J. Chromatogr. A1141(1), 67–72 (2007).
[CrossRef] [PubMed]

J. Fluoresc. (1)

J. M. Cambron, T. Sevilla, Pineda, and M. Blazquez, “Fluorescence of the Schiff bases of pyridoxal and pyridoxal 5′-phosphate with L-isoleucine in aqueous solutions,” J. Fluoresc.6, 1–6 (1996).

J. Gen. Microbiol. (1)

J. London and M. Knight, “Concentrations of nicotinamide nucleotide coenzymes in micro-organisms,” J. Gen. Microbiol.44(2), 241–254 (1966).
[CrossRef] [PubMed]

J. Geophys. Res. (1)

Y. L. Pan, R. G. Pinnick, S. C. Hill, J. M. Rosen, and R. K. Chang, “Single-particle laser-induced-fluorescence spectra of biological and other organic-carbon aerosols in the atmosphere: measurements at New Haven, CT and Las Cruces, NM, USA,” J. Geophys. Res.112, D24S19 (2007).
[CrossRef]

J. Photochem. Photobiol. B (1)

J. Kruk, K. Strzałka, and R. M. Leblanc, “Fluorescence properties of plastoquinol, ubiquinol and α-tocopherol quinol in solution and liposome membranes,” J. Photochem. Photobiol. B19(1), 33–38 (1993).
[CrossRef] [PubMed]

J. Phys. Chem. A (1)

H. F. Hameka, J. O. Jensen, K. K. Ong, A. C. Samuels, and C. P. Vlahacos, “Fluorescence of cysteine and cystine,” J. Phys. Chem. A102(2), 361–367 (1998).
[CrossRef]

J. Phys. Chem. Biol. Lett. (1)

P. R. Callis, A. Petrenko, P. L. Muino, and J. R. Tusell, “Ab Initio prediction of tryptophan fluorescence quenching by protein electric field enabled electron transfer,” J. Phys. Chem. Biol. Lett.111, 10339–10355 (2007).

J. Quant. Spectrosc. Radiat. Transf. (1)

D. Mackowski and M. I. Mishchenko, “A multiple sphere T-matrix Fortran code for use on parallel computer clusters,” J. Quant. Spectrosc. Radiat. Transf.112(13), 2182–2192 (2011).
[CrossRef]

Microbiol. Rev. (2)

M. D. Collins and D. Jones, “Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication,” Microbiol. Rev.45(2), 316–354 (1981).
[PubMed]

R. Bentley and R. Meganathan, “Biosynthesis of vitamin K (menaquinone) in bacteria,” Microbiol. Rev.46(3), 241–280 (1982).
[PubMed]

Microbiology (1)

N. Shahab, F. Flett, S. G. Oliver, and P. R. Butler, “Growth rate control of protein and nucleic acid content in Streptomyces coelicolor A3(2) and Escherichia coli B/r,” Microbiology142(8), 1927–1935 (1996).
[CrossRef] [PubMed]

Nat. Chem. Biol. (1)

B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Van Dien, and J. D. Rabinowitz, “Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli,” Nat. Chem. Biol.5(8), 593–599 (2009).
[CrossRef] [PubMed]

Opt. Commun. (1)

D. Petrov, Y. Shkuratov, and G. Videen, “Analytic light-scattering solution of two merging spheres using Sh-matricies,” Opt. Commun.281(9), 2411–2423 (2008).
[CrossRef]

Opt. Express (6)

J. L. Santarpia, Y. L. Pan, S. C. Hill, N. Baker, B. Cottrell, L. McKee, S. Ratnesar-Shumate, and R. G. Pinnick, “Changes in fluorescence spectra of bioaerosols exposed to ozone in a laboratory reaction chamber to simulate atmospheric aging,” Opt. Express20(28), 29867–29881 (2012).
[CrossRef] [PubMed]

Y. L. Pan, S. C. Hill, R. G. Pinnick, H. Huang, J. R. Bottiger, and R. K. Chang, “Fluorescence spectra of atmospheric aerosol particles measured using one or two excitation wavelengths: comparison of classification schemes employing different emission and scattering results,” Opt. Express18(12), 12436–12457 (2010).
[CrossRef] [PubMed]

P. H. Kaye, W. R. Stanley, E. Hirst, E. V. Foot, K. L. Baxter, and S. J. Barrington, “Single particle multichannel bio-aerosol fluorescence sensor,” Opt. Express13(10), 3583–3593 (2005).
[CrossRef] [PubMed]

J. Kunnil, S. Sarasanandarajah, E. Chacko, and L. Reinisch, “Fluorescence quantum efficiency of dry Bacillus globigii spores,” Opt. Express13(22), 8969–8979 (2005).
[CrossRef] [PubMed]

V. Sivaprakasam, A. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express12(19), 4457–4466 (2004).
[CrossRef] [PubMed]

V. Sivaprakasam, H. B. Lin, A. L. Huston, and J. D. Eversole, “Spectral characterization of biological aerosol particles using two-wavelength excited laser-induced fluorescence and elastic scattering measurements,” Opt. Express19(7), 6191–6208 (2011).
[CrossRef] [PubMed]

Part. Part. Syst. Charact. (1)

R. Weichert, W. Klemm, K. Legenhausen, and C. Pawellek, “Determination of fluorescence cross-sections of biological aerosols,” Part. Part. Syst. Charact.19(3), 216–222 (2002).
[CrossRef]

Photochem. Photobiol. (3)

F. M. Cabrerizo, G. Petroselli, C. Lorente, A. L. Capparelli, A. H. Thomas, A. M. Braun, and E. Oliveros, “Substituent effects on the photophysical properties of pterin derivatives in acidic and alkaline aqueous solutions,” Photochem. Photobiol.81(5), 1234–1240 (2005).
[CrossRef] [PubMed]

K. Bystra-Mieloszyk, A. Balter, and R. Drabent, “Fluorescence quenching for flavins interacting with egg white riboflavin-binding protein,” Photochem. Photobiol.41(2), 141–147 (1985).
[CrossRef]

M. Arrio-Dupont, “Etude par fluorescence de bases de Schiff du pyridoxal, comparaison avec la l aspartate-aminotransferase,” Photochem. Photobiol.12(4), 297–315 (1970).
[CrossRef] [PubMed]

Phys. Chem. Chem. Phys. (1)

M. P. Serrano, M. Vignoni, M. L. Dántola, E. Oliveros, C. Lorente, and A. H. Thomas, “Emission properties of dihydropterins in aqueous solutions,” Phys. Chem. Chem. Phys.13(16), 7419–7425 (2011).
[CrossRef] [PubMed]

Phys. Rev. A (1)

H. Chew, P. J. McNulty, and M. Kerker, “Model for Raman and fluorescence scattering by molecules embedded in small particles,” Phys. Rev. A13(1), 396–404 (1976).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (3)

C. Y. Lee, R. D. Eichner, and N. O. Kaplan, “Conformations of diphosphopyridine coenzymes upon binding to dehydrogenases,” Proc. Natl. Acad. Sci. U.S.A.70(5), 1593–1597 (1973).
[CrossRef] [PubMed]

M. D’Urso-Scott, J. Uhoch, and J. R. Bertino, “Formation of 10-formylfolic acid, a potent inhibitor of dihydrofolate reductase, in rat liver slices incubated with folic acid,” Proc. Natl. Acad. Sci. U.S.A.71(7), 2736–2739 (1974).
[CrossRef] [PubMed]

A. J. Westphal, P. B. Price, T. J. Leighton, and K. E. Wheeler, “Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes in relative humidity,” Proc. Natl. Acad. Sci. U.S.A.100(6), 3461–3466 (2003).
[CrossRef] [PubMed]

Science (2)

R. F. Chen, “Fluorescence quantum yield measurements: vitamin B6 compounds,” Science150(3703), 1593–1595 (1965).
[CrossRef] [PubMed]

J. M. Creamean, K. J. Suski, D. Rosenfeld, A. Cazorla, P. J. DeMott, R. C. Sullivan, A. B. White, F. M. Ralph, P. Minnis, J. M. Comstock, J. M. Tomlinson, and K. A. Prather, “Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S,” Science339(6127), 1572–1578 (2013).
[CrossRef] [PubMed]

Spectrochim. Acta [A] (1)

D. M. Hercules and L. B. Rogers, “Absorption and fluorescence spectra of some mono- and di-hydroxy naphthalenes,” Spectrochim. Acta [A]15, 393–408 (1959).
[CrossRef]

Tellus B Chem. Phys. Meterol. (1)

V. R. Despres, A. J. Huffman, S. M. Burrows, C. Hoose, A. Safatov, G. Buryak, J. Frohlich-Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological particles in the atmosphere: a review,” Tellus B Chem. Phys. Meterol.64(0), 15598 (2012).
[CrossRef]

Trans. Faraday Soc. (1)

G. Weber and F. W. J. Teale, “Determination of the absolute quantum yield of fluorescent solutions,” Trans. Faraday Soc.53, 646–655 (1957).
[CrossRef]

Trends Microbiol. (1)

P. Setlow, “I will survive: DNA protection in bacterial spores,” Trends Microbiol.15(4), 172–180 (2007).
[CrossRef] [PubMed]

Other (18)

R. O. Eitenmiller and W. O. Landen, Vitamin Analysis for the Food and Health Sciences (CRC, 1999).

R. M. C. Dawson, D. C. Elliott, W. H. Elliot, and K. M. Jones, Data for Biochemical Research, 3rd ed. (Clarendon, 1986), pp. 122–131.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, 1983), pp. 341–343.

J. W. Longworth, “Luminescence of Polypeptides and Proteins,” in Excited States of Proteins and Nucleic Acids, R. F. Steiner and I. Weinryb, eds. (Plenum, 1971), pp. 319–484.

M. I. Mishchenko, L. D. Tracis, and A. A. Lacis, Scattering, Absorption and Emission of Light by Small Particles (Cambridge University, 2002), p. 294, and Chap. 6.

W. G. Murrell, “Composition of spores and spore structures,” in G. W. Gould and A. Hurst, eds., The Bacterial Spore, (Academic, 1969), Chap. 3.

P. Setlow and E. A. Johnson, “Spores and their significance,” in M. P. Doyle, L. R. Beuchat, and T. J. Montville, eds., Food Microbiology: Fundamentals and Frontiers, 2nd ed., (ASM, 1997), p. 40, Table 3.1.

F. C. Neidhardt and H. E. Umbarger, “Chemical Composition of Escherichia coli,” in Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1, F. C. Neidhardt, ed. in chief. (ASM, 1996), Chap. 3.

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).

P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).

J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: from Air Pollution to Climate Change, 2nd ed. (Wiley-Interscience, 2006), especially Chap. 24, and Fig. 23.12 with its error bar of 2 W/m2 for tropospheric aerosol indirect effects.

D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry, 5th ed. (Freeman, 2008), pp. 677–680, and 870 for vitamin B6 and congeners, and pp. 689–691, 866, and 884 for folates.

S. S. Gropper, J. L. Smith, and J. L. Groth, Advanced Nutrition and Human Metabolism, 4th ed. (Thompson Wadsworth, 2005), pp. 301–306.

I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed. (Academic, 1971), p. 337.

S. Sarasanandarajah, “Multiwavelength fluorescence studies of Bacillus bacterial spores,” PhD Dissertation, University of Canterbury, Christchurch, New Zealand (2007).

J. R. Stephens, “Measurements of the ultraviolet fluorescence cross sections and spectra of Bacillus anthracis simulants,” Los Alamos National Lab, Report Number: LAUR-98–4173, MAY 1999.

J. Atkins, M. E. Thomas, and R. I. Joseph, “Spectrally resolved fluorescence cross sections of BG and BT with a 266-nm pump wavelength,” Chemical and Biological Sensing VIII, ed. A. W. Fountain III, Proc. of SPIE 6554, 65540T, (2007).

Y. L. Pan, S. C. Hill, J. L. Santarpia, K. Brinkley, T. Sickler, M. Coleman, K. Gurton, M. Felton, R. G. Pinnick, N. Baker, J. Eschbaugh, J. Hahn, E. Smith, B. Alvarez, A. Prugh, and W. Gardner, “Spectrally resolved fluorescence cross sections of aerosolized biological live agents and surrogates excited by five different laser wavelengths in a BSL-3 laboratory,” in preparation.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (8)

Tables Icon

Table 1 Absorption coefficients used in this paper for the chemicals which contribute to the absorption of light in the bioparticles. Absorptivities for DNA and RNA are typically for concentrations in g/cm3 in a 1-cm cell. B = Bazhulina [88], C = Chen [86], D = Dawson [74], Ed = Edelhoch [71], E = Eitmiller [73], H = Honikel [89], K = Kruk [118], L = Lakowicz [66], M = Metlzer [84], N = Nelson [90], P = Peterson [85], S = Sarasanandarajah [119], V = various (Beeler [96], Jhee [97], Olmo [99], Morino [100], Donosco [101]).

Tables Icon

Table 2 Chemical composition in percentage of mass fraction (column 2) and the contributions of these chemicals to the imaginary component of refractive index at three wavelengths (columns 3-5) used for the model for E. coli in this paper. For E. coli, the “other” category includes lipopolysaccharides (0.034 g/g/), peptidoglycan (0.025 g/g), glycogen (0.025 g/g), and polyamines (0.004 g/g). The density is 1.08. The real part of the refractive index is 1.59 at 266 nm, 1.58 at 280 nm and 1.548 at 355 nm.

Tables Icon

Table 6 Chemical composition and imaginary component of refractive index for bovine serum albumin as used in this paper. The number of the following amino acids per molecule of bovine albumin are 2 tryptophan, 20 tyrosine, 24 phenylalanine, and 18 cystine. The MW is 69,000. The density is 1.08. The real part of the refractive index is 1.598 at 266 nm, 1.594 at 280 nm and 1.574 at 355 nm.

Tables Icon

Table 3 Chemical composition and imaginary component of refractive index for the Bacillus vegetative cells as used in this paper. The density used is 1.08. The real part of the refractive index is 1.59 at 266 nm, 1.58 at 280 nm and 1.548 at 355 nm.

Tables Icon

Table 4 Chemical composition and imaginary component of refractive index for the Bacillus spores as used in this paper. The density is 1.42. The real part of the refractive index is 1.55 at 266 nm, 1.544 at 280 nm and 1.53 at 355 nm.

Tables Icon

Table 5 Chemical composition and imaginary component of refractive index for ovalbumin as used in this paper. The number of the following amino acids per molecule of ovalbumin are: 3 tryptophan, 9 tyrosine, 21 phenylalanine, and 1 cystine. The MW is 43,500 daltons. The density is 1.08. The real part of the refractive index is 1.598 at 266 nm, 1.594 at 280 nm and 1.574 at 355 nm.

Tables Icon

Table 7 Fluorescence cross sections measured by several different groups (A = Atkins et al. [130]; F = Faris et al. [13]; K = Kunnil et al. [19]; M = Manninen et al. [20]; S = Sivaprakasam et al. [15]; St = Stephens [129]; W = Weichert et al. [17],). The modeled results are in bold.

Tables Icon

Table 8 Measured and calculated fluorescence cross sections of particles excited by light at 355 nm and with emission in the 400- to 600-nm band. Measurements are from Sivaprakasam et al. [15] with one exception ([131] Pan et al. (in preparation)). The second column with fluorescence cross sections shows the difference between the cross section in first column and the fluorescence cross section of kaolin as reported in Sivaprakasam et al. [15]. For Bacillus spores two results are shown, one with the DPA quantum yield = 0, and the other with DPA quantum yield = 0.007, which was chosen to give results similar to the measurements for the 1.19 μm spores.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I(z)/ I 0 =exp(4π m i z/λ),
m i = log 10 (e)εcλ/4π=2.3026εcλ/4π.
T m i = k m i =2.3026λ/4π ε k c k ,
k m i =2.3026 ε k c k λ/4π,
k m j / T m i .
φ k =fluorescence emitted by the k th material/light absorbed by the k th material.
k Q abs = Q abs k m i / T m i .
k C F = k Q abs π r 2 φ k = ( k m i / T m i )π r 2 Q abs φ k .
T C F = k C F .
I F = T C F I inc .
δ fl = λ fl /(4π m i ).
φ trp =0.12(1+ f tyr tyr Q abs / Q abs )=0.12(1+ f tyr tyr m i / T m i ),

Metrics