Abstract

The direct optical switching of bistable cholesteric textures (i.e., planar and focal conic textures) in chiral azobenzene-doped liquid crystals (LCs) is demonstrated. Chiral azobenzene is a chiral dopant with optically tuned helical twisting power that results from the photo-isomerization between trans- and cis- isomers via exposure to UV or visible light. The pitch length of the material can be optically and repeatedly elongated and shortened. With regard to free energy, LCs tend to be stable at planar (focal conic) textures when pitch length is elongated (shortened) by exposure to UV (visible) light. Thus, direct optical switchable LC displays are investigated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Masterson, G. D. Sharp, and K. M. Johnson, “Ferroelectric liquid-crystal tunable filter,” Opt. Lett.14(22), 1249–1251 (1989).
    [CrossRef] [PubMed]
  2. R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature392(6675), 476–479 (1998).
    [CrossRef]
  3. D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
    [CrossRef]
  4. M. Xu and D. K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
    [CrossRef]
  5. K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express15(21), 14078–14085 (2007).
    [CrossRef] [PubMed]
  6. D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
    [CrossRef]
  7. Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater.24(15), 1926–1945 (2012).
    [CrossRef] [PubMed]
  8. P. Watson, J. E. Anderson, V. Sergan, and P. Bos, “The transition mechanism of the transient planar to planar director configuration change in cholesteric liquid crystal displays,” Liq. Cryst.26(9), 1307–1314 (1999).
    [CrossRef]
  9. Y. Wang, A. Urbas, and J. Q. Li, “Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches,” Am. Chem. Soc.134(7), 3342–3345 (2012).
    [CrossRef]
  10. Q. Li, Y. Li, J. Ma, D. K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater.23(43), 5069–5073 (2011).
    [CrossRef] [PubMed]
  11. V. Vinvogradov, A. Khizhnyak, L. Kutulya, Yu. Reznikov, and V. Resihetnyak, “Photoinduced change of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).
  12. N. I. Boiko, L. I. Kutulya, Yu. A. Reznikov, T. A. Sergan, and V. P. Shibaev, “Induced cholesteric liquid crystal polymer as a new medium for optical data storage,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)251(1), 311–316 (1994).
    [CrossRef]
  13. V. Shibaev, A. Bobrovsky, and N. Boiko, “Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties,” Prog. Polym. Sci.28(5), 729–836 (2003).
    [CrossRef]
  14. T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater.19(21), 3484–3488 (2009).
    [CrossRef]
  15. Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
    [CrossRef] [PubMed]
  16. C. K. Liu, W. L. Huang, Y. G. Andy Fuh, and K. T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo chiral-doped cholesteric liquid crystals,” J. Appl. Phys.111(10), 103114 (2012).
    [CrossRef]
  17. F. Zhang and D. K. Yang, “Evolution of disclinations in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(4), 041701 (2002).
    [CrossRef] [PubMed]
  18. J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett.89(8), 081130 (2006).
    [CrossRef]

2012

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater.24(15), 1926–1945 (2012).
[CrossRef] [PubMed]

Y. Wang, A. Urbas, and J. Q. Li, “Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches,” Am. Chem. Soc.134(7), 3342–3345 (2012).
[CrossRef]

C. K. Liu, W. L. Huang, Y. G. Andy Fuh, and K. T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo chiral-doped cholesteric liquid crystals,” J. Appl. Phys.111(10), 103114 (2012).
[CrossRef]

2011

Q. Li, Y. Li, J. Ma, D. K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater.23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

2009

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater.19(21), 3484–3488 (2009).
[CrossRef]

2007

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express15(21), 14078–14085 (2007).
[CrossRef] [PubMed]

2006

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett.89(8), 081130 (2006).
[CrossRef]

2003

V. Shibaev, A. Bobrovsky, and N. Boiko, “Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties,” Prog. Polym. Sci.28(5), 729–836 (2003).
[CrossRef]

2002

F. Zhang and D. K. Yang, “Evolution of disclinations in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(4), 041701 (2002).
[CrossRef] [PubMed]

1999

P. Watson, J. E. Anderson, V. Sergan, and P. Bos, “The transition mechanism of the transient planar to planar director configuration change in cholesteric liquid crystal displays,” Liq. Cryst.26(9), 1307–1314 (1999).
[CrossRef]

1998

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature392(6675), 476–479 (1998).
[CrossRef]

1997

M. Xu and D. K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
[CrossRef]

1994

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

N. I. Boiko, L. I. Kutulya, Yu. A. Reznikov, T. A. Sergan, and V. P. Shibaev, “Induced cholesteric liquid crystal polymer as a new medium for optical data storage,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)251(1), 311–316 (1994).
[CrossRef]

1992

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

1990

V. Vinvogradov, A. Khizhnyak, L. Kutulya, Yu. Reznikov, and V. Resihetnyak, “Photoinduced change of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).

1989

Anderson, J. E.

P. Watson, J. E. Anderson, V. Sergan, and P. Bos, “The transition mechanism of the transient planar to planar director configuration change in cholesteric liquid crystal displays,” Liq. Cryst.26(9), 1307–1314 (1999).
[CrossRef]

Andy Fuh, Y. G.

C. K. Liu, W. L. Huang, Y. G. Andy Fuh, and K. T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo chiral-doped cholesteric liquid crystals,” J. Appl. Phys.111(10), 103114 (2012).
[CrossRef]

Bobrovsky, A.

V. Shibaev, A. Bobrovsky, and N. Boiko, “Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties,” Prog. Polym. Sci.28(5), 729–836 (2003).
[CrossRef]

Boiko, N.

V. Shibaev, A. Bobrovsky, and N. Boiko, “Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties,” Prog. Polym. Sci.28(5), 729–836 (2003).
[CrossRef]

Boiko, N. I.

N. I. Boiko, L. I. Kutulya, Yu. A. Reznikov, T. A. Sergan, and V. P. Shibaev, “Induced cholesteric liquid crystal polymer as a new medium for optical data storage,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)251(1), 311–316 (1994).
[CrossRef]

Bos, P.

P. Watson, J. E. Anderson, V. Sergan, and P. Bos, “The transition mechanism of the transient planar to planar director configuration change in cholesteric liquid crystal displays,” Liq. Cryst.26(9), 1307–1314 (1999).
[CrossRef]

Bricker, R. L.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater.19(21), 3484–3488 (2009).
[CrossRef]

Bunning, T. J.

Q. Li, Y. Li, J. Ma, D. K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater.23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater.19(21), 3484–3488 (2009).
[CrossRef]

Cao, H.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett.89(8), 081130 (2006).
[CrossRef]

Cheng, K. T.

C. K. Liu, W. L. Huang, Y. G. Andy Fuh, and K. T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo chiral-doped cholesteric liquid crystals,” J. Appl. Phys.111(10), 103114 (2012).
[CrossRef]

K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express15(21), 14078–14085 (2007).
[CrossRef] [PubMed]

Chien, L. C.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

Doane, J. W.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

Dong, C.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett.89(8), 081130 (2006).
[CrossRef]

Fuh, A. Y. G.

Geng, J.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett.89(8), 081130 (2006).
[CrossRef]

Green, L.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater.19(21), 3484–3488 (2009).
[CrossRef]

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

Hikmet, R. A. M.

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature392(6675), 476–479 (1998).
[CrossRef]

Huang, W. L.

C. K. Liu, W. L. Huang, Y. G. Andy Fuh, and K. T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo chiral-doped cholesteric liquid crystals,” J. Appl. Phys.111(10), 103114 (2012).
[CrossRef]

Johnson, K. M.

Kemperman, H.

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature392(6675), 476–479 (1998).
[CrossRef]

Khan, A.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

Khizhnyak, A.

V. Vinvogradov, A. Khizhnyak, L. Kutulya, Yu. Reznikov, and V. Resihetnyak, “Photoinduced change of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).

Kutulya, L.

V. Vinvogradov, A. Khizhnyak, L. Kutulya, Yu. Reznikov, and V. Resihetnyak, “Photoinduced change of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).

Kutulya, L. I.

N. I. Boiko, L. I. Kutulya, Yu. A. Reznikov, T. A. Sergan, and V. P. Shibaev, “Induced cholesteric liquid crystal polymer as a new medium for optical data storage,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)251(1), 311–316 (1994).
[CrossRef]

Li, J. Q.

Y. Wang, A. Urbas, and J. Q. Li, “Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches,” Am. Chem. Soc.134(7), 3342–3345 (2012).
[CrossRef]

Li, Q.

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater.24(15), 1926–1945 (2012).
[CrossRef] [PubMed]

Q. Li, Y. Li, J. Ma, D. K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater.23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater.19(21), 3484–3488 (2009).
[CrossRef]

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

Li, Y.

Q. Li, Y. Li, J. Ma, D. K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater.23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

Liu, C. K.

C. K. Liu, W. L. Huang, Y. G. Andy Fuh, and K. T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo chiral-doped cholesteric liquid crystals,” J. Appl. Phys.111(10), 103114 (2012).
[CrossRef]

K. T. Cheng, C. K. Liu, C. L. Ting, and A. Y. G. Fuh, “Electrically switchable and optically rewritable reflective Fresnel zone plate in dye-doped cholesteric liquid crystals,” Opt. Express15(21), 14078–14085 (2007).
[CrossRef] [PubMed]

Ma, J.

Q. Li, Y. Li, J. Ma, D. K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater.23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

Ma, Z.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett.89(8), 081130 (2006).
[CrossRef]

Masterson, H. J.

Natarajan, L. V.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater.19(21), 3484–3488 (2009).
[CrossRef]

Resihetnyak, V.

V. Vinvogradov, A. Khizhnyak, L. Kutulya, Yu. Reznikov, and V. Resihetnyak, “Photoinduced change of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).

Reznikov, Yu.

V. Vinvogradov, A. Khizhnyak, L. Kutulya, Yu. Reznikov, and V. Resihetnyak, “Photoinduced change of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).

Reznikov, Yu. A.

N. I. Boiko, L. I. Kutulya, Yu. A. Reznikov, T. A. Sergan, and V. P. Shibaev, “Induced cholesteric liquid crystal polymer as a new medium for optical data storage,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)251(1), 311–316 (1994).
[CrossRef]

Sergan, T. A.

N. I. Boiko, L. I. Kutulya, Yu. A. Reznikov, T. A. Sergan, and V. P. Shibaev, “Induced cholesteric liquid crystal polymer as a new medium for optical data storage,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)251(1), 311–316 (1994).
[CrossRef]

Sergan, V.

P. Watson, J. E. Anderson, V. Sergan, and P. Bos, “The transition mechanism of the transient planar to planar director configuration change in cholesteric liquid crystal displays,” Liq. Cryst.26(9), 1307–1314 (1999).
[CrossRef]

Sharp, G. D.

Shi, L.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett.89(8), 081130 (2006).
[CrossRef]

Shibaev, V.

V. Shibaev, A. Bobrovsky, and N. Boiko, “Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties,” Prog. Polym. Sci.28(5), 729–836 (2003).
[CrossRef]

Shibaev, V. P.

N. I. Boiko, L. I. Kutulya, Yu. A. Reznikov, T. A. Sergan, and V. P. Shibaev, “Induced cholesteric liquid crystal polymer as a new medium for optical data storage,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)251(1), 311–316 (1994).
[CrossRef]

Shiyanovskaya, I.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

Tabiryan, N. V.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater.19(21), 3484–3488 (2009).
[CrossRef]

Ting, C. L.

Urbas, A.

Y. Wang, A. Urbas, and J. Q. Li, “Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches,” Am. Chem. Soc.134(7), 3342–3345 (2012).
[CrossRef]

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

Venkataraman, N.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

Vinvogradov, V.

V. Vinvogradov, A. Khizhnyak, L. Kutulya, Yu. Reznikov, and V. Resihetnyak, “Photoinduced change of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).

Wang, Y.

Y. Wang, A. Urbas, and J. Q. Li, “Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches,” Am. Chem. Soc.134(7), 3342–3345 (2012).
[CrossRef]

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater.24(15), 1926–1945 (2012).
[CrossRef] [PubMed]

Watson, P.

P. Watson, J. E. Anderson, V. Sergan, and P. Bos, “The transition mechanism of the transient planar to planar director configuration change in cholesteric liquid crystal displays,” Liq. Cryst.26(9), 1307–1314 (1999).
[CrossRef]

West, J. L.

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

White, T. J.

Q. Li, Y. Li, J. Ma, D. K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater.23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater.19(21), 3484–3488 (2009).
[CrossRef]

Xu, M.

M. Xu and D. K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
[CrossRef]

Yang, D. K.

Q. Li, Y. Li, J. Ma, D. K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater.23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

F. Zhang and D. K. Yang, “Evolution of disclinations in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(4), 041701 (2002).
[CrossRef] [PubMed]

M. Xu and D. K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
[CrossRef]

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

Yang, H.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett.89(8), 081130 (2006).
[CrossRef]

Zhang, F.

F. Zhang and D. K. Yang, “Evolution of disclinations in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(4), 041701 (2002).
[CrossRef] [PubMed]

Zhang, L.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett.89(8), 081130 (2006).
[CrossRef]

Adv. Funct. Mater.

T. J. White, R. L. Bricker, L. V. Natarajan, N. V. Tabiryan, L. Green, Q. Li, and T. J. Bunning, “Phototunable Azobenzene Cholesteric Liquid Crystals with 2000 nm Range,” Adv. Funct. Mater.19(21), 3484–3488 (2009).
[CrossRef]

Adv. Mater.

Y. Wang and Q. Li, “Light-driven chiral molecular switches or motors in liquid crystals,” Adv. Mater.24(15), 1926–1945 (2012).
[CrossRef] [PubMed]

Q. Li, Y. Li, J. Ma, D. K. Yang, T. J. White, and T. J. Bunning, “Directing dynamic control of red, green, and blue reflection enabled by a light-driven self-organized helical superstructure,” Adv. Mater.23(43), 5069–5073 (2011).
[CrossRef] [PubMed]

Am. Chem. Soc.

Y. Wang, A. Urbas, and J. Q. Li, “Reversible visible-light tuning of self-organized helical superstructures enabled by unprecedented light-driven axially chiral molecular switches,” Am. Chem. Soc.134(7), 3342–3345 (2012).
[CrossRef]

Appl. Phys. Lett.

J. Geng, C. Dong, L. Zhang, Z. Ma, L. Shi, H. Cao, and H. Yang, “Electrically addressed and thermally erased cholesteric cells,” Appl. Phys. Lett.89(8), 081130 (2006).
[CrossRef]

D. K. Yang, L. C. Chien, and J. W. Doane, “Cholesteric liquid crystal/polymer dispersion for haze-free light shutters,” Appl. Phys. Lett.60(25), 3102–3104 (1992).
[CrossRef]

M. Xu and D. K. Yang, “Dual frequency cholesteric light shutters,” Appl. Phys. Lett.70(6), 720–722 (1997).
[CrossRef]

J. Am. Chem. Soc.

Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, A. Urbas, and J. W. Doane, “Reversible photoswitchable axially chiral dopants with high helical twisting power,” J. Am. Chem. Soc.129(43), 12908–12909 (2007).
[CrossRef] [PubMed]

J. Appl. Phys.

C. K. Liu, W. L. Huang, Y. G. Andy Fuh, and K. T. Cheng, “Binary cholesteric/blue-phase liquid crystal textures fabricated using phototunable chirality in azo chiral-doped cholesteric liquid crystals,” J. Appl. Phys.111(10), 103114 (2012).
[CrossRef]

D. K. Yang, J. L. West, L. C. Chien, and J. W. Doane, “Control of reflectivity and bistability in displays using cholesteric liquid crystals,” J. Appl. Phys.76(2), 1331–1333 (1994).
[CrossRef]

Liq. Cryst.

P. Watson, J. E. Anderson, V. Sergan, and P. Bos, “The transition mechanism of the transient planar to planar director configuration change in cholesteric liquid crystal displays,” Liq. Cryst.26(9), 1307–1314 (1999).
[CrossRef]

Mol. Cryst. Liq. Cryst. (Phila. Pa.)

V. Vinvogradov, A. Khizhnyak, L. Kutulya, Yu. Reznikov, and V. Resihetnyak, “Photoinduced change of cholesteric LC-pitch,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)192, 273–278 (1990).

N. I. Boiko, L. I. Kutulya, Yu. A. Reznikov, T. A. Sergan, and V. P. Shibaev, “Induced cholesteric liquid crystal polymer as a new medium for optical data storage,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)251(1), 311–316 (1994).
[CrossRef]

Nature

R. A. M. Hikmet and H. Kemperman, “Electrically switchable mirrors and optical components made from liquid-crystal gels,” Nature392(6675), 476–479 (1998).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys.

F. Zhang and D. K. Yang, “Evolution of disclinations in cholesteric liquid crystals,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.66(4), 041701 (2002).
[CrossRef] [PubMed]

Prog. Polym. Sci.

V. Shibaev, A. Bobrovsky, and N. Boiko, “Photoactive liquid crystalline polymer systems with light-controllable structure and optical properties,” Prog. Polym. Sci.28(5), 729–836 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Chemical structure of chiral azobenzene, Ql-3c-S.

Fig. 2
Fig. 2

Images of the LC cells with (a) slight scattering focal conic textures (freshly filled LC cell); (b) planar textures achieved by exposure to UV light (8.3 mW/cm2) for 35 s at room temperature (~25 °C).

Fig. 3
Fig. 3

Variations in the transmission spectra of chiral azobenzene-doped LCs during illumination with (a) UV light (8.3 mW/cm2, red shifting) and (b) green light (5.3 mW/cm2, blue shifting) at various durations.

Fig. 4
Fig. 4

Variations in the transmission spectra of an LC cell filled with chiral azobenzene-doped LCs. (a) freshly filled LC cell (slight scattering focal conic textures); (b) after irradiation with UV light (8.3 mW/cm2) for 35 s (planar textures); (c) after irradiation with green light (28.8 mW/cm2) for 20 s (scattering focal conic textures); (d) re-irradiation with UV light (8.3 mW/cm2) for 35 s (planar textures).

Fig. 5
Fig. 5

Dynamic measurement of a He-Ne laser beam’s transmission through a chiral azobenzene-doped LC cell illuminated by UV light (8.3 mW/cm2). Insets show the observations of the LC cell with transmission values of (a) 12%, (b) 40%, and (c) 82%, as determined under an optical microscope.

Fig. 6
Fig. 6

Images of fabricated optically patternable, erasable, and rewritable cholesteric LC display device photographed with a digital camera. (a) initially transparent LC cell, (b) “NCKU” optically addressed via green light, (c) patterns erased LC cell, and (d) “LC” optically re-addressed.

Metrics