Abstract

Picosecond (~10 ps) pulsed laser irradiation at 532 nm led to the efficient and scalable fabrication of dichroic areas in glass with spherical silver nanoparticles of ~30 – 40 nm in diameter embedded in a surface layer of thickness ~20 μm. The observed dichroism is due to the uniform and permanent shape transformation of the nanoparticles - from spherical to spheroidal shapes - throughout the irradiated areas and along the laser polarization direction, paving the way for affordable manufacture of polarization-selective diffractive optical elements. The shape modification threshold and the dichroism as a result of Surface Plasmon Resonance band separation were identified. The process was then studied as a function of the laser polarization, repetition rate and the number of pulses fired per spot.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  3. R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
    [CrossRef] [PubMed]
  4. M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
    [CrossRef] [PubMed]
  5. P. Chakaraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
    [CrossRef]
  6. A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Goslele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
    [CrossRef]
  7. A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
    [CrossRef]
  8. L. A. H. Fleming, S. Wackerow, A. C. Hourd, W. A. Gillespie, G. Seifert, and A. Abdolvand, “Diffractive optical element embedded in silver-doped nanocomposite glass,” Opt. Express20(20), 22579–22584 (2012).
    [CrossRef]
  9. A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
    [CrossRef]
  10. M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D16(1), 237–240 (2001).
    [CrossRef]
  11. G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Femtosecond pump-probe investigation of ultrafast silver nanoparticle deformation in a glass matrix,” Appl. Phys. B71(6), 795–800 (2000).
    [CrossRef]
  12. S. Wackerow, G. Seifert, and A. Abdolvand, “Homogenous silver-doped nanocomposite glass,” Opt. Mater. Express1(7), 1224–1231 (2011).
    [CrossRef]
  13. K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D20(1-4), 309–311 (1991).
    [CrossRef]
  14. V. G. Farafonov and N. V. Voshchinnikov, “Optical properties of spheroidal particles,” Astrophys. Space Sci.204(1), 19–86 (1993).
    [CrossRef]
  15. A. Stalmashonak, A. A. Unal, H. Graener, and G. Seifert, “Effects of temperature on laser-induced shape modification of silver nanoparticles embedded in glass,” J. Phys. Chem. C113(28), 12028–12032 (2009).
    [CrossRef]
  16. A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B94(3), 459–465 (2009).
    [CrossRef]
  17. A. Stalmashonak, G. Seifert, and A. Abdolvand, Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites (Springer, 2013).

2012

2011

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

S. Wackerow, G. Seifert, and A. Abdolvand, “Homogenous silver-doped nanocomposite glass,” Opt. Mater. Express1(7), 1224–1231 (2011).
[CrossRef]

2009

A. Stalmashonak, A. A. Unal, H. Graener, and G. Seifert, “Effects of temperature on laser-induced shape modification of silver nanoparticles embedded in glass,” J. Phys. Chem. C113(28), 12028–12032 (2009).
[CrossRef]

A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B94(3), 459–465 (2009).
[CrossRef]

2005

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Goslele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

2003

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

2002

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

2001

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D16(1), 237–240 (2001).
[CrossRef]

2000

G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Femtosecond pump-probe investigation of ultrafast silver nanoparticle deformation in a glass matrix,” Appl. Phys. B71(6), 795–800 (2000).
[CrossRef]

1998

P. Chakaraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

1993

V. G. Farafonov and N. V. Voshchinnikov, “Optical properties of spheroidal particles,” Astrophys. Space Sci.204(1), 19–86 (1993).
[CrossRef]

1991

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

Abdolvand, A.

L. A. H. Fleming, S. Wackerow, A. C. Hourd, W. A. Gillespie, G. Seifert, and A. Abdolvand, “Diffractive optical element embedded in silver-doped nanocomposite glass,” Opt. Express20(20), 22579–22584 (2012).
[CrossRef]

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

S. Wackerow, G. Seifert, and A. Abdolvand, “Homogenous silver-doped nanocomposite glass,” Opt. Mater. Express1(7), 1224–1231 (2011).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Goslele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

Berg, K.-J.

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D16(1), 237–240 (2001).
[CrossRef]

G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Femtosecond pump-probe investigation of ultrafast silver nanoparticle deformation in a glass matrix,” Appl. Phys. B71(6), 795–800 (2000).
[CrossRef]

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

Berger, A.

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

Cao, Y. C.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Chakaraborty, P.

P. Chakaraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Farafonov, V. G.

V. G. Farafonov and N. V. Voshchinnikov, “Optical properties of spheroidal particles,” Astrophys. Space Sci.204(1), 19–86 (1993).
[CrossRef]

Fleming, L. A. H.

Gillespie, W. A.

Goslele, U.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Goslele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

Graener, H.

A. Stalmashonak, A. A. Unal, H. Graener, and G. Seifert, “Effects of temperature on laser-induced shape modification of silver nanoparticles embedded in glass,” J. Phys. Chem. C113(28), 12028–12032 (2009).
[CrossRef]

A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B94(3), 459–465 (2009).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Goslele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D16(1), 237–240 (2001).
[CrossRef]

G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Femtosecond pump-probe investigation of ultrafast silver nanoparticle deformation in a glass matrix,” Appl. Phys. B71(6), 795–800 (2000).
[CrossRef]

Gudiksen, M. S.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Hao, E.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Hofmeister, H.

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D16(1), 237–240 (2001).
[CrossRef]

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

Hourd, A. C.

Jin, R.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Kaempfe, M.

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D16(1), 237–240 (2001).
[CrossRef]

G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Femtosecond pump-probe investigation of ultrafast silver nanoparticle deformation in a glass matrix,” Appl. Phys. B71(6), 795–800 (2000).
[CrossRef]

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Lauhon, L. J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Lieber, C. M.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Matthias, S.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Goslele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

Métraux, G. S.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Mirkin, C. A.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

Podlipensky, A.

A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B94(3), 459–465 (2009).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Goslele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

Schatz, G. C.

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Seifert, G.

L. A. H. Fleming, S. Wackerow, A. C. Hourd, W. A. Gillespie, G. Seifert, and A. Abdolvand, “Diffractive optical element embedded in silver-doped nanocomposite glass,” Opt. Express20(20), 22579–22584 (2012).
[CrossRef]

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

S. Wackerow, G. Seifert, and A. Abdolvand, “Homogenous silver-doped nanocomposite glass,” Opt. Mater. Express1(7), 1224–1231 (2011).
[CrossRef]

A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B94(3), 459–465 (2009).
[CrossRef]

A. Stalmashonak, A. A. Unal, H. Graener, and G. Seifert, “Effects of temperature on laser-induced shape modification of silver nanoparticles embedded in glass,” J. Phys. Chem. C113(28), 12028–12032 (2009).
[CrossRef]

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Goslele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D16(1), 237–240 (2001).
[CrossRef]

G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Femtosecond pump-probe investigation of ultrafast silver nanoparticle deformation in a glass matrix,” Appl. Phys. B71(6), 795–800 (2000).
[CrossRef]

Smith, D. C.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Stalmashonak, A.

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B94(3), 459–465 (2009).
[CrossRef]

A. Stalmashonak, A. A. Unal, H. Graener, and G. Seifert, “Effects of temperature on laser-induced shape modification of silver nanoparticles embedded in glass,” J. Phys. Chem. C113(28), 12028–12032 (2009).
[CrossRef]

Syrowatka, F.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Goslele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

Unal, A. A.

A. Stalmashonak, A. A. Unal, H. Graener, and G. Seifert, “Effects of temperature on laser-induced shape modification of silver nanoparticles embedded in glass,” J. Phys. Chem. C113(28), 12028–12032 (2009).
[CrossRef]

Voshchinnikov, N. V.

V. G. Farafonov and N. V. Voshchinnikov, “Optical properties of spheroidal particles,” Astrophys. Space Sci.204(1), 19–86 (1993).
[CrossRef]

Wackerow, S.

Wang, J.

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Adv. Mater.

A. Abdolvand, A. Podlipensky, S. Matthias, F. Syrowatka, U. Goslele, G. Seifert, and H. Graener, “Metallodielectric two-dimensional photonic structures made by electric field microstructuring of nanocomposite glass,” Adv. Mater.17(24), 2983–2987 (2005).
[CrossRef]

Appl. Phys. B

G. Seifert, M. Kaempfe, K.-J. Berg, and H. Graener, “Femtosecond pump-probe investigation of ultrafast silver nanoparticle deformation in a glass matrix,” Appl. Phys. B71(6), 795–800 (2000).
[CrossRef]

A. Stalmashonak, A. Podlipensky, G. Seifert, and H. Graener, “Intensity-driven, laser induced transformation of Ag nanospheres to anisotropic shapes,” Appl. Phys. B94(3), 459–465 (2009).
[CrossRef]

Appl. Phys. Lett.

A. Stalmashonak, A. Abdolvand, and G. Seifert, “Metal-glass nanocomposites for optical storage of information,” Appl. Phys. Lett.99(20), 201904 (2011).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

A. Podlipensky, A. Abdolvand, G. Seifert, and H. Graener, “Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles,” Appl. Phys., A Mater. Sci. Process.80(8), 1647–1652 (2005).
[CrossRef]

Astrophys. Space Sci.

V. G. Farafonov and N. V. Voshchinnikov, “Optical properties of spheroidal particles,” Astrophys. Space Sci.204(1), 19–86 (1993).
[CrossRef]

Eur. Phys. J. D

M. Kaempfe, G. Seifert, K.-J. Berg, H. Hofmeister, and H. Graener, “Polarization dependence of the permanent deformation of silver nanoparticles in glass by ultrashort laser pulses,” Eur. Phys. J. D16(1), 237–240 (2001).
[CrossRef]

J. Mater. Sci.

P. Chakaraborty, “Metal nanoclusters in glasses as nonlinear photonic materials,” J. Mater. Sci.33(9), 2235–2249 (1998).
[CrossRef]

J. Phys. Chem. B

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

J. Phys. Chem. C

A. Stalmashonak, A. A. Unal, H. Graener, and G. Seifert, “Effects of temperature on laser-induced shape modification of silver nanoparticles embedded in glass,” J. Phys. Chem. C113(28), 12028–12032 (2009).
[CrossRef]

Nature

R. Jin, Y. C. Cao, E. Hao, G. S. Métraux, G. C. Schatz, and C. A. Mirkin, “Controlling anisotropic nanoparticle growth through plasmon excitation,” Nature425(6957), 487–490 (2003).
[CrossRef] [PubMed]

M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, and C. M. Lieber, “Growth of nanowire superlattice structures for nanoscale photonics and electronics,” Nature415(6872), 617–620 (2002).
[CrossRef] [PubMed]

Opt. Express

Opt. Mater. Express

Z. Phys. D

K.-J. Berg, A. Berger, and H. Hofmeister, “Small silver particle in glass-surface layers produced by sodium-silver ion-exchange-their concentration and size depth profile,” Z. Phys. D20(1-4), 309–311 (1991).
[CrossRef]

Other

A. Stalmashonak, G. Seifert, and A. Abdolvand, Ultra-Short Pulsed Laser Engineered Metal-Glass Nanocomposites (Springer, 2013).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

a) Extinction spectrum measured for a soda-lime glass sample containing spherical silver nanoparticles of ~30 – 40 nm in diameter. The Surface Plasmon Resonance band has its maximum at ~430 nm. b) Image of the original sample – Top view. c) Cross section of the sample showing the layer of silver nanoparticles embedded in the glass. The black arrow indicates the sample surface. The characterizations of the sample were performed using a JASCO V-670 UV/VIS/NIR Spectrophotometer and KEYENCE Digital Microscope VHX-1000.

Fig. 2
Fig. 2

Experimental setup used for laser irradiation. The maximum average power of the laser at 532 nm is ~8 W. The linearly polarized laser beam was focused on the sample with a 100 mm focal length lens, which resulted in a ~12 μm diameter beam in air. A fully automatized system allowed us to scan different patterns on the sample.

Fig. 3
Fig. 3

Extinction spectra as a function wavelength for: a) Sample irradiated with 1000 pulses per spot, laser fluence of 88 mJ/cm2 and repetition rate of 200 kHz. S- polarization / P- polarizations are the polarization of light in the spectrophotometer, that is perpendicular / parallel to the polarization of the laser beam, respectively. Separation of the SPR band is a result of shape transformation of silver nanoparticles from spherical to spheroidal along the polarization the laser beam. For the p- polarization spectrum there is still the remnant of the spectrum from spherical nanoparticles, this is due to the fact that the employed modification wavelength of 532 nm is far from the SPR peak of 430 nm and that not all nanoparticles were being elongated in the focal volume. This issue could be overcome by using a sample with thinner nanoparticle-containing layer. b) Sample irradiated with different laser fluence values starting just above the modification threshold value (which is 18 mJ/cm2) and ending on a value that gives the most uniform dichroism (88 mJ/cm2). Irradiation was performed with the laser repetition rate of 200 kHz and 1000 pulses per spot were fired into the target. The employed laser intensities are (from lowest to highest): 2.21 GW/cm2, 2.65 GW/cm2, 3.54 GW/cm2, 6.19 GW/cm2 and 8.84 GW/cm2.

Fig. 4
Fig. 4

(a) Surface Plasmon Resonance band separation distance as a function of number of pulses per spot. Irradiation was performed for 88 mJ/cm2 (8.84 GW/cm2) and a 200 kHz laser repetition rate. (b) Surface Plasmon Resonance band separation distance as a function of laser repetition rate. Irradiation performed with 88 mJ/cm2 (8.84 GW/cm2) and 1000 pulses per spot. Both graphs represent the degree of elongation that the nanoparticle experiences. They also show a similar relation, that the SPR gap separation rises to its maximum value of ~240 nm.

Fig. 5
Fig. 5

Top view images of the 5 × 5 mm squares irradiated at laser fluence of 88 mJ/cm2 at 200 kHz. Number of pulses per spot in the irradiation areas on the left hand side are (from left to right): 500, 300, 100, 200 (top row) and 400, 200, 100, 100 (bottom row). The right hand side image shows the same as the one on the left but flipped 90° clockwise. The black arrow represents the polarization of the light penetrating the samples from the back of the image (perpendicular to the paper). The red arrow represents the polarization direction of the laser beam for irradiation of the areas grouped within the red dash-lines. The green arrow represents the polarization direction of the laser beam for irradiation of the areas grouped within the green dash-lines. The dichroic effect is easily observable, with higher extinction for the nanoparticles elongated along the polarization direction of the penetrating light.

Metrics