Abstract

This paper presents a revitalization effort towards exploiting multilevel polybinary signals for spectral efficient data links. Specifically, we present five level polybinary signaling for 10 Gbps signals. By proper coding to avoid error propagation and degeneracy of the bit error rate performance, a 10Gbps polybinary signal is successfully generated employing a 1.8 GHz Bessel filter with an electrical spectral efficiency of 5.5 bit/s/Hz. The experimental results show bit error rate performances below FEC level for transmission in singlemode and dispersion shifted fibers up to 20 km length.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. IEEE 802.3 400 Gb/s Ethernet Study Group, http://www.ieee802.org/3/400GSG/public/13_05/index.shtml
  2. Y. Luo, X. Zhou, F. Effenberger, X. Yan, G. Peng, Y. Qian, and Y. Ma, “Time- and wavelength-division multiplexed passive optical network (TWDM-PON) for next-generation PON stage 2 (NG-PON2),” J. Lightwave Technol.31(4), 587–593 (2013).
    [CrossRef]
  3. T. Tanaka, M. Nishihara, T. Takahara, L. Li, Z. Tao, and J. Rasmussen, “50Gbps class transmission in single mode fiber using discrete multi-tone modulation with 10G directly modulated laser,” OSA Optical Fiber Communication Conference, paper OTh4G (2012).
  4. M. Iglesias Olmedo, Z. Tianjian, J. B. Jensen, Z. Qiwen, X. Xu, and I. Tafur Monroy, “Towards 400GBASE 4-lane solution using direct detection of multicap signal in 14GHz bandwidth per lane,” OSA Optical Fiber Communication Conference, Postdeadline Session III, paper PDP5C (2013).
  5. R. P. Giddings, E. Hugues-Salas, and J. M. Tang, “Experimental demonstration of record high 19.125 Gb/s real-time end-to-end dual-band optical OFDM transmission over 25 km SMF in a simple EML-based IMDD system,” Opt. Express20(18), 20666–20679 (2012).
    [CrossRef] [PubMed]
  6. K. Szczerba, P. Westbergh, J. Karout, J. Gustavsson, Å. Haglund, M. Karlsson, P. Andrekson, E. Agrell, and A. Larsson, “30 Gbps 4-PAM transmission over 200 m of MMF using an 850 nm VCSEL,” Opt. Express19(26), B203–B208 (2011).
    [CrossRef] [PubMed]
  7. S. Bhoja, “Study of PAM modulation for 100GE over a single fiber,” IEEE Next Gen 100G Optical Ethernet Study Group (2012). http://www.ieee802.org/3/100GNGOPTX/public/jan12/bhoja_01_0112_NG100GOPTX.pdf
  8. J. H. Sinsky, A. Adamiecki, and M. Duelk, “10-Gb/s electrical backplane transmission using duobinary signaling,” 2004 IEEE MTT-S International Microwave Symposium Digest (1), 109–112 (2004).
    [CrossRef]
  9. A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol.12(4), 128–135 (1964).
    [CrossRef]
  10. R. Howson, “An analysis of the capabilities of polybinary data transmission,” IEEE Trans. Commun. Technol.13(3), 312–319 (1965).
    [CrossRef]
  11. S. Walklin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” J. Lightwave Technol.17(11), 2235–2248 (1999).
    [CrossRef]
  12. Y. C. Lu, C. C. Wei, J. Chen, C. Tsao, S. Chi, K. M. Feng, P. C. Yeh, T. Y. Huang, and C. C. Chang, 2.5 dB sensitivity improvement by optimizing the driving voltage of an MZM and electrical filter bandwidth of optical duobinary transmission systems,” in Optical Fiber Communication Conference, Optical Society of America, paper JThB42 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2006-JThB42
  13. I. Lyubomirsky and C. C. Chien, “Ideal duobinary generating filter for optically amplified systems,” IEEE Photon. Technol. Lett.18(4), 598–600 (2006).
    [CrossRef]
  14. D. Brown, “NRZ vs. PAM-N for 400GbE in the data center,” Ethernet Technology Summit.
  15. R. Borkowski, F. Karinou, M. Angelou, V. Arlunno, D. Zibar, D. Klonidis, N. Gonzalez, A. Caballero, I. Tomkos, and I. Tafur Monroy, “Experimental demonstration of mixed formats and bit rates signal allocation for spectrum-flexible optical networking,” OFC/NFOEC, paper OW3A.7, Los Angeles, CA, 2012.
  16. B. Li, K. J. Larsen, D. Zibar, and I. Tafur Monroy, “Over 10 dB net coding gain based on 20% overhead hard decision forward error correction in 100G optical communication systems,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.6.A.3.
    [CrossRef]

2013 (1)

2012 (1)

2011 (1)

2006 (1)

I. Lyubomirsky and C. C. Chien, “Ideal duobinary generating filter for optically amplified systems,” IEEE Photon. Technol. Lett.18(4), 598–600 (2006).
[CrossRef]

1999 (1)

1965 (1)

R. Howson, “An analysis of the capabilities of polybinary data transmission,” IEEE Trans. Commun. Technol.13(3), 312–319 (1965).
[CrossRef]

1964 (1)

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol.12(4), 128–135 (1964).
[CrossRef]

Adamiecki, A.

J. H. Sinsky, A. Adamiecki, and M. Duelk, “10-Gb/s electrical backplane transmission using duobinary signaling,” 2004 IEEE MTT-S International Microwave Symposium Digest (1), 109–112 (2004).
[CrossRef]

Agrell, E.

Andrekson, P.

Chien, C. C.

I. Lyubomirsky and C. C. Chien, “Ideal duobinary generating filter for optically amplified systems,” IEEE Photon. Technol. Lett.18(4), 598–600 (2006).
[CrossRef]

Conradi, J.

Duelk, M.

J. H. Sinsky, A. Adamiecki, and M. Duelk, “10-Gb/s electrical backplane transmission using duobinary signaling,” 2004 IEEE MTT-S International Microwave Symposium Digest (1), 109–112 (2004).
[CrossRef]

Effenberger, F.

Giddings, R. P.

Gustavsson, J.

Haglund, Å.

Howson, R.

R. Howson, “An analysis of the capabilities of polybinary data transmission,” IEEE Trans. Commun. Technol.13(3), 312–319 (1965).
[CrossRef]

Hugues-Salas, E.

Karlsson, M.

Karout, J.

Larsson, A.

Lender, A.

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol.12(4), 128–135 (1964).
[CrossRef]

Luo, Y.

Lyubomirsky, I.

I. Lyubomirsky and C. C. Chien, “Ideal duobinary generating filter for optically amplified systems,” IEEE Photon. Technol. Lett.18(4), 598–600 (2006).
[CrossRef]

Ma, Y.

Peng, G.

Qian, Y.

Sinsky, J. H.

J. H. Sinsky, A. Adamiecki, and M. Duelk, “10-Gb/s electrical backplane transmission using duobinary signaling,” 2004 IEEE MTT-S International Microwave Symposium Digest (1), 109–112 (2004).
[CrossRef]

Szczerba, K.

Tang, J. M.

Walklin, S.

Westbergh, P.

Yan, X.

Zhou, X.

IEEE Photon. Technol. Lett. (1)

I. Lyubomirsky and C. C. Chien, “Ideal duobinary generating filter for optically amplified systems,” IEEE Photon. Technol. Lett.18(4), 598–600 (2006).
[CrossRef]

IEEE Trans. Commun. Technol. (2)

A. Lender, “Correlative digital communication techniques,” IEEE Trans. Commun. Technol.12(4), 128–135 (1964).
[CrossRef]

R. Howson, “An analysis of the capabilities of polybinary data transmission,” IEEE Trans. Commun. Technol.13(3), 312–319 (1965).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Express (2)

Other (9)

S. Bhoja, “Study of PAM modulation for 100GE over a single fiber,” IEEE Next Gen 100G Optical Ethernet Study Group (2012). http://www.ieee802.org/3/100GNGOPTX/public/jan12/bhoja_01_0112_NG100GOPTX.pdf

J. H. Sinsky, A. Adamiecki, and M. Duelk, “10-Gb/s electrical backplane transmission using duobinary signaling,” 2004 IEEE MTT-S International Microwave Symposium Digest (1), 109–112 (2004).
[CrossRef]

Y. C. Lu, C. C. Wei, J. Chen, C. Tsao, S. Chi, K. M. Feng, P. C. Yeh, T. Y. Huang, and C. C. Chang, 2.5 dB sensitivity improvement by optimizing the driving voltage of an MZM and electrical filter bandwidth of optical duobinary transmission systems,” in Optical Fiber Communication Conference, Optical Society of America, paper JThB42 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=NFOEC-2006-JThB42

T. Tanaka, M. Nishihara, T. Takahara, L. Li, Z. Tao, and J. Rasmussen, “50Gbps class transmission in single mode fiber using discrete multi-tone modulation with 10G directly modulated laser,” OSA Optical Fiber Communication Conference, paper OTh4G (2012).

M. Iglesias Olmedo, Z. Tianjian, J. B. Jensen, Z. Qiwen, X. Xu, and I. Tafur Monroy, “Towards 400GBASE 4-lane solution using direct detection of multicap signal in 14GHz bandwidth per lane,” OSA Optical Fiber Communication Conference, Postdeadline Session III, paper PDP5C (2013).

IEEE 802.3 400 Gb/s Ethernet Study Group, http://www.ieee802.org/3/400GSG/public/13_05/index.shtml

D. Brown, “NRZ vs. PAM-N for 400GbE in the data center,” Ethernet Technology Summit.

R. Borkowski, F. Karinou, M. Angelou, V. Arlunno, D. Zibar, D. Klonidis, N. Gonzalez, A. Caballero, I. Tomkos, and I. Tafur Monroy, “Experimental demonstration of mixed formats and bit rates signal allocation for spectrum-flexible optical networking,” OFC/NFOEC, paper OW3A.7, Los Angeles, CA, 2012.

B. Li, K. J. Larsen, D. Zibar, and I. Tafur Monroy, “Over 10 dB net coding gain based on 20% overhead hard decision forward error correction in 100G optical communication systems,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper Tu.6.A.3.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup (a) and optical spectra of the laser source (b), a 10Gbps NRZ and a 10Gbps five level polybinary signal.

Fig. 2
Fig. 2

Eye diagrams of an NRZ 1 Gbps (a), a 6.5 Gbps duobinary (b) and a five level polybinary 10 Gbps (c). These signals were sequentially generated using the same setup.

Fig. 3
Fig. 3

Electrical spectrum of different signals, comprising a 10 Gbps NRZ, a 1.8 Gbps NRZ, a 1.8 Gbps NRZ filtered with the polybinary filter, and a five level 10 Gbps polybinary signal.

Fig. 4
Fig. 4

Eye diagram of the back-to-back five level polybinary signal and the eyes diagrams after transmission through different length spans of DSF and SMF.

Fig. 5
Fig. 5

Bit error rate (BER) performance of the five level 10 Gbps polybinary signal after different transmission links.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

b k = a k b k1 b k2 b k3
c k = b k + b k1 + b k2 + b k3
a k c k mod2

Metrics