Abstract

The Full Services Access Network group has recently selected the time and wavelength division multiplexed passive optical network (TWDM-PON) as the base technology solution for next-generation PON stage-2 (NG-PON2). Meeting the core requirements of NG-PON2 necessitates the following additional features in the transceivers of the optical network unit (ONU) that is located at subscriber premises: (a) legacy system compliant; (b) wavelength tunable; (c) cost-efficient; and (d) energy-efficient. To address these features, we investigate the properties of short-cavity vertical-cavity surface-emitting lasers (SC-VCSELs) for implementation as colorless ONU transmitters in future TWDM-PONs. Specifically, we investigate the tunability and transmission performance of the SC-VCSEL across the C-minus wavelength band for legacy system compliance. We report on error-free transmission across a 800 GHz tuning range with a potential aggregate upstream capacity of 80 Gbps over a system reach of 40 km and with a split ratio of 1:128 per wavelength channel. Results were achieved without dispersion compensation and electronic equalization. We also evaluate the energy efficiency of the SC-VCSEL in active, doze, and sleep mode. When in active mode, the SC-VCSEL transmitter block consumes 91.7% less power than a distributed feedback (DFB) laser transmitter block. When transitioning between doze and active modes, the transmitter block has a short settling time of only 205 ns, thus increasing the power-saving duration and consequently reducing the overall power consumption of the ONU. Through numerical analysis, evaluation of the energy-savings of the SC-VCSEL ONU over the DFB ONU under various modes of operation, demonstrates up to 84% of energy-savings. The capacity, tuning range, split ratio, system reach, and energy-savings arising from SC-VCSEL ONU implementation as reported in this work, exceed the minimum requirements of NG-PON2 for future TWDM-PON deployments.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Nakamura, “NG-PON2 Technology,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Anaheim, USA, NTh4F.5, (2013).
  2. Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time- and Wavelength-Division Multiplexed Passive Optical Network (TWDM-PON) for Next-Generation PON Stage 2 (NG-PON2),” J. Lightwave Technol.31(4), 587–593 (2013).
    [CrossRef]
  3. R. A. Kumar, R. Murano, M. Cahill, J. Aufiero, and G. Bartolini, “Crosstalk performance analysis of low cost 8 X 10 Gb/s tunable receiver for TWDM-PON,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Anaheim, USA, NTh3F.5 (2013).
  4. H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, and M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in Proc. Eur. Conf. Opt. Commun., PD3.4 (2007).
  5. C. Chang-Hasnain, “Optically-injection locked tunable multimode VCSEL for WDM passive optical networks,” in Proc. Int. Nano-Optoelectron. Workshop (i-NOW), 98–99 (2008).
    [CrossRef]
  6. H. Mukai, T. Fumihiko, and J. Nakagawa, “Energy-efficient 10G-EPON system,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Anaheim, USA, OW3G.1 (2013).
  7. E. Wong, M. Mueller, M. P. I. Dias, C. A. Chan, and M. C. Amann, “Energy-efficiency of optical network units with vertical-cavity surface-emitting lasers,” Opt. Express20(14), 14960–14970 (2012).
    [CrossRef] [PubMed]
  8. Q. Guo, A. V. Tran, and C. J. Chae, “Extended-reach 10 Gb/s RSOA-based WDM-PON using partial response equalization, ” Proc. of 23rd Annual Meeting of the IEEE Photonics Society,345 – 346(2010).
    [CrossRef]
  9. Y. Katagiri, K. Suzuki, and K. Aida, “Intensity stabilisation of spectrum-sliced Gaussian radiation based on amplitude squeezing using semiconductor optical amplifiers with gain saturation,” Electron. Lett.35(16), 1362–1364 (1999).
    [CrossRef]
  10. H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
    [CrossRef]
  11. E. Wong, K. L. Lee, and T. A. Anderson, “Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks,” J. Lightwave Technol.25(1), 67–74 (2007).
    [CrossRef]
  12. S. Hann, T.-Y. Kim, and C.-S. Park, “Direct-modulated upstream signal transmission using a self-injection locked F-P LD for WDM-PON,” Proc. European Conf. of Communications (ECOC), We3.3.3 (2005)
    [CrossRef]
  13. M. Mueller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M. C. Amann, “1550nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.99, 1158–1166 (2011).
  14. M.-C. Amann, E. Wong, and M. Mueller, “Energy-efficient high-speed short-cavity VCSELs,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Los Angeles, USA, OTh4F.1 (2012).
    [CrossRef]
  15. W. Hofmann, M. Muller, G. Bohm, M. Ortsiefer, and M.-C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett.21(13), 923–925 (2009).
    [CrossRef]
  16. M. Mueller and M. C. Amann, “State-of-the-art and perspectives for long-wavelength high-speed VCSELs,” in Proceedings of Conference on Transparent Optical Networks (ICTON) 2011, Mo.C5.2 (2011).
  17. J. Mandin, “EPON powersaving via sleep mode,” IEEE P802.3av 10GEPON Task Force Meeting (2008).
  18. E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU BMT employing dynamic power save control circuit,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Los Angeles, USA, NTuD5 (2011).
  19. Analog Devices ADN2531 data sheet, [Online]. Available: http://www.analog.com/static/imported-files/data_sheets/ADN2531.pdf”.
  20. NEL Laser Diodes, [Online]. Available: http://www.nttelectronics.com/en/products/photonics/pdf/NLK5C5EBKA.pdf”.
  21. Analog Devices ADN2530 data sheet, [Online]. Available: http://www.analog.com/static/imported-files/data_sheets/ADN2530.pdf”.
  22. S.-W. Wong, L. Valcarenghi, S.-H. Yen, D. R. Campelo, S. Yamashita, and L. Kazovsky, “Sleep mode for energy saving PONs: Advantages and drawbacks,” Proc. of IEEE GLOBECOM Workshops, (2009).
    [CrossRef]
  23. L. S. Yan, Y. Wang, B. Zhang, C. Yu, J. McGeehan, L. Paraschis, and A. E. Willner, “Reach extension in 10-Gb/s directly modulated transmission systems using asymmetric and narrowband optical filtering,” Opt. Express13(13), 5106–5115 (2005).
    [CrossRef] [PubMed]
  24. T. B. Gibbon, K. Prince, T. T. Pham, A. Tatarczak, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. T. Monroy, “VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking,” Opt. Fiber Technol.17(1), 41–45 (2011).
    [CrossRef]
  25. FEC ITU-T G.975.1, Forward error correction for high bit rate DWDM submarine systems [S], (2003).
  26. B. Skubic and D. Hood, “A comparison of DBA for EPON, GPON, and NG TDM PON,” IEEE Commun. Mag.47, 540–548 (2009).

2013

2012

2011

T. B. Gibbon, K. Prince, T. T. Pham, A. Tatarczak, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. T. Monroy, “VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking,” Opt. Fiber Technol.17(1), 41–45 (2011).
[CrossRef]

M. Mueller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M. C. Amann, “1550nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.99, 1158–1166 (2011).

2009

W. Hofmann, M. Muller, G. Bohm, M. Ortsiefer, and M.-C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett.21(13), 923–925 (2009).
[CrossRef]

B. Skubic and D. Hood, “A comparison of DBA for EPON, GPON, and NG TDM PON,” IEEE Commun. Mag.47, 540–548 (2009).

2007

2005

2000

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

1999

Y. Katagiri, K. Suzuki, and K. Aida, “Intensity stabilisation of spectrum-sliced Gaussian radiation based on amplitude squeezing using semiconductor optical amplifiers with gain saturation,” Electron. Lett.35(16), 1362–1364 (1999).
[CrossRef]

Aida, K.

Y. Katagiri, K. Suzuki, and K. Aida, “Intensity stabilisation of spectrum-sliced Gaussian radiation based on amplitude squeezing using semiconductor optical amplifiers with gain saturation,” Electron. Lett.35(16), 1362–1364 (1999).
[CrossRef]

Amann, M. C.

E. Wong, M. Mueller, M. P. I. Dias, C. A. Chan, and M. C. Amann, “Energy-efficiency of optical network units with vertical-cavity surface-emitting lasers,” Opt. Express20(14), 14960–14970 (2012).
[CrossRef] [PubMed]

M. Mueller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M. C. Amann, “1550nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.99, 1158–1166 (2011).

Amann, M.-C.

W. Hofmann, M. Muller, G. Bohm, M. Ortsiefer, and M.-C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett.21(13), 923–925 (2009).
[CrossRef]

Anderson, T. A.

Bimberg, D.

M. Mueller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M. C. Amann, “1550nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.99, 1158–1166 (2011).

Bohm, G.

M. Mueller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M. C. Amann, “1550nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.99, 1158–1166 (2011).

W. Hofmann, M. Muller, G. Bohm, M. Ortsiefer, and M.-C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett.21(13), 923–925 (2009).
[CrossRef]

Campelo, D. R.

S.-W. Wong, L. Valcarenghi, S.-H. Yen, D. R. Campelo, S. Yamashita, and L. Kazovsky, “Sleep mode for energy saving PONs: Advantages and drawbacks,” Proc. of IEEE GLOBECOM Workshops, (2009).
[CrossRef]

Chae, C. J.

Q. Guo, A. V. Tran, and C. J. Chae, “Extended-reach 10 Gb/s RSOA-based WDM-PON using partial response equalization, ” Proc. of 23rd Annual Meeting of the IEEE Photonics Society,345 – 346(2010).
[CrossRef]

Chan, C. A.

Chang-Hasnain, C.

C. Chang-Hasnain, “Optically-injection locked tunable multimode VCSEL for WDM passive optical networks,” in Proc. Int. Nano-Optoelectron. Workshop (i-NOW), 98–99 (2008).
[CrossRef]

Dias, M. P. I.

Effenberger, F.

Fujiwara, M.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, and M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in Proc. Eur. Conf. Opt. Commun., PD3.4 (2007).

Fumihiko, T.

H. Mukai, T. Fumihiko, and J. Nakagawa, “Energy-efficient 10G-EPON system,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Anaheim, USA, OW3G.1 (2013).

Gibbon, T. B.

T. B. Gibbon, K. Prince, T. T. Pham, A. Tatarczak, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. T. Monroy, “VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking,” Opt. Fiber Technol.17(1), 41–45 (2011).
[CrossRef]

Grundl, T.

M. Mueller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M. C. Amann, “1550nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.99, 1158–1166 (2011).

Guo, Q.

Q. Guo, A. V. Tran, and C. J. Chae, “Extended-reach 10 Gb/s RSOA-based WDM-PON using partial response equalization, ” Proc. of 23rd Annual Meeting of the IEEE Photonics Society,345 – 346(2010).
[CrossRef]

Hann, S.

S. Hann, T.-Y. Kim, and C.-S. Park, “Direct-modulated upstream signal transmission using a self-injection locked F-P LD for WDM-PON,” Proc. European Conf. of Communications (ECOC), We3.3.3 (2005)
[CrossRef]

Hofmann, W.

M. Mueller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M. C. Amann, “1550nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.99, 1158–1166 (2011).

W. Hofmann, M. Muller, G. Bohm, M. Ortsiefer, and M.-C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett.21(13), 923–925 (2009).
[CrossRef]

Hood, D.

B. Skubic and D. Hood, “A comparison of DBA for EPON, GPON, and NG TDM PON,” IEEE Commun. Mag.47, 540–548 (2009).

Horn, M.

M. Mueller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M. C. Amann, “1550nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.99, 1158–1166 (2011).

Igawa, E.

E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU BMT employing dynamic power save control circuit,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Los Angeles, USA, NTuD5 (2011).

Kang, S.-G.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

Katagiri, Y.

Y. Katagiri, K. Suzuki, and K. Aida, “Intensity stabilisation of spectrum-sliced Gaussian radiation based on amplitude squeezing using semiconductor optical amplifiers with gain saturation,” Electron. Lett.35(16), 1362–1364 (1999).
[CrossRef]

Kazovsky, L.

S.-W. Wong, L. Valcarenghi, S.-H. Yen, D. R. Campelo, S. Yamashita, and L. Kazovsky, “Sleep mode for energy saving PONs: Advantages and drawbacks,” Proc. of IEEE GLOBECOM Workshops, (2009).
[CrossRef]

Kim, H. D.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

Kim, T.-Y.

S. Hann, T.-Y. Kim, and C.-S. Park, “Direct-modulated upstream signal transmission using a self-injection locked F-P LD for WDM-PON,” Proc. European Conf. of Communications (ECOC), We3.3.3 (2005)
[CrossRef]

Kimura, H.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, and M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in Proc. Eur. Conf. Opt. Commun., PD3.4 (2007).

Lee, C.-H.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

Lee, K. L.

Luo, Y.

Ma, Y.

McGeehan, J.

Monroy, I. T.

T. B. Gibbon, K. Prince, T. T. Pham, A. Tatarczak, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. T. Monroy, “VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking,” Opt. Fiber Technol.17(1), 41–45 (2011).
[CrossRef]

Mueller, M.

E. Wong, M. Mueller, M. P. I. Dias, C. A. Chan, and M. C. Amann, “Energy-efficiency of optical network units with vertical-cavity surface-emitting lasers,” Opt. Express20(14), 14960–14970 (2012).
[CrossRef] [PubMed]

M. Mueller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M. C. Amann, “1550nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.99, 1158–1166 (2011).

Mukai, H.

H. Mukai, T. Fumihiko, and J. Nakagawa, “Energy-efficient 10G-EPON system,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Anaheim, USA, OW3G.1 (2013).

Muller, M.

W. Hofmann, M. Muller, G. Bohm, M. Ortsiefer, and M.-C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett.21(13), 923–925 (2009).
[CrossRef]

Nagel, R. D.

M. Mueller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M. C. Amann, “1550nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.99, 1158–1166 (2011).

Nakagawa, J.

H. Mukai, T. Fumihiko, and J. Nakagawa, “Energy-efficient 10G-EPON system,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Anaheim, USA, OW3G.1 (2013).

E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU BMT employing dynamic power save control circuit,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Los Angeles, USA, NTuD5 (2011).

Neumeyr, C.

T. B. Gibbon, K. Prince, T. T. Pham, A. Tatarczak, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. T. Monroy, “VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking,” Opt. Fiber Technol.17(1), 41–45 (2011).
[CrossRef]

Nogami, M.

E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU BMT employing dynamic power save control circuit,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Los Angeles, USA, NTuD5 (2011).

Ortsiefer, M.

T. B. Gibbon, K. Prince, T. T. Pham, A. Tatarczak, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. T. Monroy, “VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking,” Opt. Fiber Technol.17(1), 41–45 (2011).
[CrossRef]

W. Hofmann, M. Muller, G. Bohm, M. Ortsiefer, and M.-C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett.21(13), 923–925 (2009).
[CrossRef]

Paraschis, L.

Park, C.-S.

S. Hann, T.-Y. Kim, and C.-S. Park, “Direct-modulated upstream signal transmission using a self-injection locked F-P LD for WDM-PON,” Proc. European Conf. of Communications (ECOC), We3.3.3 (2005)
[CrossRef]

Peng, G.

Pham, T. T.

T. B. Gibbon, K. Prince, T. T. Pham, A. Tatarczak, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. T. Monroy, “VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking,” Opt. Fiber Technol.17(1), 41–45 (2011).
[CrossRef]

Prince, K.

T. B. Gibbon, K. Prince, T. T. Pham, A. Tatarczak, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. T. Monroy, “VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking,” Opt. Fiber Technol.17(1), 41–45 (2011).
[CrossRef]

Qian, Y.

Ronneberg, E.

M. Mueller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M. C. Amann, “1550nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.99, 1158–1166 (2011).

Rönneberg, E.

T. B. Gibbon, K. Prince, T. T. Pham, A. Tatarczak, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. T. Monroy, “VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking,” Opt. Fiber Technol.17(1), 41–45 (2011).
[CrossRef]

Skubic, B.

B. Skubic and D. Hood, “A comparison of DBA for EPON, GPON, and NG TDM PON,” IEEE Commun. Mag.47, 540–548 (2009).

Suzuki, H.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, and M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in Proc. Eur. Conf. Opt. Commun., PD3.4 (2007).

Suzuki, K.

Y. Katagiri, K. Suzuki, and K. Aida, “Intensity stabilisation of spectrum-sliced Gaussian radiation based on amplitude squeezing using semiconductor optical amplifiers with gain saturation,” Electron. Lett.35(16), 1362–1364 (1999).
[CrossRef]

Suzuki, T.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, and M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in Proc. Eur. Conf. Opt. Commun., PD3.4 (2007).

Tatarczak, A.

T. B. Gibbon, K. Prince, T. T. Pham, A. Tatarczak, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. T. Monroy, “VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking,” Opt. Fiber Technol.17(1), 41–45 (2011).
[CrossRef]

Tran, A. V.

Q. Guo, A. V. Tran, and C. J. Chae, “Extended-reach 10 Gb/s RSOA-based WDM-PON using partial response equalization, ” Proc. of 23rd Annual Meeting of the IEEE Photonics Society,345 – 346(2010).
[CrossRef]

Tsubokawa, M.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, and M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in Proc. Eur. Conf. Opt. Commun., PD3.4 (2007).

Valcarenghi, L.

S.-W. Wong, L. Valcarenghi, S.-H. Yen, D. R. Campelo, S. Yamashita, and L. Kazovsky, “Sleep mode for energy saving PONs: Advantages and drawbacks,” Proc. of IEEE GLOBECOM Workshops, (2009).
[CrossRef]

Wang, Y.

Willner, A. E.

Wolf, P.

M. Mueller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M. C. Amann, “1550nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.99, 1158–1166 (2011).

Wong, E.

Wong, S.-W.

S.-W. Wong, L. Valcarenghi, S.-H. Yen, D. R. Campelo, S. Yamashita, and L. Kazovsky, “Sleep mode for energy saving PONs: Advantages and drawbacks,” Proc. of IEEE GLOBECOM Workshops, (2009).
[CrossRef]

Yamashita, S.

S.-W. Wong, L. Valcarenghi, S.-H. Yen, D. R. Campelo, S. Yamashita, and L. Kazovsky, “Sleep mode for energy saving PONs: Advantages and drawbacks,” Proc. of IEEE GLOBECOM Workshops, (2009).
[CrossRef]

Yan, L. S.

Yan, X.

Yen, S.-H.

S.-W. Wong, L. Valcarenghi, S.-H. Yen, D. R. Campelo, S. Yamashita, and L. Kazovsky, “Sleep mode for energy saving PONs: Advantages and drawbacks,” Proc. of IEEE GLOBECOM Workshops, (2009).
[CrossRef]

Yoshimoto, N.

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, and M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in Proc. Eur. Conf. Opt. Commun., PD3.4 (2007).

Yu, C.

Zhang, B.

Zhou, X.

Electron. Lett.

Y. Katagiri, K. Suzuki, and K. Aida, “Intensity stabilisation of spectrum-sliced Gaussian radiation based on amplitude squeezing using semiconductor optical amplifiers with gain saturation,” Electron. Lett.35(16), 1362–1364 (1999).
[CrossRef]

IEEE Commun. Mag.

B. Skubic and D. Hood, “A comparison of DBA for EPON, GPON, and NG TDM PON,” IEEE Commun. Mag.47, 540–548 (2009).

IEEE J. Sel. Top. Quantum Electron.

M. Mueller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R. D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, and M. C. Amann, “1550nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron.99, 1158–1166 (2011).

IEEE Photon. Technol. Lett.

H. D. Kim, S.-G. Kang, and C.-H. Lee, “A low-cost WDM source with an ASE injected Fabry–Perot semiconductor laser,” IEEE Photon. Technol. Lett.12(8), 1067–1069 (2000).
[CrossRef]

W. Hofmann, M. Muller, G. Bohm, M. Ortsiefer, and M.-C. Amann, “1.55um VCSEL with enhanced modulation bandwidth and temperature range,” IEEE Photon. Technol. Lett.21(13), 923–925 (2009).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Fiber Technol.

T. B. Gibbon, K. Prince, T. T. Pham, A. Tatarczak, C. Neumeyr, E. Rönneberg, M. Ortsiefer, and I. T. Monroy, “VCSEL transmission at 10 Gb/s for 20 km single mode fiber WDM-PON without dispersion compensation or injection locking,” Opt. Fiber Technol.17(1), 41–45 (2011).
[CrossRef]

Other

FEC ITU-T G.975.1, Forward error correction for high bit rate DWDM submarine systems [S], (2003).

M. Mueller and M. C. Amann, “State-of-the-art and perspectives for long-wavelength high-speed VCSELs,” in Proceedings of Conference on Transparent Optical Networks (ICTON) 2011, Mo.C5.2 (2011).

J. Mandin, “EPON powersaving via sleep mode,” IEEE P802.3av 10GEPON Task Force Meeting (2008).

E. Igawa, M. Nogami, and J. Nakagawa, “Symmetric 10G-EPON ONU BMT employing dynamic power save control circuit,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Los Angeles, USA, NTuD5 (2011).

Analog Devices ADN2531 data sheet, [Online]. Available: http://www.analog.com/static/imported-files/data_sheets/ADN2531.pdf”.

NEL Laser Diodes, [Online]. Available: http://www.nttelectronics.com/en/products/photonics/pdf/NLK5C5EBKA.pdf”.

Analog Devices ADN2530 data sheet, [Online]. Available: http://www.analog.com/static/imported-files/data_sheets/ADN2530.pdf”.

S.-W. Wong, L. Valcarenghi, S.-H. Yen, D. R. Campelo, S. Yamashita, and L. Kazovsky, “Sleep mode for energy saving PONs: Advantages and drawbacks,” Proc. of IEEE GLOBECOM Workshops, (2009).
[CrossRef]

H. Nakamura, “NG-PON2 Technology,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Anaheim, USA, NTh4F.5, (2013).

S. Hann, T.-Y. Kim, and C.-S. Park, “Direct-modulated upstream signal transmission using a self-injection locked F-P LD for WDM-PON,” Proc. European Conf. of Communications (ECOC), We3.3.3 (2005)
[CrossRef]

M.-C. Amann, E. Wong, and M. Mueller, “Energy-efficient high-speed short-cavity VCSELs,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Los Angeles, USA, OTh4F.1 (2012).
[CrossRef]

R. A. Kumar, R. Murano, M. Cahill, J. Aufiero, and G. Bartolini, “Crosstalk performance analysis of low cost 8 X 10 Gb/s tunable receiver for TWDM-PON,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Anaheim, USA, NTh3F.5 (2013).

H. Suzuki, M. Fujiwara, T. Suzuki, N. Yoshimoto, H. Kimura, and M. Tsubokawa, “Wavelength-tunable DWDM-SFP transceiver with a signal monitoring interface and its application to coexistence-type colorless WDM-PON,” in Proc. Eur. Conf. Opt. Commun., PD3.4 (2007).

C. Chang-Hasnain, “Optically-injection locked tunable multimode VCSEL for WDM passive optical networks,” in Proc. Int. Nano-Optoelectron. Workshop (i-NOW), 98–99 (2008).
[CrossRef]

H. Mukai, T. Fumihiko, and J. Nakagawa, “Energy-efficient 10G-EPON system,” Proc. of IEEE/OSA Opt. Fiber Commun. Conf., Anaheim, USA, OW3G.1 (2013).

Q. Guo, A. V. Tran, and C. J. Chae, “Extended-reach 10 Gb/s RSOA-based WDM-PON using partial response equalization, ” Proc. of 23rd Annual Meeting of the IEEE Photonics Society,345 – 346(2010).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of time and wavelength division multiplexed passive optical network (TWDM-PON).

Fig. 2
Fig. 2

(a). SC-VCSEL transmitter (TX) block, (b) Optical spectra of SC-VCSEL output at CW, voltage biased tuned from λ1 (1522.4 nm) to λ8 (1527.97 nm); (c) Optical power and voltage drop for an SC-VCSEL (red) and DFB laser (black) as a function of bias current.

Fig. 3
Fig. 3

Measurement of Tsett of the SC-VCSEL TX block, (a) Oscilloscope traces of doze mode control from OFF to ON, and the resulting VCSEL output. (b) Oscilloscope traces of doze mode control from ON to OFF, and the resulting VCSEL output.

Fig. 4
Fig. 4

(a) Experimental setup used to investigate colorless operation and upstream transmission performance of SC-VCSELs, (b) Optical spectra of SC-VCSEL modulated with 10 Gbps NRZ data (PRBS 215-1); (c) ASE noise and optical gain of EDFA ; (d) Optical spectra measured at WDM demultiplexer outputs after 40 km, (e) Optical spectra measured at WDM demultiplexer outputs after 60 km transmission.

Fig. 5
Fig. 5

Upstream bit-error-ratio (BER) performance of 10 Gbps of SC-VCSEL tuned to eight wavelengths, λ1 to λ8, over 40 km. (a) 1:64 split ratio configuration; and (b) 1:128 split ratio configuration.

Fig. 6
Fig. 6

Upstream bit-error-ratio (BER) performance of SC-VCSEL (a) 10 Gbps over 40 km and 60 km, (b) 2.5 Gbps over 40 km and 60 km (c) Comparison of 2.5 Gbps, 10 Gbps and 12.5 Gbps over 40 km.

Fig. 7
Fig. 7

Percentage of energy-savings η vs. network load and maximum polling cycle arising from using SC-VCSEL-ONU in (a) active mode vs. DFB ONU in active mode (b) doze mode vs. DFB ONU in active mode, (c) sleep modes vs DFB ONU in active mode, (d) doze mode vs. DFB ONU in doze mode, (e) sleep mode vs. DFB ONU in doze mode and (f) sleep mode vs DFB ONU in sleep mode.

Tables (3)

Tables Icon

Table 1 Characterization of Short-cavity (SC) and Long-cavity (LC) VCSELs

Tables Icon

Table 2 Power Consumption and Transition Times of ONUs

Tables Icon

Table 3 Network and Protocol Parameters

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

η=100%×[ 1( P active,SC P active,DFB ) ]
η=100%×[ 1( T active,SC P active,SC + T powersaving,SC P powersaving,SC T CYC P active,DFB ) ]
T active,SC = T CYCMAX . L N + T REPORT + T sett/rec,SC
T powersaving,SC =( N1 )( T CYCMAX L N + T REPORT ) T sett/rec,SC
η=100%×[ 1( T active,SC P active,SC + T powersaving,SC P powersaving,SC T active,DFB P active,DFB + T doze,DFB P doze,DFB ) ]
T active,DFB = T CYCMAX . L N + T REPORT + T sett,DFB
T doze,DFB =( N1 )( T CYCMAX L N + T REPORT ) T sett,DFB
η=100%×[ 1( T active,SC P active,SC + T sleep,SC P sleep,SC T active,DFB P active,DFB + T sleep,DFB P sleep,DFB ) ]
T active,SC = T active,DFB = T CYCMAX . L N + T REPORT + T rec
T sleep,SC = T sleep,DFB =( N1 )( T CYCMAX L N + T REPORT ) T rec

Metrics