Abstract

We present the design and production approach of an ultra-steep notch filter. The notch filter that does not have thin layers is optimized utilizing the constrained optimization technique, and this is well suitable for accurate monitoring with the electron beam deposition technique. Single layer SiO2 and Ta2O5 films were deposited and carefully characterized in order to determine tooling factors and refractive indices wavelength dependencies accurately. We produced the ultra-steep notch filter with indirect monochromatic monitoring strategy and demonstrated the excellent correspondence to the theoretical spectral performance.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Dobrowolski, “Optical properties of films and coatings,” in Handbook of Optics, M.Bass ed. (McGraw-Hill, New York, 2010), IV, 7.15–7.53.
  2. H. A. Macleod, Thin-film Optical Filters, 4th ed., (CRC Press/Taylor & Francis, 2010).
  3. B. G. Bovard, “Rugate filter design: the modified Fourier transform technique,” Appl. Opt.29(1), 24–30 (1990).
    [CrossRef] [PubMed]
  4. W. H. Southwell and R. L. Hall, “Rugate filter sidelobe suppression using quintic and rugated quintic matching layers,” Appl. Opt.28(14), 2949–2951 (1989).
    [CrossRef] [PubMed]
  5. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gäbler, “New optimization algorithm for the synthesis of rugate optical coatings,” Appl. Opt.45(7), 1515–1524 (2006).
    [CrossRef] [PubMed]
  6. M. Lappschies, B. Görtz, and D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering,” Appl. Opt.45(7), 1502–1506 (2006).
    [CrossRef] [PubMed]
  7. C. C. Lee, C. J. Tang, and J. Y. Wu, “Rugate filter made with composite thin films by ion-beam sputtering,” Appl. Opt.45(7), 1333–1337 (2006).
    [CrossRef] [PubMed]
  8. A. Thelen, “Design of Optical minus filter,” J. Opt. Soc. Am.61(3), 365 (1971).
    [CrossRef]
  9. V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, J. Pistner, F. Krausz, and A. Apolonski, “Band filters: two-material technology versus rugate,” Appl. Opt.46(8), 1190–1193 (2007).
    [CrossRef] [PubMed]
  10. U. Schallenberg, B. Ploss, M. Lappschies, and S. Jakobs, “Design and manufacturing of high performance notch filters,” Proc. SPIE7739, 77391X, 77391X-9 (2010).
    [CrossRef]
  11. A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt.51(30), 7319–7332 (2012).
    [CrossRef] [PubMed]
  12. J. L. Zhang, Y. J. Xie, X. B. Cheng, H. F. Jiao, and Z. S. Wang, “Thin-film thickness-modulated designs for optical minus filter,” Appl. Opt.52(23), 5788–5793 (2013).
    [CrossRef] [PubMed]
  13. S. Wilbrandt, O. Stenzel, and N. Kaiser, “All-oxide broadband antireflection coatings by plasma ion assisted deposition: design, simulation, manufacturing and re-optimization,” Opt. Express18(19), 19732–19742 (2010).
    [CrossRef] [PubMed]
  14. C. J. van der Laan, “Optical monitoring of nonquarterwave stacks,” Appl. Opt.25(5), 753–760 (1986).
    [CrossRef] [PubMed]
  15. C. C. Lee, K. Wu, C. C. Kuo, and S. H. Chen, “Improvement of the optical coating process by cutting layers with sensitive monitoring wavelengths,” Opt. Express13(13), 4854–4861 (2005).
    [CrossRef] [PubMed]
  16. B. Chun, C. K. Hwangbo, and J. S. Kim, “Optical monitoring of nonquarterwave layers of dielectric multilayer filters using optical admittance,” Opt. Express14(6), 2473–2480 (2006).
    [CrossRef] [PubMed]
  17. A. V. Tikhonravov and M. K. Trubetskov, Optilayer Thin Film Software, http://www.optilayer.com .
  18. A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt.50(9), C75–C85 (2011).
    [CrossRef] [PubMed]

2013 (1)

2012 (1)

2011 (1)

2010 (2)

2007 (1)

2006 (4)

2005 (1)

1990 (1)

1989 (1)

1986 (1)

1971 (1)

Amotchkina, T. V.

Apolonski, A.

Bovard, B. G.

Chen, S. H.

Cheng, X. B.

Chun, B.

DeBell, G.

Gäbler, D.

Görtz, B.

Grilli, M. L.

Hall, R. L.

Hwangbo, C. K.

Jakobs, S.

U. Schallenberg, B. Ploss, M. Lappschies, and S. Jakobs, “Design and manufacturing of high performance notch filters,” Proc. SPIE7739, 77391X, 77391X-9 (2010).
[CrossRef]

Jiao, H. F.

Kaiser, N.

Kim, J. S.

Kokarev, M. A.

Krausz, F.

Kuo, C. C.

Lappschies, M.

U. Schallenberg, B. Ploss, M. Lappschies, and S. Jakobs, “Design and manufacturing of high performance notch filters,” Proc. SPIE7739, 77391X, 77391X-9 (2010).
[CrossRef]

M. Lappschies, B. Görtz, and D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering,” Appl. Opt.45(7), 1502–1506 (2006).
[CrossRef] [PubMed]

Lee, C. C.

Pervak, V.

Pistner, J.

Ploss, B.

U. Schallenberg, B. Ploss, M. Lappschies, and S. Jakobs, “Design and manufacturing of high performance notch filters,” Proc. SPIE7739, 77391X, 77391X-9 (2010).
[CrossRef]

Ristau, D.

Schallenberg, U.

U. Schallenberg, B. Ploss, M. Lappschies, and S. Jakobs, “Design and manufacturing of high performance notch filters,” Proc. SPIE7739, 77391X, 77391X-9 (2010).
[CrossRef]

Southwell, W. H.

Stenzel, O.

Sytchkova, A. K.

Tang, C. J.

Thelen, A.

Tikhonravov, A. V.

Trubetskov, M. K.

van der Laan, C. J.

Wang, Z. S.

Wilbrandt, S.

Wu, J. Y.

Wu, K.

Xie, Y. J.

Zhang, J. L.

Appl. Opt. (10)

B. G. Bovard, “Rugate filter design: the modified Fourier transform technique,” Appl. Opt.29(1), 24–30 (1990).
[CrossRef] [PubMed]

W. H. Southwell and R. L. Hall, “Rugate filter sidelobe suppression using quintic and rugated quintic matching layers,” Appl. Opt.28(14), 2949–2951 (1989).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, M. A. Kokarev, N. Kaiser, O. Stenzel, S. Wilbrandt, and D. Gäbler, “New optimization algorithm for the synthesis of rugate optical coatings,” Appl. Opt.45(7), 1515–1524 (2006).
[CrossRef] [PubMed]

M. Lappschies, B. Görtz, and D. Ristau, “Application of optical broadband monitoring to quasi-rugate filters by ion-beam sputtering,” Appl. Opt.45(7), 1502–1506 (2006).
[CrossRef] [PubMed]

C. C. Lee, C. J. Tang, and J. Y. Wu, “Rugate filter made with composite thin films by ion-beam sputtering,” Appl. Opt.45(7), 1333–1337 (2006).
[CrossRef] [PubMed]

V. Pervak, A. V. Tikhonravov, M. K. Trubetskov, J. Pistner, F. Krausz, and A. Apolonski, “Band filters: two-material technology versus rugate,” Appl. Opt.46(8), 1190–1193 (2007).
[CrossRef] [PubMed]

C. J. van der Laan, “Optical monitoring of nonquarterwave stacks,” Appl. Opt.25(5), 753–760 (1986).
[CrossRef] [PubMed]

A. V. Tikhonravov and M. K. Trubetskov, “Modern design tools and a new paradigm in optical coating design,” Appl. Opt.51(30), 7319–7332 (2012).
[CrossRef] [PubMed]

J. L. Zhang, Y. J. Xie, X. B. Cheng, H. F. Jiao, and Z. S. Wang, “Thin-film thickness-modulated designs for optical minus filter,” Appl. Opt.52(23), 5788–5793 (2013).
[CrossRef] [PubMed]

A. V. Tikhonravov, M. K. Trubetskov, T. V. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, and D. Ristau, “Optical parameters of oxide films typically used in optical coating production,” Appl. Opt.50(9), C75–C85 (2011).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

Opt. Express (3)

Proc. SPIE (1)

U. Schallenberg, B. Ploss, M. Lappschies, and S. Jakobs, “Design and manufacturing of high performance notch filters,” Proc. SPIE7739, 77391X, 77391X-9 (2010).
[CrossRef]

Other (3)

J. A. Dobrowolski, “Optical properties of films and coatings,” in Handbook of Optics, M.Bass ed. (McGraw-Hill, New York, 2010), IV, 7.15–7.53.

H. A. Macleod, Thin-film Optical Filters, 4th ed., (CRC Press/Taylor & Francis, 2010).

A. V. Tikhonravov and M. K. Trubetskov, Optilayer Thin Film Software, http://www.optilayer.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Layer-thickness profile (a) and spectral transmittance (b) of an ultra-high steep notch filter obtained by constrained optimization.

Fig. 2
Fig. 2

Transmittance of the uncoated substrate (solid curve) and the Ta2O5 coating on calotte (blue dashed curve) and monitor glass (red solid curve).

Fig. 3
Fig. 3

(a) Fitting of measured transmittance data (red crosses) by model transmittance (solid curve) at the end of discrepancy function minimization: non absorbing model of Ta2O5 film. (b) Wavelength dependence of the refractive index of the Ta2O5 films found in the frame of the homogeneous thin film model.

Fig. 4
Fig. 4

(a) Fitting of measured reflectance data (red crosses) by model reflectance (solid curve) at the end of discrepancy function minimization: non absorbing model of SiO2 film. (b) Wavelength dependence of the refractive index of SiO2 film.

Fig. 5
Fig. 5

Transmittance of the uncoated substrate (solid curve) and the SiO2 coatings on calotte (blue dashed line) and monitor glass (red solid line).

Fig. 6
Fig. 6

(a) Comparison of measurement transmittance data (red crosses) and theoretical transmittance (solid black curve) of the notch filter. (b) Fitting of measured notch filter transmittance (red crosses) by the model transmittance (solid curve) when the model with random errors in thicknesses of low index layers was applied.

Fig. 7
Fig. 7

Online monitoring curves of (solid curves) and the theoretical light values (triangle) for the middle paired-layers.

Metrics