Abstract

Optical phase modulation based on directly modulated reflection-mode optically injection-locked VCSEL is investigated based on standard OIL rate equations and reflection-mode OIL model. The phase information of both static and dynamic state is simulated. The difference of static state phase information between transmission- and reflection-mode OIL is numerically analyzed. With specific OIL parameters, the output power of directly modulated OIL-VCSEL remains constant and phase deviation of 0.934π rad is obtained. Results show that a directly modulated OIL-VCSEL can function as a key component in QPSK or 8PSK transmitters. Preliminary 2.5 Gb/s PSK modulation characteristic is demonstrated experimentally.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimber, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501–503 (2009).
    [CrossRef]
  2. R. S. Tucker, “High-speed modulation of semiconductor lasers,” J. Lightwave Technol. LT3(6), 1180–1192 (1985).
    [CrossRef]
  3. L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech.54(2), 788–796 (2006).
    [CrossRef]
  4. E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16(9), 6609–6618 (2008).
    [CrossRef] [PubMed]
  5. E. K. Lau, J. W. Liang, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron.15(3), 618–633 (2009).
    [CrossRef]
  6. S. Kobayashi and T. Kimura, “Optical phase modulation in an injection locked AlGaAs semiconductor laser,” IEEE Trans. Microw. Theory Tech.30(10), 1650–1657 (1982).
    [CrossRef]
  7. R. Hui, “Optical PSK modulation using injection-locked DFB semiconductor lasers,” IEEE Photon. Technol. Lett.2(10), 743–746 (1990).
    [CrossRef]
  8. K. B. Dedushenko and A. N. Mamaev, “Phase and amplitude modulation in an injection-locked semiconductor laser,” Laser Phys.3(5), 967–974 (1993).
  9. W. Yang, P. Guo, D. Parekh, and C. J. Chang-Hasnain, “Reflection-mode optical injection locking,” Opt. Express18(20), 20887–20893 (2010).
    [CrossRef] [PubMed]
  10. X. Zhao, B. Zhang, L. Christen, D. Parekh, W. Hofmann, M. C. Amann, F. Koyama, A. E. Willner, and C. J. Chang-Hasnain, “Greatly increased fiber transmission distance with an optically injection-locked vertical-cavity surface-emitting laser,” Opt. Express17(16), 13785–13791 (2009).
    [CrossRef] [PubMed]
  11. D. Parekh, B. Zhang, X. Zhao, Y. Yue, W. Hofmann, M. C. Amann, A. E. Willner, and C. J. Chang-Hasnain, “Long distance single-mode fiber transmission of multimode VCSELs by injection locking,” Opt. Express18(20), 20552–20557 (2010).
    [CrossRef] [PubMed]
  12. P. Guo, C. Zhang, J. Li, W. Yang, D. Parekh, C. J. Chang-Hasnain, W. Hu, A. Xu, and Z. Chen, “Long distance transmission of SC-FDMA signals by directly-modulated OIL-VCSEL,” Chin. Opt. Lett.10(9), 091407 (2012).
    [CrossRef]
  13. P. Guo, W. Yang, D. Parekh, C. Hong, C. Zhang, Z. Y. Chen, and C. J. Chang-Hasnain, “MPSK modulation by optical injection locked VCSEL,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuKK4.
    [CrossRef]
  14. N. Hoghooghi and P. J. Delfyett, “Theoretical and experimental study of a semiconductor resonant cavity linear interferometric intensity modulator,” J. Lightwave Technol.29(22), 3421–3427 (2011).
    [CrossRef]
  15. N. Hoghooghi, I. Ozdur, M. Akbulut, J. Davila-Rodriguez, and P. J. Delfyett, “Resonant cavity linear interferometric intensity modulator,” Opt. Lett.35(8), 1218–1220 (2010).
    [CrossRef] [PubMed]
  16. P. Guo, W. Yang, D. Parekh, C. J. Chang-Hasnain, A. Xu, and Z. Chen, “Experimental and theoretical study of wide hysteresis cycles in 1550 nm VCSELs under optical injection,” Opt. Express21(3), 3125–3132 (2013).
    [CrossRef] [PubMed]
  17. S. P. Bhooplapur and P. J. Delfyett, “Characterization of the phase and amplitude modulation of injection-locked VCSELs at 1550 nm using coherent optical demodulation,” IEEE J. Sel. Top. Quantum Electron.19(6), 1702408 (2013).
    [CrossRef]
  18. P. Guo, W. Yang, D. Parekh, A. Xu, Z. Chen, and C. J. Chang-Hasnain, “An ellipse model for cavity mode behavior of optically injection-locked VCSELs,” Opt. Express20(7), 6980–6988 (2012).
    [CrossRef] [PubMed]
  19. N. Hoghooghi, I. Ozdur, S. Bhooplapur, and P. J. Delfyett, “Direct demodulation and channel filtering of phase-modulated signals using an injection-locked VCSEL,” IEEE Photon. Technol. Lett.22(20), 1509–1511 (2010).
    [CrossRef]

2013 (2)

P. Guo, W. Yang, D. Parekh, C. J. Chang-Hasnain, A. Xu, and Z. Chen, “Experimental and theoretical study of wide hysteresis cycles in 1550 nm VCSELs under optical injection,” Opt. Express21(3), 3125–3132 (2013).
[CrossRef] [PubMed]

S. P. Bhooplapur and P. J. Delfyett, “Characterization of the phase and amplitude modulation of injection-locked VCSELs at 1550 nm using coherent optical demodulation,” IEEE J. Sel. Top. Quantum Electron.19(6), 1702408 (2013).
[CrossRef]

2012 (2)

2011 (1)

2010 (4)

2009 (3)

X. Zhao, B. Zhang, L. Christen, D. Parekh, W. Hofmann, M. C. Amann, F. Koyama, A. E. Willner, and C. J. Chang-Hasnain, “Greatly increased fiber transmission distance with an optically injection-locked vertical-cavity surface-emitting laser,” Opt. Express17(16), 13785–13791 (2009).
[CrossRef] [PubMed]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimber, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501–503 (2009).
[CrossRef]

E. K. Lau, J. W. Liang, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron.15(3), 618–633 (2009).
[CrossRef]

2008 (1)

2006 (1)

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech.54(2), 788–796 (2006).
[CrossRef]

1993 (1)

K. B. Dedushenko and A. N. Mamaev, “Phase and amplitude modulation in an injection-locked semiconductor laser,” Laser Phys.3(5), 967–974 (1993).

1990 (1)

R. Hui, “Optical PSK modulation using injection-locked DFB semiconductor lasers,” IEEE Photon. Technol. Lett.2(10), 743–746 (1990).
[CrossRef]

1985 (1)

R. S. Tucker, “High-speed modulation of semiconductor lasers,” J. Lightwave Technol. LT3(6), 1180–1192 (1985).
[CrossRef]

1982 (1)

S. Kobayashi and T. Kimura, “Optical phase modulation in an injection locked AlGaAs semiconductor laser,” IEEE Trans. Microw. Theory Tech.30(10), 1650–1657 (1982).
[CrossRef]

Akbulut, M.

Amann, M. C.

Bhooplapur, S.

N. Hoghooghi, I. Ozdur, S. Bhooplapur, and P. J. Delfyett, “Direct demodulation and channel filtering of phase-modulated signals using an injection-locked VCSEL,” IEEE Photon. Technol. Lett.22(20), 1509–1511 (2010).
[CrossRef]

Bhooplapur, S. P.

S. P. Bhooplapur and P. J. Delfyett, “Characterization of the phase and amplitude modulation of injection-locked VCSELs at 1550 nm using coherent optical demodulation,” IEEE J. Sel. Top. Quantum Electron.19(6), 1702408 (2013).
[CrossRef]

Bimber, D.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimber, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501–503 (2009).
[CrossRef]

Blokhin, S. A.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimber, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501–503 (2009).
[CrossRef]

Chang-Hasnain, C.

Chang-Hasnain, C. J.

P. Guo, W. Yang, D. Parekh, C. J. Chang-Hasnain, A. Xu, and Z. Chen, “Experimental and theoretical study of wide hysteresis cycles in 1550 nm VCSELs under optical injection,” Opt. Express21(3), 3125–3132 (2013).
[CrossRef] [PubMed]

P. Guo, C. Zhang, J. Li, W. Yang, D. Parekh, C. J. Chang-Hasnain, W. Hu, A. Xu, and Z. Chen, “Long distance transmission of SC-FDMA signals by directly-modulated OIL-VCSEL,” Chin. Opt. Lett.10(9), 091407 (2012).
[CrossRef]

P. Guo, W. Yang, D. Parekh, A. Xu, Z. Chen, and C. J. Chang-Hasnain, “An ellipse model for cavity mode behavior of optically injection-locked VCSELs,” Opt. Express20(7), 6980–6988 (2012).
[CrossRef] [PubMed]

D. Parekh, B. Zhang, X. Zhao, Y. Yue, W. Hofmann, M. C. Amann, A. E. Willner, and C. J. Chang-Hasnain, “Long distance single-mode fiber transmission of multimode VCSELs by injection locking,” Opt. Express18(20), 20552–20557 (2010).
[CrossRef] [PubMed]

W. Yang, P. Guo, D. Parekh, and C. J. Chang-Hasnain, “Reflection-mode optical injection locking,” Opt. Express18(20), 20887–20893 (2010).
[CrossRef] [PubMed]

X. Zhao, B. Zhang, L. Christen, D. Parekh, W. Hofmann, M. C. Amann, F. Koyama, A. E. Willner, and C. J. Chang-Hasnain, “Greatly increased fiber transmission distance with an optically injection-locked vertical-cavity surface-emitting laser,” Opt. Express17(16), 13785–13791 (2009).
[CrossRef] [PubMed]

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech.54(2), 788–796 (2006).
[CrossRef]

Chen, Z.

Christen, L.

Chrostowski, L.

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech.54(2), 788–796 (2006).
[CrossRef]

Davila-Rodriguez, J.

Dedushenko, K. B.

K. B. Dedushenko and A. N. Mamaev, “Phase and amplitude modulation in an injection-locked semiconductor laser,” Laser Phys.3(5), 967–974 (1993).

Delfyett, P. J.

S. P. Bhooplapur and P. J. Delfyett, “Characterization of the phase and amplitude modulation of injection-locked VCSELs at 1550 nm using coherent optical demodulation,” IEEE J. Sel. Top. Quantum Electron.19(6), 1702408 (2013).
[CrossRef]

N. Hoghooghi and P. J. Delfyett, “Theoretical and experimental study of a semiconductor resonant cavity linear interferometric intensity modulator,” J. Lightwave Technol.29(22), 3421–3427 (2011).
[CrossRef]

N. Hoghooghi, I. Ozdur, M. Akbulut, J. Davila-Rodriguez, and P. J. Delfyett, “Resonant cavity linear interferometric intensity modulator,” Opt. Lett.35(8), 1218–1220 (2010).
[CrossRef] [PubMed]

N. Hoghooghi, I. Ozdur, S. Bhooplapur, and P. J. Delfyett, “Direct demodulation and channel filtering of phase-modulated signals using an injection-locked VCSEL,” IEEE Photon. Technol. Lett.22(20), 1509–1511 (2010).
[CrossRef]

Fiol, G.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimber, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501–503 (2009).
[CrossRef]

Guo, P.

Hofmann, W.

Hoghooghi, N.

Hu, W.

Hui, R.

R. Hui, “Optical PSK modulation using injection-locked DFB semiconductor lasers,” IEEE Photon. Technol. Lett.2(10), 743–746 (1990).
[CrossRef]

Kimura, T.

S. Kobayashi and T. Kimura, “Optical phase modulation in an injection locked AlGaAs semiconductor laser,” IEEE Trans. Microw. Theory Tech.30(10), 1650–1657 (1982).
[CrossRef]

Kobayashi, S.

S. Kobayashi and T. Kimura, “Optical phase modulation in an injection locked AlGaAs semiconductor laser,” IEEE Trans. Microw. Theory Tech.30(10), 1650–1657 (1982).
[CrossRef]

Koyama, F.

Lau, E. K.

E. K. Lau, J. W. Liang, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron.15(3), 618–633 (2009).
[CrossRef]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16(9), 6609–6618 (2008).
[CrossRef] [PubMed]

Ledentsov, N. N.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimber, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501–503 (2009).
[CrossRef]

Li, J.

Liang, J. W.

E. K. Lau, J. W. Liang, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron.15(3), 618–633 (2009).
[CrossRef]

Lott, J. A.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimber, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501–503 (2009).
[CrossRef]

Mamaev, A. N.

K. B. Dedushenko and A. N. Mamaev, “Phase and amplitude modulation in an injection-locked semiconductor laser,” Laser Phys.3(5), 967–974 (1993).

Maximov, M. V.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimber, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501–503 (2009).
[CrossRef]

Mutig, A.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimber, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501–503 (2009).
[CrossRef]

Nadtochiy, A. M.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimber, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501–503 (2009).
[CrossRef]

Ozdur, I.

N. Hoghooghi, I. Ozdur, M. Akbulut, J. Davila-Rodriguez, and P. J. Delfyett, “Resonant cavity linear interferometric intensity modulator,” Opt. Lett.35(8), 1218–1220 (2010).
[CrossRef] [PubMed]

N. Hoghooghi, I. Ozdur, S. Bhooplapur, and P. J. Delfyett, “Direct demodulation and channel filtering of phase-modulated signals using an injection-locked VCSEL,” IEEE Photon. Technol. Lett.22(20), 1509–1511 (2010).
[CrossRef]

Parekh, D.

P. Guo, W. Yang, D. Parekh, C. J. Chang-Hasnain, A. Xu, and Z. Chen, “Experimental and theoretical study of wide hysteresis cycles in 1550 nm VCSELs under optical injection,” Opt. Express21(3), 3125–3132 (2013).
[CrossRef] [PubMed]

P. Guo, C. Zhang, J. Li, W. Yang, D. Parekh, C. J. Chang-Hasnain, W. Hu, A. Xu, and Z. Chen, “Long distance transmission of SC-FDMA signals by directly-modulated OIL-VCSEL,” Chin. Opt. Lett.10(9), 091407 (2012).
[CrossRef]

P. Guo, W. Yang, D. Parekh, A. Xu, Z. Chen, and C. J. Chang-Hasnain, “An ellipse model for cavity mode behavior of optically injection-locked VCSELs,” Opt. Express20(7), 6980–6988 (2012).
[CrossRef] [PubMed]

D. Parekh, B. Zhang, X. Zhao, Y. Yue, W. Hofmann, M. C. Amann, A. E. Willner, and C. J. Chang-Hasnain, “Long distance single-mode fiber transmission of multimode VCSELs by injection locking,” Opt. Express18(20), 20552–20557 (2010).
[CrossRef] [PubMed]

W. Yang, P. Guo, D. Parekh, and C. J. Chang-Hasnain, “Reflection-mode optical injection locking,” Opt. Express18(20), 20887–20893 (2010).
[CrossRef] [PubMed]

X. Zhao, B. Zhang, L. Christen, D. Parekh, W. Hofmann, M. C. Amann, F. Koyama, A. E. Willner, and C. J. Chang-Hasnain, “Greatly increased fiber transmission distance with an optically injection-locked vertical-cavity surface-emitting laser,” Opt. Express17(16), 13785–13791 (2009).
[CrossRef] [PubMed]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16(9), 6609–6618 (2008).
[CrossRef] [PubMed]

Shchukin, V. A.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimber, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501–503 (2009).
[CrossRef]

Sung, H. K.

Tucker, R. S.

R. S. Tucker, “High-speed modulation of semiconductor lasers,” J. Lightwave Technol. LT3(6), 1180–1192 (1985).
[CrossRef]

Willner, A. E.

Wu, M. C.

E. K. Lau, J. W. Liang, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron.15(3), 618–633 (2009).
[CrossRef]

E. K. Lau, X. Zhao, H. K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Opt. Express16(9), 6609–6618 (2008).
[CrossRef] [PubMed]

Xu, A.

Yang, W.

Yue, Y.

Zhang, B.

Zhang, C.

Zhao, X.

Chin. Opt. Lett. (1)

Electron. Lett. (1)

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimber, “Oxide-confined 850 nm VCSELs operating at bit rates up to 40 Gbit/s,” Electron. Lett.45(10), 501–503 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

E. K. Lau, J. W. Liang, and M. C. Wu, “Enhanced modulation characteristics of optical injection-locked lasers: A tutorial,” IEEE J. Sel. Top. Quantum Electron.15(3), 618–633 (2009).
[CrossRef]

S. P. Bhooplapur and P. J. Delfyett, “Characterization of the phase and amplitude modulation of injection-locked VCSELs at 1550 nm using coherent optical demodulation,” IEEE J. Sel. Top. Quantum Electron.19(6), 1702408 (2013).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. Hui, “Optical PSK modulation using injection-locked DFB semiconductor lasers,” IEEE Photon. Technol. Lett.2(10), 743–746 (1990).
[CrossRef]

N. Hoghooghi, I. Ozdur, S. Bhooplapur, and P. J. Delfyett, “Direct demodulation and channel filtering of phase-modulated signals using an injection-locked VCSEL,” IEEE Photon. Technol. Lett.22(20), 1509–1511 (2010).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

L. Chrostowski, X. Zhao, and C. J. Chang-Hasnain, “Microwave performance of optically injection-locked VCSELs,” IEEE Trans. Microw. Theory Tech.54(2), 788–796 (2006).
[CrossRef]

S. Kobayashi and T. Kimura, “Optical phase modulation in an injection locked AlGaAs semiconductor laser,” IEEE Trans. Microw. Theory Tech.30(10), 1650–1657 (1982).
[CrossRef]

J. Lightwave Technol. (1)

J. Lightwave Technol. LT (1)

R. S. Tucker, “High-speed modulation of semiconductor lasers,” J. Lightwave Technol. LT3(6), 1180–1192 (1985).
[CrossRef]

Laser Phys. (1)

K. B. Dedushenko and A. N. Mamaev, “Phase and amplitude modulation in an injection-locked semiconductor laser,” Laser Phys.3(5), 967–974 (1993).

Opt. Express (6)

Opt. Lett. (1)

Other (1)

P. Guo, W. Yang, D. Parekh, C. Hong, C. Zhang, Z. Y. Chen, and C. J. Chang-Hasnain, “MPSK modulation by optical injection locked VCSEL,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CTuKK4.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

OIL-VCSEL model with the interference effect: an intuitive vector figure to explain destructive interference.

Fig. 2
Fig. 2

Relative phase versus wavelength detuning for different injection ratios with α = 0: (a, c) transmission-mode OIL, (b, d) reflection-mode OIL, and (e) detailed version of the extreme phases in one direction of detuning. Under low injection ratio condition (a) and (b), relative phase curves are similar after we compare transmission- and reflection-mode OIL. Under high injection ratio condition (c) and (d), relative phase curves are significantly different after we compare transmission- and reflection-mode OIL.

Fig. 3
Fig. 3

Simulation results of locking maps of OIL-VCSEL for various injection locking states with α = 7, showing steady state: (a, b) amplitude of output optical field under transmission- and reflection-mode OIL condition respectively, (c, d) phase of output optical field under transmission- and reflection-mode OIL condition respectively.

Fig. 4
Fig. 4

The endpoint traces of output optical field for different injection ratios are plotted in polar coordinate system: (a) transmission-mode OIL, and (b) reflection-mode OIL.

Fig. 5
Fig. 5

OIL-VCSEL is directly modulated by 10-level driving signals under different wavelength detuning conditions when injection ratio is fixed at 9.0 dB: (a) waveforms under different OIL condition, and (b) constellations under different OIL condition.

Fig. 6
Fig. 6

(a) The transitional states are plotted on the locking map. (b) The transfer curves of phase shift versus peak to peak modulation voltage are plotted under different injection ratio.

Fig. 7
Fig. 7

The maximum phase shift with different injection ratios is plotted. The maximum phase swing of 0.934π is achieved with Rinj = 15 dB.

Fig. 8
Fig. 8

Simulated 2/4-level modulation output of an OIL-VCSEL for MPSK transmitter application: (a, b) for QPSK transmitter application, (c, d) for 8PSK transmitter application.

Fig. 9
Fig. 9

Schematics for MPSK transmitters: (a) QPSK transmitter, (b) 8PSK transmitter. (PC: polarization controller, OC: optical circulator, PM: phase modulator)

Fig. 10
Fig. 10

Experimental setup (PC: polarization controller, OC: optical circulator, VOA: variable optical attenuator)

Fig. 11
Fig. 11

Experimentally measured bit sequence when the VCSEL is free running as well as injection-locked at special conditions: (a) free running, (b) normal state under OIL, (c) transitional state under OIL, (d) inverted state under OIL, (e) and (f) coherent detection at transitional state (CD: coherent detection).

Fig. 12
Fig. 12

Experimentally measured the degree of amplitude modulation (ΔI/I) on the locking map.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ΔI I = I max I min I max + I min 100%

Metrics