Abstract

An all-optical 3D photoacoustic imaging probe that consists of an optical fiber probe for ultrasound detection and a bundle of hollow optical fibers for excitation of photoacoustic waves was developed. The fiber probe for ultrasound is based on a single-mode optical fiber with a thin polymer film attached to the output end surface that works as a Fabry Perot etalon. The input end of the hollow fiber bundle is aligned so that each fiber in the bundle is sequentially excited. A thin and flexible probe can be obtained because the probe system does not have a scanning mechanism at the distal end.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Yang, K. Maslov, H. C. Yang, Q. Zhou, K. K. Shung, and L. V. Wang, “Photoacoustic endoscopy,” Opt. Lett. 34(10), 1591–1593 (2009).
    [CrossRef] [PubMed]
  2. S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
    [CrossRef] [PubMed]
  3. B. Wang and S. Emelianov, “Thermal intravascular photoacoustic imaging,” Biomed. Opt. Express 2(11), 3072–3078 (2011).
    [CrossRef] [PubMed]
  4. J. M. Yang, R. Chen, C. Favazza, J. Yao, C. Li, Z. Hu, Q. Zhou, K. K. Shung, and L. V. Wang, “A 2.5-mm diameter probe for photoacoustic and ultrasonic endoscopy,” Opt. Express 20(21), 23944–23953 (2012).
    [CrossRef] [PubMed]
  5. J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
    [CrossRef] [PubMed]
  6. E. A. Zhang, J. Laufer, and P. Beard, “Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 64370S (2007).
    [CrossRef]
  7. S. W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett. 93(11), 113501 (2008).
    [CrossRef] [PubMed]
  8. H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel) 10(12), 11248–11258 (2010).
    [CrossRef] [PubMed]
  9. C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
    [CrossRef] [PubMed]
  10. B. Y. Hsieh, S. L. Chen, T. Ling, L. J. Guo, and P. C. Li, “All-optical scanhead for ultrasound and photoacoustic dual-modality imaging,” Opt. Express 20(2), 1588–1596 (2012).
    [CrossRef] [PubMed]
  11. P. C. Beard, F. Pérennès, E. Draguioti, and T. N. Mills, “Optical fiber photoacoustic-photothermal probe,” Opt. Lett. 23(15), 1235–1237 (1998).
    [CrossRef] [PubMed]
  12. P. C. Beard, A. M. Hurrell, and T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 256–264 (2000).
    [CrossRef] [PubMed]
  13. E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78991F (2011).
    [CrossRef]
  14. P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
    [CrossRef] [PubMed]
  15. T. K. Stanton, R. G. Pridham, W. V. McCollough, and M. P. Sanguinetti, “On fiber‐optic hydrophone noise ‐ equivalent pressure,” J. Acoust. Soc. Am. 66(6), 1893–1894 (1979).
    [CrossRef]
  16. K. Iwai, Y. W. Shi, K. Nito, Y. Matsuura, T. Kasai, M. Miyagi, S. Saito, Y. Arai, N. Ioritani, Y. Okagami, M. Nemec, J. Sulc, H. Jelinkova, M. Zavoral, O. Kohler, and P. Drlik, “Erbium:YAG laser lithotripsy by use of a flexible hollow waveguide with an end-scaling cap,” Appl. Opt. 42(13), 2431–2435 (2003).
    [CrossRef] [PubMed]

2012 (2)

2011 (2)

B. Wang and S. Emelianov, “Thermal intravascular photoacoustic imaging,” Biomed. Opt. Express 2(11), 3072–3078 (2011).
[CrossRef] [PubMed]

E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78991F (2011).
[CrossRef]

2010 (1)

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel) 10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

S. W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett. 93(11), 113501 (2008).
[CrossRef] [PubMed]

2007 (3)

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[CrossRef] [PubMed]

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[CrossRef] [PubMed]

E. A. Zhang, J. Laufer, and P. Beard, “Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 64370S (2007).
[CrossRef]

2003 (1)

2000 (2)

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[CrossRef] [PubMed]

P. C. Beard, A. M. Hurrell, and T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 256–264 (2000).
[CrossRef] [PubMed]

1999 (1)

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
[CrossRef] [PubMed]

1998 (1)

1979 (1)

T. K. Stanton, R. G. Pridham, W. V. McCollough, and M. P. Sanguinetti, “On fiber‐optic hydrophone noise ‐ equivalent pressure,” J. Acoust. Soc. Am. 66(6), 1893–1894 (1979).
[CrossRef]

Aglyamov, S. R.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[CrossRef] [PubMed]

Amirian, J. H.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[CrossRef] [PubMed]

Arai, Y.

Ashkenazi, S.

S. W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett. 93(11), 113501 (2008).
[CrossRef] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[CrossRef] [PubMed]

Beard, P.

E. A. Zhang, J. Laufer, and P. Beard, “Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 64370S (2007).
[CrossRef]

Beard, P. C.

E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78991F (2011).
[CrossRef]

P. C. Beard, A. M. Hurrell, and T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 256–264 (2000).
[CrossRef] [PubMed]

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
[CrossRef] [PubMed]

P. C. Beard, F. Pérennès, E. Draguioti, and T. N. Mills, “Optical fiber photoacoustic-photothermal probe,” Opt. Lett. 23(15), 1235–1237 (1998).
[CrossRef] [PubMed]

Buma, T.

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[CrossRef] [PubMed]

Chao, C. Y.

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[CrossRef] [PubMed]

Chen, R.

Chen, S. L.

Draguioti, E.

Drlik, P.

Emelianov, S.

Emelianov, S. Y.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[CrossRef] [PubMed]

Favazza, C.

Guo, L. J.

B. Y. Hsieh, S. L. Chen, T. Ling, L. J. Guo, and P. C. Li, “All-optical scanhead for ultrasound and photoacoustic dual-modality imaging,” Opt. Express 20(2), 1588–1596 (2012).
[CrossRef] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[CrossRef] [PubMed]

Hamilton, J. D.

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[CrossRef] [PubMed]

Hou, Y.

S. W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett. 93(11), 113501 (2008).
[CrossRef] [PubMed]

Hsieh, B. Y.

Hu, Z.

Huang, S. W.

S. W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett. 93(11), 113501 (2008).
[CrossRef] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[CrossRef] [PubMed]

Hurrell, A. M.

P. C. Beard, A. M. Hurrell, and T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 256–264 (2000).
[CrossRef] [PubMed]

Ioritani, N.

Iwai, K.

Jelinkova, H.

Kasai, T.

Kohler, O.

Kumakura, K.

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel) 10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Laufer, J.

E. A. Zhang, J. Laufer, and P. Beard, “Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 64370S (2007).
[CrossRef]

Li, C.

Li, P. C.

Ling, T.

Maslov, K.

Matsuura, Y.

McCollough, W. V.

T. K. Stanton, R. G. Pridham, W. V. McCollough, and M. P. Sanguinetti, “On fiber‐optic hydrophone noise ‐ equivalent pressure,” J. Acoust. Soc. Am. 66(6), 1893–1894 (1979).
[CrossRef]

Mills, T. N.

P. C. Beard, A. M. Hurrell, and T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 256–264 (2000).
[CrossRef] [PubMed]

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
[CrossRef] [PubMed]

P. C. Beard, F. Pérennès, E. Draguioti, and T. N. Mills, “Optical fiber photoacoustic-photothermal probe,” Opt. Lett. 23(15), 1235–1237 (1998).
[CrossRef] [PubMed]

Miyagi, M.

Nemec, M.

Nito, K.

O’Donnell, M.

S. W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett. 93(11), 113501 (2008).
[CrossRef] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[CrossRef] [PubMed]

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[CrossRef] [PubMed]

Ogihara, S.

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel) 10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Okagami, Y.

Perennes, F.

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
[CrossRef] [PubMed]

Pérennès, F.

Pridham, R. G.

T. K. Stanton, R. G. Pridham, W. V. McCollough, and M. P. Sanguinetti, “On fiber‐optic hydrophone noise ‐ equivalent pressure,” J. Acoust. Soc. Am. 66(6), 1893–1894 (1979).
[CrossRef]

Saito, S.

Sanguinetti, M. P.

T. K. Stanton, R. G. Pridham, W. V. McCollough, and M. P. Sanguinetti, “On fiber‐optic hydrophone noise ‐ equivalent pressure,” J. Acoust. Soc. Am. 66(6), 1893–1894 (1979).
[CrossRef]

Sethuraman, S.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[CrossRef] [PubMed]

Shi, Y. W.

Shung, K. K.

Smalling, R. W.

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[CrossRef] [PubMed]

Spisar, M.

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[CrossRef] [PubMed]

Stanton, T. K.

T. K. Stanton, R. G. Pridham, W. V. McCollough, and M. P. Sanguinetti, “On fiber‐optic hydrophone noise ‐ equivalent pressure,” J. Acoust. Soc. Am. 66(6), 1893–1894 (1979).
[CrossRef]

Sulc, J.

Tsuda, H.

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel) 10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Wang, B.

Wang, L. V.

Yang, H. C.

Yang, J. M.

Yao, J.

Zavoral, M.

Zhang, E. A.

E. A. Zhang, J. Laufer, and P. Beard, “Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 64370S (2007).
[CrossRef]

Zhang, E. Z.

E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78991F (2011).
[CrossRef]

Zhou, Q.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. W. Huang, Y. Hou, S. Ashkenazi, and M. O’Donnell, “High-resolution ultrasonic imaging using an etalon detector array,” Appl. Phys. Lett. 93(11), 113501 (2008).
[CrossRef] [PubMed]

Biomed. Opt. Express (1)

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (5)

S. Sethuraman, S. R. Aglyamov, J. H. Amirian, R. W. Smalling, and S. Y. Emelianov, “Intravascular photoacoustic imaging using an IVUS imaging catheter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 978–986 (2007).
[CrossRef] [PubMed]

J. D. Hamilton, T. Buma, M. Spisar, and M. O’Donnell, “High frequency optoacoustic arrays using etalon detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 160–169 (2000).
[CrossRef] [PubMed]

P. C. Beard, F. Perennes, and T. N. Mills, “Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(6), 1575–1582 (1999).
[CrossRef] [PubMed]

C. Y. Chao, S. Ashkenazi, S. W. Huang, M. O’Donnell, and L. J. Guo, “High-frequency ultrasound sensors using polymer microring resonators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(5), 957–965 (2007).
[CrossRef] [PubMed]

P. C. Beard, A. M. Hurrell, and T. N. Mills, “Characterization of a polymer film optical fiber hydrophone for use in the range 1 to 20 MHz: a comparison with PVDF needle and membrane hydrophones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(1), 256–264 (2000).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (1)

T. K. Stanton, R. G. Pridham, W. V. McCollough, and M. P. Sanguinetti, “On fiber‐optic hydrophone noise ‐ equivalent pressure,” J. Acoust. Soc. Am. 66(6), 1893–1894 (1979).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Proc. SPIE (2)

E. Z. Zhang and P. C. Beard, “A miniature all-optical photoacoustic imaging probe,” Proc. SPIE 7899, 78991F (2011).
[CrossRef]

E. A. Zhang, J. Laufer, and P. Beard, “Three-dimensional photoacoustic imaging of vascular anatomy in small animals using an optical detection system,” Proc. SPIE 6437, 64370S (2007).
[CrossRef]

Sensors (Basel) (1)

H. Tsuda, K. Kumakura, and S. Ogihara, “Ultrasonic sensitivity of strain-insensitive fiber Bragg grating sensors and evaluation of ultrasound-induced strain,” Sensors (Basel) 10(12), 11248–11258 (2010).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Schematic of optical fiber probe system for ultrasound detection.

Fig. 2
Fig. 2

Measurement system for photoacoustic signal detection.

Fig. 3
Fig. 3

Photoacoustic signal detected by optical fiber probe.

Fig. 4
Fig. 4

Frequency spectrum of photoacoustic signal.

Fig. 5
Fig. 5

Correlation between film thickness and signal frequency.

Fig. 6
Fig. 6

Correlation between signal frequency and signal intensity.

Fig. 7
Fig. 7

Reception directivity of optical fiber probe.

Fig. 8
Fig. 8

Frequency spectrum of photoacoustic signal received by the PVDF hydrophone.

Fig. 9
Fig. 9

Optical fiber probe output and PVDF hydrophone output.

Fig. 10
Fig. 10

Cutting section of the measured sample for photo acoustic imaging.

Fig. 11
Fig. 11

Result of B-mode imaging of blood vessel phantom.

Fig. 12
Fig. 12

Schematic of proposed photoacoustic imaging system.

Fig. 13
Fig. 13

Distal end of bundled hollow optical fiber.

Fig. 14
Fig. 14

(a) Sample image and (b) obtained raw image of sample’s surface

Fig. 15
Fig. 15

Surface image (a) after smoothing process and (b) after interpolation process.

Fig. 16
Fig. 16

Obtained 3D image of sample.

Metrics