Abstract

In our development of multiscale, gigapixel camera architectures, there is a need for an accurate three-dimensional position alignment of large monocentric lenses relative to hemispherical dome structures. In this work we describe a method for estimating the position of the objective lens in our AWARE-10 four-gigapixel camera using the retro-reflected signal of a custom-designed auto-stigmatic microscope. We show that although the physical constraints of the system limit the numerical aperture of the microscope probe beam to around 0.016, which results in poor sensitivity in the axial direction, the lateral sensitivity is more than sufficient to verify that the position of the objective is within optical tolerances.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Brady and N. Hagen, “Multiscale lens design,” Opt. Express17(13), 10659–10674 (2009).
    [CrossRef] [PubMed]
  2. E. J. Tremblay, D. L. Marks, D. J. Brady, and J. E. Ford, “Design and scaling of monocentric multiscale imagers,” Appl. Opt.51(20), 4691–4702 (2012).
    [CrossRef] [PubMed]
  3. D. L. Marks and D. J. Brady, “Gigagon: a monocentric lens design imaging 40 gigapixels,” in Imaging Systems (IS), (Optical Society of America, 2010), paper ITuC2.
  4. D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature486(7403), 386–389 (2012).
    [CrossRef] [PubMed]
  5. H. S. Son, A. Johnson, R. A. Stack, J. M. Shaw, P. McLaughlin, D. L. Marks, D. J. Brady, and J. Kim, “Optomechanical design of multiscale gigapixel digital camera,” Appl. Opt.52(8), 1541–1549 (2013).
    [CrossRef] [PubMed]
  6. R. E. Parks and W. P. Kuhn, “Optical alignment using the Point Source Microscope,” Proc. SPIE5877, 58770B, 58770B-15 (2005).
    [CrossRef]
  7. P. R. Yoder, Mounting Optics in Optical Instruments, 2nd ed. (SPIE, 2008), Chap. 12.
  8. W. H. Steel, “The autostigmatic microscope,” Opt. Lasers Eng.4(4), 217–227 (1983).
    [CrossRef]
  9. E. Hecht, Optics, 4th ed. (Addison-Wesley, Reading, Mass., 2002), Chap. 6.2.1.

2013 (1)

2012 (2)

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature486(7403), 386–389 (2012).
[CrossRef] [PubMed]

E. J. Tremblay, D. L. Marks, D. J. Brady, and J. E. Ford, “Design and scaling of monocentric multiscale imagers,” Appl. Opt.51(20), 4691–4702 (2012).
[CrossRef] [PubMed]

2009 (1)

2005 (1)

R. E. Parks and W. P. Kuhn, “Optical alignment using the Point Source Microscope,” Proc. SPIE5877, 58770B, 58770B-15 (2005).
[CrossRef]

1983 (1)

W. H. Steel, “The autostigmatic microscope,” Opt. Lasers Eng.4(4), 217–227 (1983).
[CrossRef]

Brady, D. J.

Feller, S. D.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Ford, J. E.

Gehm, M. E.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Golish, D. R.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Hagen, N.

Johnson, A.

Kim, J.

Kittle, D. S.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Kuhn, W. P.

R. E. Parks and W. P. Kuhn, “Optical alignment using the Point Source Microscope,” Proc. SPIE5877, 58770B, 58770B-15 (2005).
[CrossRef]

Marks, D. L.

McLaughlin, P.

Parks, R. E.

R. E. Parks and W. P. Kuhn, “Optical alignment using the Point Source Microscope,” Proc. SPIE5877, 58770B, 58770B-15 (2005).
[CrossRef]

Shaw, J. M.

Son, H. S.

Stack, R. A.

H. S. Son, A. Johnson, R. A. Stack, J. M. Shaw, P. McLaughlin, D. L. Marks, D. J. Brady, and J. Kim, “Optomechanical design of multiscale gigapixel digital camera,” Appl. Opt.52(8), 1541–1549 (2013).
[CrossRef] [PubMed]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Steel, W. H.

W. H. Steel, “The autostigmatic microscope,” Opt. Lasers Eng.4(4), 217–227 (1983).
[CrossRef]

Tremblay, E. J.

Vera, E. M.

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Appl. Opt. (2)

Nature (1)

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R. Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,” Nature486(7403), 386–389 (2012).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lasers Eng. (1)

W. H. Steel, “The autostigmatic microscope,” Opt. Lasers Eng.4(4), 217–227 (1983).
[CrossRef]

Proc. SPIE (1)

R. E. Parks and W. P. Kuhn, “Optical alignment using the Point Source Microscope,” Proc. SPIE5877, 58770B, 58770B-15 (2005).
[CrossRef]

Other (3)

P. R. Yoder, Mounting Optics in Optical Instruments, 2nd ed. (SPIE, 2008), Chap. 12.

E. Hecht, Optics, 4th ed. (Addison-Wesley, Reading, Mass., 2002), Chap. 6.2.1.

D. L. Marks and D. J. Brady, “Gigagon: a monocentric lens design imaging 40 gigapixels,” in Imaging Systems (IS), (Optical Society of America, 2010), paper ITuC2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Illustration of multiscale optical design. (a) One channel of a multiscale camera with objective lens and one micro-camera. (b) Array of identical micro-cameras covering a larger field.

Fig. 2
Fig. 2

Solid model of basic mechanical components of AWARE-10. (a) Assembly of dome and objective lens. (b) Cross-sectional view showing relevant dimensions. Note inset showing the lip where the micro-camera sits.

Fig. 3
Fig. 3

Diagram of ASM operation. (a) Propagation of beam at nominal objective lens position. (b) Shift of return signal when objective is laterally misaligned.

Fig. 4
Fig. 4

Components of the ASM. (a) CAD model of ASM. Note the lens tube holding the lens has been cross-sectioned for viewing convenience. (b) Photograph of as built ASM.

Fig. 5
Fig. 5

ASM Zemax simulation results. (a) Ray trace at nominal objective position. (b) Spot diagrams of return signal at various lateral shifts of objective. (c) Linear fit of signal shift (ys) versus objective shift (Δy).

Fig. 6
Fig. 6

COC measurement procedure. (a) Illustration of insertion of ASM into dome for measurement. (b) Diagram of vector description of a pair of skew lines.

Fig. 7
Fig. 7

Photographs of first two calibration steps. (a) Procedure for aligning ASM probe beam to the axis of the dome adapter. (b) Procedure for finding the nominal zero position of return signal.

Fig. 8
Fig. 8

Final calibration step. (a) Procedure for measuring ASM sensitivity. (b) Sample image of returned spot signal at Δy = 40µm. The green circle indicates the calibrated center position from step 2 and the red ‘X’ indicates the calculated centroid of the spot. (c) Linear fit of measured signal shift (ys) versus objective shift (Δy).

Fig. 9
Fig. 9

Measurement procedure. (a) Points on dome where measurements were taken highlighted in red. (b) Splitting of signal at oblique angles indicating non-concentric objective lens.

Fig. 10
Fig. 10

Results of measurements. (a) Results from instantaneous measurement method. Color of data points indicate distance from the COC estimate and line lengths in the principal directions indicate standard deviation. (b) Results from average measurement method. Note positive Z direction is towards the dome [see Fig. 9(a) for definition of coordinates.]

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α 2Δy R .
y s = 2Δy R [ d 0 ( 1 d 1 R f )+ d 1 R ],
S=| y s Δy |.
a +s b +p n = c +t d .

Metrics