Abstract

We present extended spectroscopic analysis of pharmaceutical tablets in the close near infrared spectral range performed using broadband photon time-of-flight (PTOF) absorption and scattering spectra measurements. We show that the absorption spectra can be used to perform evaluation of the chemical composition of pharmaceutical tablets without need for chemo-metric calibration. The spectroscopic analysis was performed using an advanced PTOF spectrometer operating in the 650 to 1400 nm spectral range. By employing temporal stabilization of the system we achieve the high precision of 0.5% required to evaluate the concentration of tablet ingredients. In order to further illustrate the performance of the system, we present the first ever reported broadband evaluation of absorption and scattering spectra from pure and doped Spectralon®.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
    [CrossRef]
  2. P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
    [CrossRef] [PubMed]
  3. M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
    [CrossRef] [PubMed]
  4. A. Pifferi, A. Farina, A. Torricelli, G. Quarto, R. Cubeddu, and P. Taronia, “Time-domain broadband near infrared spectroscopy of the female breast: a focused review from basic principles to future perspectives,” J Near Infrared Spectrosc.20(1Spec.), 223–235 (2012).
    [CrossRef]
  5. D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Brain and muscle near infrared spectroscopy/imaging techniques,” J Near Infrared Spectrosc.20(1Spec), 15–27 (2012).
    [CrossRef]
  6. Q. Luo, B. Li, Z. Qiu, Z. Huang, Y. Gu, and X. D. Li, “Advanced optical techniques for monitoring dosimetric parameters in photodynamic therapy,” Proc. SPIE 8553, 85530F (2012).
  7. D. W. Sun, Infrared Spectroscopy for Food Quality Analysis and Control (Elsevier 2009).
  8. L. Čurda and O. Kukačková, “NIR spectroscopy: a useful tool for rapid monitoring of processed cheeses manufacture,” J. Food Eng.61(4), 557–560 (2004).
    [CrossRef]
  9. H. Huang, H. Yu, H. Xu, and Y. Ying, “Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review,” J. Food Eng.87(3), 303–313 (2008).
    [CrossRef]
  10. B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review,” Postharvest Biol. Technol.46(2), 99–118 (2007).
    [CrossRef]
  11. M. Jamrógiewicz, “Application of the near-infrared spectroscopy in the pharmaceutical technology,” J. Pharm. Biomed. Anal.66, 1–10 (2012).
    [CrossRef] [PubMed]
  12. J. Luypaert, D. L. Massart, and Y. Vander Heyden, “Near-infrared spectroscopy applications in pharmaceutical analysis,” Talanta72(3), 865–883 (2007).
    [CrossRef] [PubMed]
  13. G. Reich, “Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications,” Adv. Drug Deliv. Rev.57(8), 1109–1143 (2005).
    [CrossRef] [PubMed]
  14. Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, “A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies,” J. Pharm. Biomed. Anal.44(3), 683–700 (2007).
    [CrossRef] [PubMed]
  15. S. Tsuchikawa, “A Review of Recent Near Infrared Research for Wood and Paper,” Appl. Spectrosc. Rev.42(1), 43–71 (2007).
    [CrossRef]
  16. S. S. Tsuchikawa and M. Schwanninger, “A review of recent near infrared research for wood and paper (Part 2),” Appl. Spectrosc. Rev.48(7), 560–587 (2013).
    [CrossRef]
  17. L. X. Yu, “Pharmaceutical quality by design: product and process development, understanding, and control,” Pharm. Res.25(4), 781–791 (2008).
    [CrossRef] [PubMed]
  18. R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
    [CrossRef] [PubMed]
  19. R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt.15(3), 037015 (2010).
    [CrossRef] [PubMed]
  20. T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt.39(34), 6487–6497 (2000).
    [CrossRef] [PubMed]
  21. F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum.82(10), 103104 (2011).
    [CrossRef] [PubMed]
  22. T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum.71(6), 2500–2513 (2000).
    [CrossRef]
  23. L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15(11), 6589–6604 (2007).
    [CrossRef] [PubMed]
  24. F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt.39(34), 6498–6507 (2000).
    [CrossRef] [PubMed]
  25. C. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express12(17), 4103–4112 (2004).
    [CrossRef] [PubMed]
  26. A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett.29(20), 2405–2407 (2004).
    [CrossRef] [PubMed]
  27. A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum.78(5), 053103 (2007).
    [CrossRef] [PubMed]
  28. T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
    [CrossRef] [PubMed]
  29. S. Tsuchikawa and S. Tsutsumi, “Application of time-of-flight near-infrared Spectroscopy to wood with anisotropic cellular structure,” Appl. Spectrosc.56(7), 869–876 (2002).
    [CrossRef]
  30. I. Bargigia, A. Tosi, A. B. Shehata, A. D. Frera, A. Farina, A. Bassi, P. Taroni, A. D. Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode,” Appl. Spectrosc.66(8), 944–950 (2012).
    [CrossRef] [PubMed]
  31. J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, and S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets,” Appl. Spectrosc.56(6), 725–731 (2002).
    [CrossRef]
  32. C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem.77(4), 1055–1059 (2005).
    [CrossRef] [PubMed]
  33. V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys.28(6), 1115–1124 (2001).
    [CrossRef] [PubMed]
  34. J. P. Bouchard, I. Veilleux, R. Jedidi, I. Noiseux, M. Fortin, and O. Mermut, “Reference optical phantoms for diffuse optical spectroscopy. Part 1--Error analysis of a time resolved transmittance characterization method,” Opt. Express18(11), 11495–11507 (2010).
    [CrossRef] [PubMed]
  35. M. S. Patterson, B. Chance, and B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Non-invasive Measurement of Tissue Optical Properties,” Appl. Opt.28(12), 2331–2336 (1989).
    [CrossRef] [PubMed]
  36. D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36(19), 4587–4599 (1997).
    [CrossRef] [PubMed]
  37. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt.13(4), 041304 (2008).
    [CrossRef] [PubMed]
  38. E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express16(14), 10440–10454 (2008).
    [CrossRef] [PubMed]
  39. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
    [CrossRef] [PubMed]
  40. A. Sparén, O. Svensson, M. Hartman, M. Fransson, and J. Johansson, “Matrix Effects in Quantitative Assessment of Pharmaceutical Tablets, Using Transmission Raman and NIR Spectroscopy,” Appl. Spectrosc., to be submited (2013).
  41. LabSphere, Inc. “A Guide to Reflectance Coatings and Materials.”
  42. A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass Effects in Time-Resolved Diffuse Spectroscopy,” Appl. Spectrosc.63(1), 48–56 (2009).
    [CrossRef] [PubMed]
  43. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. xiv, 530 p.
  44. H. C. d. Hulst, Light Scattering by Small Particles (Dover Publications, 1981), p. 470 p.
  45. R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, and M. H. Koelink, “Reduced Light-Scattering Properties for Mixtures of Spherical Particles: a Simple Approximation Derived from Mie Calculations,” Appl. Opt.31(10), 1370–1376 (1992).
    [CrossRef] [PubMed]
  46. LabSphere, Inc.”, retrieved http://www.labsphere.com/ .
  47. Avian Technologies, LLC”, retrieved http://www.aviantechnologies.com .
  48. SphereOptics Gmbh”, retrieved http://www.sphereoptics.de/en/ .

2013 (1)

S. S. Tsuchikawa and M. Schwanninger, “A review of recent near infrared research for wood and paper (Part 2),” Appl. Spectrosc. Rev.48(7), 560–587 (2013).
[CrossRef]

2012 (4)

A. Pifferi, A. Farina, A. Torricelli, G. Quarto, R. Cubeddu, and P. Taronia, “Time-domain broadband near infrared spectroscopy of the female breast: a focused review from basic principles to future perspectives,” J Near Infrared Spectrosc.20(1Spec.), 223–235 (2012).
[CrossRef]

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Brain and muscle near infrared spectroscopy/imaging techniques,” J Near Infrared Spectrosc.20(1Spec), 15–27 (2012).
[CrossRef]

M. Jamrógiewicz, “Application of the near-infrared spectroscopy in the pharmaceutical technology,” J. Pharm. Biomed. Anal.66, 1–10 (2012).
[CrossRef] [PubMed]

I. Bargigia, A. Tosi, A. B. Shehata, A. D. Frera, A. Farina, A. Bassi, P. Taroni, A. D. Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode,” Appl. Spectrosc.66(8), 944–950 (2012).
[CrossRef] [PubMed]

2011 (1)

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum.82(10), 103104 (2011).
[CrossRef] [PubMed]

2010 (4)

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt.15(3), 037015 (2010).
[CrossRef] [PubMed]

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

J. P. Bouchard, I. Veilleux, R. Jedidi, I. Noiseux, M. Fortin, and O. Mermut, “Reference optical phantoms for diffuse optical spectroscopy. Part 1--Error analysis of a time resolved transmittance characterization method,” Opt. Express18(11), 11495–11507 (2010).
[CrossRef] [PubMed]

2009 (2)

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass Effects in Time-Resolved Diffuse Spectroscopy,” Appl. Spectrosc.63(1), 48–56 (2009).
[CrossRef] [PubMed]

2008 (4)

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt.13(4), 041304 (2008).
[CrossRef] [PubMed]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express16(14), 10440–10454 (2008).
[CrossRef] [PubMed]

H. Huang, H. Yu, H. Xu, and Y. Ying, “Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review,” J. Food Eng.87(3), 303–313 (2008).
[CrossRef]

L. X. Yu, “Pharmaceutical quality by design: product and process development, understanding, and control,” Pharm. Res.25(4), 781–791 (2008).
[CrossRef] [PubMed]

2007 (7)

Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, “A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies,” J. Pharm. Biomed. Anal.44(3), 683–700 (2007).
[CrossRef] [PubMed]

S. Tsuchikawa, “A Review of Recent Near Infrared Research for Wood and Paper,” Appl. Spectrosc. Rev.42(1), 43–71 (2007).
[CrossRef]

B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review,” Postharvest Biol. Technol.46(2), 99–118 (2007).
[CrossRef]

J. Luypaert, D. L. Massart, and Y. Vander Heyden, “Near-infrared spectroscopy applications in pharmaceutical analysis,” Talanta72(3), 865–883 (2007).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum.78(5), 053103 (2007).
[CrossRef] [PubMed]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15(11), 6589–6604 (2007).
[CrossRef] [PubMed]

2005 (3)

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem.77(4), 1055–1059 (2005).
[CrossRef] [PubMed]

G. Reich, “Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications,” Adv. Drug Deliv. Rev.57(8), 1109–1143 (2005).
[CrossRef] [PubMed]

2004 (3)

2002 (2)

2001 (1)

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys.28(6), 1115–1124 (2001).
[CrossRef] [PubMed]

2000 (3)

1999 (1)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

1997 (1)

1992 (1)

1989 (1)

Aalders, M. C.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Aarnoudse, J. G.

Abbate, F.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Abrahamsson, C.

Alerstam, E.

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt.13(4), 041304 (2008).
[CrossRef] [PubMed]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express16(14), 10440–10454 (2008).
[CrossRef] [PubMed]

Anderson, E.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum.71(6), 2500–2513 (2000).
[CrossRef]

Andersson-Engels, S.

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt.13(4), 041304 (2008).
[CrossRef] [PubMed]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express16(14), 10440–10454 (2008).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem.77(4), 1055–1059 (2005).
[CrossRef] [PubMed]

C. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express12(17), 4103–4112 (2004).
[CrossRef] [PubMed]

J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, and S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets,” Appl. Spectrosc.56(6), 725–731 (2002).
[CrossRef]

T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt.39(34), 6487–6497 (2000).
[CrossRef] [PubMed]

Avrillier, S.

Baker, W. B.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Balestreri, N.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Bargigia, I.

Bassi, A.

Berger, A. J.

Beullens, K.

B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review,” Postharvest Biol. Technol.46(2), 99–118 (2007).
[CrossRef]

Bevilacqua, F.

Bobelyn, E.

B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review,” Postharvest Biol. Technol.46(2), 99–118 (2007).
[CrossRef]

Bouchard, J. P.

Caffini, M.

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Brain and muscle near infrared spectroscopy/imaging techniques,” J Near Infrared Spectrosc.20(1Spec), 15–27 (2012).
[CrossRef]

Cassano, E.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Cerussi, A. E.

Chalus, P.

Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, “A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies,” J. Pharm. Biomed. Anal.44(3), 683–700 (2007).
[CrossRef] [PubMed]

Chance, B.

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys.28(6), 1115–1124 (2001).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Non-invasive Measurement of Tissue Optical Properties,” Appl. Opt.28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

Choe, R.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Comelli, D.

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass Effects in Time-Resolved Diffuse Spectroscopy,” Appl. Spectrosc.63(1), 48–56 (2009).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum.78(5), 053103 (2007).
[CrossRef] [PubMed]

Contini, D.

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Brain and muscle near infrared spectroscopy/imaging techniques,” J Near Infrared Spectrosc.20(1Spec), 15–27 (2012).
[CrossRef]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36(19), 4587–4599 (1997).
[CrossRef] [PubMed]

Coquoz, O.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum.71(6), 2500–2513 (2000).
[CrossRef]

Cross, F. W.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Cubeddu, R.

A. Pifferi, A. Farina, A. Torricelli, G. Quarto, R. Cubeddu, and P. Taronia, “Time-domain broadband near infrared spectroscopy of the female breast: a focused review from basic principles to future perspectives,” J Near Infrared Spectrosc.20(1Spec.), 223–235 (2012).
[CrossRef]

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Brain and muscle near infrared spectroscopy/imaging techniques,” J Near Infrared Spectrosc.20(1Spec), 15–27 (2012).
[CrossRef]

I. Bargigia, A. Tosi, A. B. Shehata, A. D. Frera, A. Farina, A. Bassi, P. Taroni, A. D. Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode,” Appl. Spectrosc.66(8), 944–950 (2012).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass Effects in Time-Resolved Diffuse Spectroscopy,” Appl. Spectrosc.63(1), 48–56 (2009).
[CrossRef] [PubMed]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15(11), 6589–6604 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum.78(5), 053103 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett.29(20), 2405–2407 (2004).
[CrossRef] [PubMed]

Curda, L.

L. Čurda and O. Kukačková, “NIR spectroscopy: a useful tool for rapid monitoring of processed cheeses manufacture,” J. Food Eng.61(4), 557–560 (2004).
[CrossRef]

D’Andrea, C.

Dam, J. S.

de Mul, F. F. M.

Desjardins, A. E.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt.15(3), 037015 (2010).
[CrossRef] [PubMed]

Doornbos, R. M. P.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Durduran, T.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Edmond, A.

Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, “A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies,” J. Pharm. Biomed. Anal.44(3), 683–700 (2007).
[CrossRef] [PubMed]

Farina, A.

Ferrari, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Fishkin, J. B.

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum.71(6), 2500–2513 (2000).
[CrossRef]

Folestad, S.

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem.77(4), 1055–1059 (2005).
[CrossRef] [PubMed]

C. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express12(17), 4103–4112 (2004).
[CrossRef] [PubMed]

J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, and S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets,” Appl. Spectrosc.56(6), 725–731 (2002).
[CrossRef]

Fortin, M.

Foschum, F.

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum.82(10), 103104 (2011).
[CrossRef] [PubMed]

Frera, A. D.

Graaff, R.

Greve, J.

Grosenick, D.

Hendriks, B. H.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt.15(3), 037015 (2010).
[CrossRef] [PubMed]

Huang, H.

H. Huang, H. Yu, H. Xu, and Y. Ying, “Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review,” J. Food Eng.87(3), 303–313 (2008).
[CrossRef]

Jäger, M.

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum.82(10), 103104 (2011).
[CrossRef] [PubMed]

Jakubowski, D.

Jamrógiewicz, M.

M. Jamrógiewicz, “Application of the near-infrared spectroscopy in the pharmaceutical technology,” J. Pharm. Biomed. Anal.66, 1–10 (2012).
[CrossRef] [PubMed]

Jedidi, R.

Jent, N.

Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, “A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies,” J. Pharm. Biomed. Anal.44(3), 683–700 (2007).
[CrossRef] [PubMed]

Johansson, J.

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem.77(4), 1055–1059 (2005).
[CrossRef] [PubMed]

C. Abrahamsson, T. Svensson, S. Svanberg, S. Andersson-Engels, J. Johansson, and S. Folestad, “Time and wavelength resolved spectroscopy of turbid media using light continuum generated in a crystal fiber,” Opt. Express12(17), 4103–4112 (2004).
[CrossRef] [PubMed]

J. Johansson, S. Folestad, M. Josefson, A. Sparen, C. Abrahamsson, S. Andersson-Engels, and S. Svanberg, “Time-resolved NIR/Vis spectroscopy for analysis of solids: Pharmaceutical tablets,” Appl. Spectrosc.56(6), 725–731 (2002).
[CrossRef]

Josefson, M.

Khoptyar, D.

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

Kienle, A.

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum.82(10), 103104 (2011).
[CrossRef] [PubMed]

Koelink, M. H.

Kukacková, O.

L. Čurda and O. Kukačková, “NIR spectroscopy: a useful tool for rapid monitoring of processed cheeses manufacture,” J. Food Eng.61(4), 557–560 (2004).
[CrossRef]

Lammertyn, J.

B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review,” Postharvest Biol. Technol.46(2), 99–118 (2007).
[CrossRef]

Lang, R.

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Lema-Martinez, C.

Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, “A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies,” J. Pharm. Biomed. Anal.44(3), 683–700 (2007).
[CrossRef] [PubMed]

Luypaert, J.

J. Luypaert, D. L. Massart, and Y. Vander Heyden, “Near-infrared spectroscopy applications in pharmaceutical analysis,” Talanta72(3), 865–883 (2007).
[CrossRef] [PubMed]

Macdonald, R.

Martelli, F.

Massart, D. L.

J. Luypaert, D. L. Massart, and Y. Vander Heyden, “Near-infrared spectroscopy applications in pharmaceutical analysis,” Talanta72(3), 865–883 (2007).
[CrossRef] [PubMed]

Maurer, L.

Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, “A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies,” J. Pharm. Biomed. Anal.44(3), 683–700 (2007).
[CrossRef] [PubMed]

Menna, S.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Mermut, O.

Möller, M.

Mora, A. D.

Nachabé, R.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt.15(3), 037015 (2010).
[CrossRef] [PubMed]

Nghiem, H. L.

Nicolaï, B. M.

B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review,” Postharvest Biol. Technol.46(2), 99–118 (2007).
[CrossRef]

Noiseux, I.

Ntziachristos, V.

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys.28(6), 1115–1124 (2001).
[CrossRef] [PubMed]

Patterson, M. S.

Peirs, A.

B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review,” Postharvest Biol. Technol.46(2), 99–118 (2007).
[CrossRef]

Pham, T. H.

Pifferi, A.

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Brain and muscle near infrared spectroscopy/imaging techniques,” J Near Infrared Spectrosc.20(1Spec), 15–27 (2012).
[CrossRef]

A. Pifferi, A. Farina, A. Torricelli, G. Quarto, R. Cubeddu, and P. Taronia, “Time-domain broadband near infrared spectroscopy of the female breast: a focused review from basic principles to future perspectives,” J Near Infrared Spectrosc.20(1Spec.), 223–235 (2012).
[CrossRef]

I. Bargigia, A. Tosi, A. B. Shehata, A. D. Frera, A. Farina, A. Bassi, P. Taroni, A. D. Mora, F. Zappa, R. Cubeddu, and A. Pifferi, “Time-resolved diffuse optical spectroscopy up to 1700 nm by means of a time-gated InGaAs/InP single-photon avalanche diode,” Appl. Spectrosc.66(8), 944–950 (2012).
[CrossRef] [PubMed]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass Effects in Time-Resolved Diffuse Spectroscopy,” Appl. Spectrosc.63(1), 48–56 (2009).
[CrossRef] [PubMed]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15(11), 6589–6604 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum.78(5), 053103 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett.29(20), 2405–2407 (2004).
[CrossRef] [PubMed]

Quaresima, V.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Quarto, G.

A. Pifferi, A. Farina, A. Torricelli, G. Quarto, R. Cubeddu, and P. Taronia, “Time-domain broadband near infrared spectroscopy of the female breast: a focused review from basic principles to future perspectives,” J Near Infrared Spectrosc.20(1Spec.), 223–235 (2012).
[CrossRef]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Re, R.

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Brain and muscle near infrared spectroscopy/imaging techniques,” J Near Infrared Spectrosc.20(1Spec), 15–27 (2012).
[CrossRef]

Reich, G.

G. Reich, “Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications,” Adv. Drug Deliv. Rev.57(8), 1109–1143 (2005).
[CrossRef] [PubMed]

Roggo, Y.

Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, “A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies,” J. Pharm. Biomed. Anal.44(3), 683–700 (2007).
[CrossRef] [PubMed]

Saeys, W.

B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review,” Postharvest Biol. Technol.46(2), 99–118 (2007).
[CrossRef]

Schwanninger, M.

S. S. Tsuchikawa and M. Schwanninger, “A review of recent near infrared research for wood and paper (Part 2),” Appl. Spectrosc. Rev.48(7), 560–587 (2013).
[CrossRef]

Shehata, A. B.

Sloot, P. M. A.

Sparen, A.

Spinelli, L.

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Brain and muscle near infrared spectroscopy/imaging techniques,” J Near Infrared Spectrosc.20(1Spec), 15–27 (2012).
[CrossRef]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

A. Farina, A. Bassi, A. Pifferi, P. Taroni, D. Comelli, L. Spinelli, and R. Cubeddu, “Bandpass Effects in Time-Resolved Diffuse Spectroscopy,” Appl. Spectrosc.63(1), 48–56 (2009).
[CrossRef] [PubMed]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15(11), 6589–6604 (2007).
[CrossRef] [PubMed]

Spott, T.

Stamm, H.

Sterenborg, H. J.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt.15(3), 037015 (2010).
[CrossRef] [PubMed]

Sterenborg, H. J. C. M.

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Svanberg, S.

Svensson, T.

Swartling, J.

Taroni, P.

Taronia, P.

A. Pifferi, A. Farina, A. Torricelli, G. Quarto, R. Cubeddu, and P. Taronia, “Time-domain broadband near infrared spectroscopy of the female breast: a focused review from basic principles to future perspectives,” J Near Infrared Spectrosc.20(1Spec.), 223–235 (2012).
[CrossRef]

Theron, K. I.

B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review,” Postharvest Biol. Technol.46(2), 99–118 (2007).
[CrossRef]

Torricelli, A.

A. Pifferi, A. Farina, A. Torricelli, G. Quarto, R. Cubeddu, and P. Taronia, “Time-domain broadband near infrared spectroscopy of the female breast: a focused review from basic principles to future perspectives,” J Near Infrared Spectrosc.20(1Spec.), 223–235 (2012).
[CrossRef]

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Brain and muscle near infrared spectroscopy/imaging techniques,” J Near Infrared Spectrosc.20(1Spec), 15–27 (2012).
[CrossRef]

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum.78(5), 053103 (2007).
[CrossRef] [PubMed]

L. Spinelli, F. Martelli, A. Farina, A. Pifferi, A. Torricelli, R. Cubeddu, and G. Zaccanti, “Calibration of scattering and absorption properties of a liquid diffusive medium at NIR wavelengths. Time-resolved method,” Opt. Express15(11), 6589–6604 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

A. Bassi, J. Swartling, C. D’Andrea, A. Pifferi, A. Torricelli, and R. Cubeddu, “Time-resolved spectrophotometer for turbid media based on supercontinuum generation in a photonic crystal fiber,” Opt. Lett.29(20), 2405–2407 (2004).
[CrossRef] [PubMed]

Tosi, A.

Tromberg, B. J.

Tsuchikawa, S.

Tsuchikawa, S. S.

S. S. Tsuchikawa and M. Schwanninger, “A review of recent near infrared research for wood and paper (Part 2),” Appl. Spectrosc. Rev.48(7), 560–587 (2013).
[CrossRef]

Tsutsumi, S.

Tualle, J. M.

van der Mark, M. B.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt.15(3), 037015 (2010).
[CrossRef] [PubMed]

van der Voort, M.

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt.15(3), 037015 (2010).
[CrossRef] [PubMed]

van Veen, R. L. P.

Vander Heyden, Y.

J. Luypaert, D. L. Massart, and Y. Vander Heyden, “Near-infrared spectroscopy applications in pharmaceutical analysis,” Talanta72(3), 865–883 (2007).
[CrossRef] [PubMed]

Veilleux, I.

Villa, A.

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

Wabnitz, H.

Whelan, M.

Wilson, B. C.

Wolf, M.

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

Xu, H.

H. Huang, H. Yu, H. Xu, and Y. Ying, “Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review,” J. Food Eng.87(3), 303–313 (2008).
[CrossRef]

Ying, Y.

H. Huang, H. Yu, H. Xu, and Y. Ying, “Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review,” J. Food Eng.87(3), 303–313 (2008).
[CrossRef]

Yodh, A. G.

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Yu, H.

H. Huang, H. Yu, H. Xu, and Y. Ying, “Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review,” J. Food Eng.87(3), 303–313 (2008).
[CrossRef]

Yu, L. X.

L. X. Yu, “Pharmaceutical quality by design: product and process development, understanding, and control,” Pharm. Res.25(4), 781–791 (2008).
[CrossRef] [PubMed]

Zaccanti, G.

Zappa, F.

Zijp, J. R.

Zucchelli, L.

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Brain and muscle near infrared spectroscopy/imaging techniques,” J Near Infrared Spectrosc.20(1Spec), 15–27 (2012).
[CrossRef]

Adv. Drug Deliv. Rev. (1)

G. Reich, “Near-infrared spectroscopy and imaging: basic principles and pharmaceutical applications,” Adv. Drug Deliv. Rev.57(8), 1109–1143 (2005).
[CrossRef] [PubMed]

Anal. Chem. (1)

C. Abrahamsson, J. Johansson, S. Andersson-Engels, S. Svanberg, and S. Folestad, “Time-resolved NIR spectroscopy for quantitative analysis of intact pharmaceutical tablets,” Anal. Chem.77(4), 1055–1059 (2005).
[CrossRef] [PubMed]

Appl. Opt. (6)

M. S. Patterson, B. Chance, and B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Non-invasive Measurement of Tissue Optical Properties,” Appl. Opt.28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

D. Contini, F. Martelli, and G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt.36(19), 4587–4599 (1997).
[CrossRef] [PubMed]

T. H. Pham, F. Bevilacqua, T. Spott, J. S. Dam, B. J. Tromberg, and S. Andersson-Engels, “Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fourier-transform hyperspectral imaging,” Appl. Opt.39(34), 6487–6497 (2000).
[CrossRef] [PubMed]

F. Bevilacqua, A. J. Berger, A. E. Cerussi, D. Jakubowski, and B. J. Tromberg, “Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods,” Appl. Opt.39(34), 6498–6507 (2000).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. P. van Veen, H. J. C. M. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt.44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

R. Graaff, J. G. Aarnoudse, J. R. Zijp, P. M. A. Sloot, F. F. M. de Mul, J. Greve, and M. H. Koelink, “Reduced Light-Scattering Properties for Mixtures of Spherical Particles: a Simple Approximation Derived from Mie Calculations,” Appl. Opt.31(10), 1370–1376 (1992).
[CrossRef] [PubMed]

Appl. Spectrosc. (4)

Appl. Spectrosc. Rev. (2)

S. Tsuchikawa, “A Review of Recent Near Infrared Research for Wood and Paper,” Appl. Spectrosc. Rev.42(1), 43–71 (2007).
[CrossRef]

S. S. Tsuchikawa and M. Schwanninger, “A review of recent near infrared research for wood and paper (Part 2),” Appl. Spectrosc. Rev.48(7), 560–587 (2013).
[CrossRef]

J Near Infrared Spectrosc. (2)

A. Pifferi, A. Farina, A. Torricelli, G. Quarto, R. Cubeddu, and P. Taronia, “Time-domain broadband near infrared spectroscopy of the female breast: a focused review from basic principles to future perspectives,” J Near Infrared Spectrosc.20(1Spec.), 223–235 (2012).
[CrossRef]

D. Contini, L. Zucchelli, L. Spinelli, M. Caffini, R. Re, A. Pifferi, R. Cubeddu, and A. Torricelli, “Brain and muscle near infrared spectroscopy/imaging techniques,” J Near Infrared Spectrosc.20(1Spec), 15–27 (2012).
[CrossRef]

J. Biomed. Opt. (4)

P. Taroni, A. Pifferi, G. Quarto, L. Spinelli, A. Torricelli, F. Abbate, A. Villa, N. Balestreri, S. Menna, E. Cassano, and R. Cubeddu, “Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy,” J. Biomed. Opt.15(6), 060501 (2010).
[CrossRef] [PubMed]

M. Wolf, M. Ferrari, and V. Quaresima, “Progress of near-infrared spectroscopy and topography for brain and muscle clinical applications,” J. Biomed. Opt.12(6), 062104 (2007).
[CrossRef] [PubMed]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt.13(4), 041304 (2008).
[CrossRef] [PubMed]

R. Nachabé, B. H. Hendriks, A. E. Desjardins, M. van der Voort, M. B. van der Mark, and H. J. Sterenborg, “Estimation of lipid and water concentrations in scattering media with diffuse optical spectroscopy from 900 to 1,600 nm,” J. Biomed. Opt.15(3), 037015 (2010).
[CrossRef] [PubMed]

J. Food Eng. (2)

L. Čurda and O. Kukačková, “NIR spectroscopy: a useful tool for rapid monitoring of processed cheeses manufacture,” J. Food Eng.61(4), 557–560 (2004).
[CrossRef]

H. Huang, H. Yu, H. Xu, and Y. Ying, “Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review,” J. Food Eng.87(3), 303–313 (2008).
[CrossRef]

J. Pharm. Biomed. Anal. (2)

Y. Roggo, P. Chalus, L. Maurer, C. Lema-Martinez, A. Edmond, and N. Jent, “A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies,” J. Pharm. Biomed. Anal.44(3), 683–700 (2007).
[CrossRef] [PubMed]

M. Jamrógiewicz, “Application of the near-infrared spectroscopy in the pharmaceutical technology,” J. Pharm. Biomed. Anal.66, 1–10 (2012).
[CrossRef] [PubMed]

Med. Phys. (1)

V. Ntziachristos and B. Chance, “Accuracy limits in the determination of absolute optical properties using time-resolved NIR spectroscopy,” Med. Phys.28(6), 1115–1124 (2001).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

Pharm. Res. (1)

L. X. Yu, “Pharmaceutical quality by design: product and process development, understanding, and control,” Pharm. Res.25(4), 781–791 (2008).
[CrossRef] [PubMed]

Phys. Med. Biol. (1)

R. M. P. Doornbos, R. Lang, M. C. Aalders, F. W. Cross, and H. J. C. M. Sterenborg, “The determination of in vivo human tissue optical properties and absolute chromophore concentrations using spatially resolved steady-state diffuse reflectance spectroscopy,” Phys. Med. Biol.44(4), 967–981 (1999).
[CrossRef] [PubMed]

Postharvest Biol. Technol. (1)

B. M. Nicolaï, K. Beullens, E. Bobelyn, A. Peirs, W. Saeys, K. I. Theron, and J. Lammertyn, “Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review,” Postharvest Biol. Technol.46(2), 99–118 (2007).
[CrossRef]

Rep. Prog. Phys. (1)

T. Durduran, R. Choe, W. B. Baker, and A. G. Yodh, “Diffuse optics for tissue monitoring and tomography,” Rep. Prog. Phys.73(7), 076701 (2010).
[CrossRef]

Rev. Sci. Instrum. (4)

F. Foschum, M. Jäger, and A. Kienle, “Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media,” Rev. Sci. Instrum.82(10), 103104 (2011).
[CrossRef] [PubMed]

T. H. Pham, O. Coquoz, J. B. Fishkin, E. Anderson, and B. J. Tromberg, “Broad bandwidth frequency domain instrument for quantitative tissue optical spectroscopy,” Rev. Sci. Instrum.71(6), 2500–2513 (2000).
[CrossRef]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum.78(5), 053103 (2007).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, and S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum.80(6), 063105 (2009).
[CrossRef] [PubMed]

Talanta (1)

J. Luypaert, D. L. Massart, and Y. Vander Heyden, “Near-infrared spectroscopy applications in pharmaceutical analysis,” Talanta72(3), 865–883 (2007).
[CrossRef] [PubMed]

Other (9)

Q. Luo, B. Li, Z. Qiu, Z. Huang, Y. Gu, and X. D. Li, “Advanced optical techniques for monitoring dosimetric parameters in photodynamic therapy,” Proc. SPIE 8553, 85530F (2012).

D. W. Sun, Infrared Spectroscopy for Food Quality Analysis and Control (Elsevier 2009).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. xiv, 530 p.

H. C. d. Hulst, Light Scattering by Small Particles (Dover Publications, 1981), p. 470 p.

A. Sparén, O. Svensson, M. Hartman, M. Fransson, and J. Johansson, “Matrix Effects in Quantitative Assessment of Pharmaceutical Tablets, Using Transmission Raman and NIR Spectroscopy,” Appl. Spectrosc., to be submited (2013).

LabSphere, Inc. “A Guide to Reflectance Coatings and Materials.”

LabSphere, Inc.”, retrieved http://www.labsphere.com/ .

Avian Technologies, LLC”, retrieved http://www.aviantechnologies.com .

SphereOptics Gmbh”, retrieved http://www.sphereoptics.de/en/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the PTOF spectrometer. A PCF SCS is used in combination with one of two AOTFs to generate tunable probe pulses which are sent to sample. A small fraction of the pulse power is split off prior the sample and routed directly to the detector for timing stabilization. Signal levels are adjusted by attenuators. One of two single photon counting (SPC) detectors is used in combination with TCSPC electronics for precise monitoring of the PTOF distribution. The setup is controlled by a PC. APD-avalanche photodiode; MCP micro-channel palate; PMT photomultiplier tube; TI Amp – trans-impedance amplifier.

Fig. 2
Fig. 2

The FWHM of the IRF of the system measured with the SPC APD (black) and the NIR PMT detector (blue). The PTOF distribution FWHM for the 1.3 mm thick doped Spectralon sample is shown in red.

Fig. 3
Fig. 3

Drift suppression in the PTOF spectrometer. Synchronization of the IRF with the PTOF distribution using a timing reference pulse enables ± 0.5% precision in the determination of optical parameters.

Fig. 4
Fig. 4

Absorption (a) and scattering (b) spectra for single- and multi-component tablets: pure filler (red line), pure API (black line), pure lubricant (blue line), and multi-component tablets (green and magenta lines). The absorption data from the multi-component tablets were fitted with linear combinations of the absorption of the pure ingredients (circles). The scattering spectra are fitted with Mie dependence. Note that the absorption for pure lubricant has been scaled down by 50%.

Fig. 5
Fig. 5

Absorption and reduced scattering coefficients of pure (a) and doped (b) Spectralon samples are plotted as blue and black lines respectively. Y-axes color corresponds to the color of the curves.

Fig. 6
Fig. 6

(a) API reference concentration vs. the spectroscopically evaluated API concentration (b) On empirical relation for A and β coefficients of reduced scattering spectra fit. Multicomponent and single component tablets are plotted as filled and open circles, respectively.

Tables (2)

Tables Icon

Table 1 Tablet Ingredients

Tables Icon

Table 2 Composition and Ingredients Granulation for the Evaluated Tablets

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

μ a ( λ )= 1 L i N μ a,i ( λ ) x i .
ϕ i = b i / b i .
c i = b i ρ i / b i ρ i .

Metrics