Abstract

By introducing the frequency tuning sensitivity, an analytical model based on equivalent LC circuit is developed for the relative frequency tuning range of THz semiconductor split-ring resonator (SRR). And the model reveals that the relative tuning range is determined by the ratio of the kinetic inductance to the geometric inductance (RKG). The results show that under the same carrier density variation, a larger RKG results in a larger relative tuning range. Based on this model, a stacked SRR-dimer structure with larger RKG compared to the single SRR due to the inductive coupling is proposed, which improves the relative tuning range effectively. And the results obtained by the simple analytical model agree well with the numerical FDTD results. The presented analytical model is robust and can be used to analyze the relative frequency tuning of other tunable THz devices.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater.9(5), 407–412 (2010).
    [CrossRef] [PubMed]
  2. C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett.106(6), 067402 (2011).
    [CrossRef] [PubMed]
  3. J. W. Cong, B. F. Yun, and Y. P. Cui, “Negative-index metamaterial at visible frequencies based on high order plasmon resonance,” Appl. Opt.51(13), 2469–2476 (2012).
    [CrossRef] [PubMed]
  4. M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
    [CrossRef] [PubMed]
  5. P. Dardano, M. Gagliardi, I. Rendina, S. Cabrini, and V. Mocella, “Ellipsometric determination of permittivity in a negative index photonic crystal metamaterial,” Light: Sci. Appl.1(12), e42 (2012).
    [CrossRef]
  6. V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett.102(13), 133902 (2009).
    [CrossRef] [PubMed]
  7. V. Mocella, P. Dardano, I. Rendina, and S. Cabrini, “An extraordinary directive radiation based on optical antimatter at near infrared,” Opt. Express18(24), 25068–25074 (2010).
    [CrossRef] [PubMed]
  8. C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express19(2), 415–424 (2011).
    [CrossRef] [PubMed]
  9. C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett.37(3), 308–310 (2012).
    [CrossRef] [PubMed]
  10. C. Ma and Z. Liu, “Focusing light into deep subwavelength using metamaterial immersion lenses,” Opt. Express18(5), 4838–4844 (2010).
    [CrossRef] [PubMed]
  11. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun.3, 1205 (2012).
    [CrossRef] [PubMed]
  12. T. Roy, E. T. Rogers, and N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express21(6), 7577–7582 (2013).
    [CrossRef] [PubMed]
  13. F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19(2), 1563–1568 (2011).
    [CrossRef] [PubMed]
  14. M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009).
    [CrossRef] [PubMed]
  15. J. B. Wu, B. B. Jin, Y. H. Xue, C. H. Zhang, H. Dai, L. B. Zhang, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express19(13), 12021–12026 (2011).
    [CrossRef] [PubMed]
  16. H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett.105(24), 247402 (2010).
    [CrossRef] [PubMed]
  17. H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
    [CrossRef]
  18. N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett.106(3), 037403 (2011).
    [CrossRef] [PubMed]
  19. L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013).
    [CrossRef]
  20. J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt.56(4), 554–557 (2009).
    [CrossRef]
  21. Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys.107(9), 093104 (2010).
    [CrossRef]
  22. J. Han, A. Lakhtakia, and C. W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express16(19), 14390–14396 (2008).
    [CrossRef] [PubMed]
  23. D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express19(10), 9968–9975 (2011).
    [CrossRef] [PubMed]
  24. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
    [CrossRef] [PubMed]
  25. J. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchel, S. Sriram, M. Bhaskaran, S. J. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett.102(12), 121101 (2013).
    [CrossRef]
  26. G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi, “Molecular-beam epitaxial growth of high quality InSb for p-i-n photodetectors,” J. Vac. Sci. Technol. B13(2), 782–785 (1995).
    [CrossRef]
  27. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
    [CrossRef] [PubMed]
  28. V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.)3(2), 57–62 (2009).
    [CrossRef]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005)
  30. X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011).
    [CrossRef]
  31. S. C. Howells and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett.69(4), 550–552 (1996).
    [CrossRef]
  32. R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett.33(13), 1506–1508 (2008).
    [CrossRef] [PubMed]
  33. R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B81(23), 235111 (2010).
    [CrossRef]
  34. R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express16(9), 6537–6543 (2008).
    [CrossRef] [PubMed]
  35. H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies,” Phys. Rev. B76(7), 073101 (2007).
    [CrossRef]
  36. N. T. Tung, D. T. Viet, B. S. Tung, N. V. Hieu, P. Lievens, and V. D. Lam, “Broadband Negative Permeability by Hybridized Cut-Wire Pair Metamaterials,” Appl. Phys. Express5(11), 112001 (2012).
    [CrossRef]
  37. N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009).
    [CrossRef]
  38. L. D. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, 1984).
  39. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
    [CrossRef]
  40. B. Sauivac, C. R. Simovski, and S. Tretyakov, “Double split-ring resonators: Analytical modeling and numerical simulations,” Electromagnetics24(5), 317–338 (2004).
    [CrossRef]

2013 (3)

T. Roy, E. T. Rogers, and N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express21(6), 7577–7582 (2013).
[CrossRef] [PubMed]

L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013).
[CrossRef]

J. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchel, S. Sriram, M. Bhaskaran, S. J. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett.102(12), 121101 (2013).
[CrossRef]

2012 (5)

N. T. Tung, D. T. Viet, B. S. Tung, N. V. Hieu, P. Lievens, and V. D. Lam, “Broadband Negative Permeability by Hybridized Cut-Wire Pair Metamaterials,” Appl. Phys. Express5(11), 112001 (2012).
[CrossRef]

C. Wu and G. Shvets, “Design of metamaterial surfaces with broadband absorbance,” Opt. Lett.37(3), 308–310 (2012).
[CrossRef] [PubMed]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun.3, 1205 (2012).
[CrossRef] [PubMed]

J. W. Cong, B. F. Yun, and Y. P. Cui, “Negative-index metamaterial at visible frequencies based on high order plasmon resonance,” Appl. Opt.51(13), 2469–2476 (2012).
[CrossRef] [PubMed]

P. Dardano, M. Gagliardi, I. Rendina, S. Cabrini, and V. Mocella, “Ellipsometric determination of permittivity in a negative index photonic crystal metamaterial,” Light: Sci. Appl.1(12), e42 (2012).
[CrossRef]

2011 (9)

C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express19(2), 415–424 (2011).
[CrossRef] [PubMed]

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett.106(6), 067402 (2011).
[CrossRef] [PubMed]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett.106(3), 037403 (2011).
[CrossRef] [PubMed]

J. B. Wu, B. B. Jin, Y. H. Xue, C. H. Zhang, H. Dai, L. B. Zhang, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express19(13), 12021–12026 (2011).
[CrossRef] [PubMed]

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19(2), 1563–1568 (2011).
[CrossRef] [PubMed]

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011).
[CrossRef]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express19(10), 9968–9975 (2011).
[CrossRef] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

2010 (6)

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys.107(9), 093104 (2010).
[CrossRef]

C. Ma and Z. Liu, “Focusing light into deep subwavelength using metamaterial immersion lenses,” Opt. Express18(5), 4838–4844 (2010).
[CrossRef] [PubMed]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett.105(24), 247402 (2010).
[CrossRef] [PubMed]

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater.9(5), 407–412 (2010).
[CrossRef] [PubMed]

V. Mocella, P. Dardano, I. Rendina, and S. Cabrini, “An extraordinary directive radiation based on optical antimatter at near infrared,” Opt. Express18(24), 25068–25074 (2010).
[CrossRef] [PubMed]

R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B81(23), 235111 (2010).
[CrossRef]

2009 (5)

V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett.102(13), 133902 (2009).
[CrossRef] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009).
[CrossRef] [PubMed]

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt.56(4), 554–557 (2009).
[CrossRef]

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.)3(2), 57–62 (2009).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009).
[CrossRef]

2008 (4)

2007 (1)

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies,” Phys. Rev. B76(7), 073101 (2007).
[CrossRef]

2004 (3)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

B. Sauivac, C. R. Simovski, and S. Tretyakov, “Double split-ring resonators: Analytical modeling and numerical simulations,” Electromagnetics24(5), 317–338 (2004).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

1996 (1)

S. C. Howells and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett.69(4), 550–552 (1996).
[CrossRef]

1995 (1)

G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi, “Molecular-beam epitaxial growth of high quality InSb for p-i-n photodetectors,” J. Vac. Sci. Technol. B13(2), 782–785 (1995).
[CrossRef]

Abbott, D.

J. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchel, S. Sriram, M. Bhaskaran, S. J. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett.102(12), 121101 (2013).
[CrossRef]

Atwater, H. A.

Averitt, R. D.

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express19(10), 9968–9975 (2011).
[CrossRef] [PubMed]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Aydin, K.

Azad, A. K.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett.105(24), 247402 (2010).
[CrossRef] [PubMed]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett.33(13), 1506–1508 (2008).
[CrossRef] [PubMed]

Bai, Q.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys.107(9), 093104 (2010).
[CrossRef]

Bhaskaran, M.

J. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchel, S. Sriram, M. Bhaskaran, S. J. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett.102(12), 121101 (2013).
[CrossRef]

Bingham, C.

Bove, P.

G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi, “Molecular-beam epitaxial growth of high quality InSb for p-i-n photodetectors,” J. Vac. Sci. Technol. B13(2), 782–785 (1995).
[CrossRef]

Boyd, E. M.

Burgos, S. P.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater.9(5), 407–412 (2010).
[CrossRef] [PubMed]

Cabrini, S.

P. Dardano, M. Gagliardi, I. Rendina, S. Cabrini, and V. Mocella, “Ellipsometric determination of permittivity in a negative index photonic crystal metamaterial,” Light: Sci. Appl.1(12), e42 (2012).
[CrossRef]

V. Mocella, P. Dardano, I. Rendina, and S. Cabrini, “An extraordinary directive radiation based on optical antimatter at near infrared,” Opt. Express18(24), 25068–25074 (2010).
[CrossRef] [PubMed]

V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett.102(13), 133902 (2009).
[CrossRef] [PubMed]

Cao, C. H.

Chang, A. S. P.

V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett.102(13), 133902 (2009).
[CrossRef] [PubMed]

Chang, S. J.

J. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchel, S. Sriram, M. Bhaskaran, S. J. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett.102(12), 121101 (2013).
[CrossRef]

Chen, H. T.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett.105(24), 247402 (2010).
[CrossRef] [PubMed]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Chen, J.

J. B. Wu, B. B. Jin, Y. H. Xue, C. H. Zhang, H. Dai, L. B. Zhang, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express19(13), 12021–12026 (2011).
[CrossRef] [PubMed]

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys.107(9), 093104 (2010).
[CrossRef]

Cheng, C.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys.107(9), 093104 (2010).
[CrossRef]

Chern, R. L.

Choi, M.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Chua, S. J.

L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013).
[CrossRef]

Cong, J. W.

Cui, Y. P.

Dai, H.

Dai, X. Y.

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011).
[CrossRef]

Dardano, P.

P. Dardano, M. Gagliardi, I. Rendina, S. Cabrini, and V. Mocella, “Ellipsometric determination of permittivity in a negative index photonic crystal metamaterial,” Light: Sci. Appl.1(12), e42 (2012).
[CrossRef]

V. Mocella, P. Dardano, I. Rendina, and S. Cabrini, “An extraordinary directive radiation based on optical antimatter at near infrared,” Opt. Express18(24), 25068–25074 (2010).
[CrossRef] [PubMed]

V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett.102(13), 133902 (2009).
[CrossRef] [PubMed]

de Waele, R.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater.9(5), 407–412 (2010).
[CrossRef] [PubMed]

Delgado, V.

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.)3(2), 57–62 (2009).
[CrossRef]

Deng, L. Y.

L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013).
[CrossRef]

Dhuey, S.

V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett.102(13), 133902 (2009).
[CrossRef] [PubMed]

Dicken, M. J.

Dickson, W.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett.106(6), 067402 (2011).
[CrossRef] [PubMed]

Economou, E. N.

R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B81(23), 235111 (2010).
[CrossRef]

Enkrich, C.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Ferguson, I.

G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi, “Molecular-beam epitaxial growth of high quality InSb for p-i-n photodetectors,” J. Vac. Sci. Technol. B13(2), 782–785 (1995).
[CrossRef]

Freire, M. J.

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.)3(2), 57–62 (2009).
[CrossRef]

Gagliardi, M.

P. Dardano, M. Gagliardi, I. Rendina, S. Cabrini, and V. Mocella, “Ellipsometric determination of permittivity in a negative index photonic crystal metamaterial,” Light: Sci. Appl.1(12), e42 (2012).
[CrossRef]

García-Meca, C.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett.106(6), 067402 (2011).
[CrossRef] [PubMed]

Genov, D. A.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies,” Phys. Rev. B76(7), 073101 (2007).
[CrossRef]

Giessen, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009).
[CrossRef]

Gokkavas, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett.106(3), 037403 (2011).
[CrossRef] [PubMed]

Han, J.

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt.56(4), 554–557 (2009).
[CrossRef]

J. Han, A. Lakhtakia, and C. W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express16(19), 14390–14396 (2008).
[CrossRef] [PubMed]

Harteneck, B.

V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett.102(13), 133902 (2009).
[CrossRef] [PubMed]

He, H. Y.

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011).
[CrossRef]

Hieu, N. V.

N. T. Tung, D. T. Viet, B. S. Tung, N. V. Hieu, P. Lievens, and V. D. Lam, “Broadband Negative Permeability by Hybridized Cut-Wire Pair Metamaterials,” Appl. Phys. Express5(11), 112001 (2012).
[CrossRef]

Howells, S. C.

S. C. Howells and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett.69(4), 550–552 (1996).
[CrossRef]

Hurtado, J.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett.106(6), 067402 (2011).
[CrossRef] [PubMed]

Jelen, C.

G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi, “Molecular-beam epitaxial growth of high quality InSb for p-i-n photodetectors,” J. Vac. Sci. Technol. B13(2), 782–785 (1995).
[CrossRef]

Jelinek, L.

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.)3(2), 57–62 (2009).
[CrossRef]

Jia, Q. X.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett.105(24), 247402 (2010).
[CrossRef] [PubMed]

Jiang, L.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Jin, B. B.

Kafesaki, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett.106(3), 037403 (2011).
[CrossRef] [PubMed]

R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B81(23), 235111 (2010).
[CrossRef]

Kang, K. Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Kang, L.

Kang, M.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys.107(9), 093104 (2010).
[CrossRef]

Kang, S. B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Kim, Y.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Koschny, T.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett.106(3), 037403 (2011).
[CrossRef] [PubMed]

R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B81(23), 235111 (2010).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Kwak, M. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Lakhtakia, A.

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt.56(4), 554–557 (2009).
[CrossRef]

J. Han, A. Lakhtakia, and C. W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express16(19), 14390–14396 (2008).
[CrossRef] [PubMed]

Lam, V. D.

N. T. Tung, D. T. Viet, B. S. Tung, N. V. Hieu, P. Lievens, and V. D. Lam, “Broadband Negative Permeability by Hybridized Cut-Wire Pair Metamaterials,” Appl. Phys. Express5(11), 112001 (2012).
[CrossRef]

Lee, S. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Lee, Y. H.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Li, J. J.

J. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchel, S. Sriram, M. Bhaskaran, S. J. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett.102(12), 121101 (2013).
[CrossRef]

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

Lievens, P.

N. T. Tung, D. T. Viet, B. S. Tung, N. V. Hieu, P. Lievens, and V. D. Lam, “Broadband Negative Permeability by Hybridized Cut-Wire Pair Metamaterials,” Appl. Phys. Express5(11), 112001 (2012).
[CrossRef]

Lim, K. P.

L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013).
[CrossRef]

Lin, C. H.

Lin, H. Y.

Linden, S.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Lippens, D.

Liu, C.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys.107(9), 093104 (2010).
[CrossRef]

Liu, H.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies,” Phys. Rev. B76(7), 073101 (2007).
[CrossRef]

Liu, H. W.

L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013).
[CrossRef]

Liu, N.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009).
[CrossRef]

Liu, Y. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies,” Phys. Rev. B76(7), 073101 (2007).
[CrossRef]

Liu, Z.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun.3, 1205 (2012).
[CrossRef] [PubMed]

C. Ma and Z. Liu, “Focusing light into deep subwavelength using metamaterial immersion lenses,” Opt. Express18(5), 4838–4844 (2010).
[CrossRef] [PubMed]

Liu, Z. W.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies,” Phys. Rev. B76(7), 073101 (2007).
[CrossRef]

Lu, D.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun.3, 1205 (2012).
[CrossRef] [PubMed]

Ma, C.

Ma, J.

Maier, S. A.

L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013).
[CrossRef]

Manceau, J. M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett.106(3), 037403 (2011).
[CrossRef] [PubMed]

Marqués, R.

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.)3(2), 57–62 (2009).
[CrossRef]

Martí, J.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett.106(6), 067402 (2011).
[CrossRef] [PubMed]

Martínez, A.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett.106(6), 067402 (2011).
[CrossRef] [PubMed]

Massaouti, M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett.106(3), 037403 (2011).
[CrossRef] [PubMed]

Michel, E.

G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi, “Molecular-beam epitaxial growth of high quality InSb for p-i-n photodetectors,” J. Vac. Sci. Technol. B13(2), 782–785 (1995).
[CrossRef]

Min, B.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Mitchel, A.

J. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchel, S. Sriram, M. Bhaskaran, S. J. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett.102(12), 121101 (2013).
[CrossRef]

Mocella, V.

P. Dardano, M. Gagliardi, I. Rendina, S. Cabrini, and V. Mocella, “Ellipsometric determination of permittivity in a negative index photonic crystal metamaterial,” Light: Sci. Appl.1(12), e42 (2012).
[CrossRef]

V. Mocella, P. Dardano, I. Rendina, and S. Cabrini, “An extraordinary directive radiation based on optical antimatter at near infrared,” Opt. Express18(24), 25068–25074 (2010).
[CrossRef] [PubMed]

V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett.102(13), 133902 (2009).
[CrossRef] [PubMed]

Moretti, L.

V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett.102(13), 133902 (2009).
[CrossRef] [PubMed]

Ngo, C. Y.

L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013).
[CrossRef]

Nordlander, P.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

O’Hara, J. F.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett.105(24), 247402 (2010).
[CrossRef] [PubMed]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express16(9), 6537–6543 (2008).
[CrossRef] [PubMed]

R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett.33(13), 1506–1508 (2008).
[CrossRef] [PubMed]

Olynick, D.

V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett.102(13), 133902 (2009).
[CrossRef] [PubMed]

Ou, J. Y.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

Ozbay, E.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett.106(3), 037403 (2011).
[CrossRef] [PubMed]

Padilla, W. J.

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express19(10), 9968–9975 (2011).
[CrossRef] [PubMed]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Park, N.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Penciu, R. S.

R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B81(23), 235111 (2010).
[CrossRef]

Plum, E.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Polman, A.

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater.9(5), 407–412 (2010).
[CrossRef] [PubMed]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

Pryce, I. M.

Qiu, C. W.

Qiu, K.

Razeghi, M.

G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi, “Molecular-beam epitaxial growth of high quality InSb for p-i-n photodetectors,” J. Vac. Sci. Technol. B13(2), 782–785 (1995).
[CrossRef]

Rendina, I.

P. Dardano, M. Gagliardi, I. Rendina, S. Cabrini, and V. Mocella, “Ellipsometric determination of permittivity in a negative index photonic crystal metamaterial,” Light: Sci. Appl.1(12), e42 (2012).
[CrossRef]

V. Mocella, P. Dardano, I. Rendina, and S. Cabrini, “An extraordinary directive radiation based on optical antimatter at near infrared,” Opt. Express18(24), 25068–25074 (2010).
[CrossRef] [PubMed]

V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett.102(13), 133902 (2009).
[CrossRef] [PubMed]

Rogers, E. T.

Rout, S.

Roy, T.

Sauivac, B.

B. Sauivac, C. R. Simovski, and S. Tretyakov, “Double split-ring resonators: Analytical modeling and numerical simulations,” Electromagnetics24(5), 317–338 (2004).
[CrossRef]

Schlie, L. A.

S. C. Howells and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett.69(4), 550–552 (1996).
[CrossRef]

Shah, C. M.

J. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchel, S. Sriram, M. Bhaskaran, S. J. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett.102(12), 121101 (2013).
[CrossRef]

Shen, N. H.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett.106(3), 037403 (2011).
[CrossRef] [PubMed]

Shin, J.

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Shrekenhamer, D.

Shrekenhamer, D. B.

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Shvets, G.

Simovski, C. R.

B. Sauivac, C. R. Simovski, and S. Tretyakov, “Double split-ring resonators: Analytical modeling and numerical simulations,” Electromagnetics24(5), 317–338 (2004).
[CrossRef]

Singh, G.

G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi, “Molecular-beam epitaxial growth of high quality InSb for p-i-n photodetectors,” J. Vac. Sci. Technol. B13(2), 782–785 (1995).
[CrossRef]

Singh, R.

Slivken, S.

G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi, “Molecular-beam epitaxial growth of high quality InSb for p-i-n photodetectors,” J. Vac. Sci. Technol. B13(2), 782–785 (1995).
[CrossRef]

Smirnova, E.

Sonkusale, S.

Soukoulis, C. M.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett.106(3), 037403 (2011).
[CrossRef] [PubMed]

R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B81(23), 235111 (2010).
[CrossRef]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Sriram, S.

J. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchel, S. Sriram, M. Bhaskaran, S. J. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett.102(12), 121101 (2013).
[CrossRef]

Stockman, M.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

Strikwerda, A. C.

Sun, C.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies,” Phys. Rev. B76(7), 073101 (2007).
[CrossRef]

Sun, J.

Sweatlock, L. A.

Sydoruk, O.

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.)3(2), 57–62 (2009).
[CrossRef]

Tang, J.

L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013).
[CrossRef]

Tatartschuk, E.

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.)3(2), 57–62 (2009).
[CrossRef]

Taylor, A. J.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett.105(24), 247402 (2010).
[CrossRef] [PubMed]

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

R. Singh, A. K. Azad, J. F. O’Hara, A. J. Taylor, and W. Zhang, “Effect of metal permittivity on resonant properties of terahertz metamaterials,” Opt. Lett.33(13), 1506–1508 (2008).
[CrossRef] [PubMed]

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express16(9), 6537–6543 (2008).
[CrossRef] [PubMed]

Teng, J. H.

L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013).
[CrossRef]

Tretyakov, S.

B. Sauivac, C. R. Simovski, and S. Tretyakov, “Double split-ring resonators: Analytical modeling and numerical simulations,” Electromagnetics24(5), 317–338 (2004).
[CrossRef]

Trugman, S. A.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett.105(24), 247402 (2010).
[CrossRef] [PubMed]

Tung, B. S.

N. T. Tung, D. T. Viet, B. S. Tung, N. V. Hieu, P. Lievens, and V. D. Lam, “Broadband Negative Permeability by Hybridized Cut-Wire Pair Metamaterials,” Appl. Phys. Express5(11), 112001 (2012).
[CrossRef]

Tung, N. T.

N. T. Tung, D. T. Viet, B. S. Tung, N. V. Hieu, P. Lievens, and V. D. Lam, “Broadband Negative Permeability by Hybridized Cut-Wire Pair Metamaterials,” Appl. Phys. Express5(11), 112001 (2012).
[CrossRef]

Tzortzakis, S.

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett.106(3), 037403 (2011).
[CrossRef] [PubMed]

Ung, B. S.-Y.

J. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchel, S. Sriram, M. Bhaskaran, S. J. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett.102(12), 121101 (2013).
[CrossRef]

Viet, D. T.

N. T. Tung, D. T. Viet, B. S. Tung, N. V. Hieu, P. Lievens, and V. D. Lam, “Broadband Negative Permeability by Hybridized Cut-Wire Pair Metamaterials,” Appl. Phys. Express5(11), 112001 (2012).
[CrossRef]

Walavalkar, S.

Wang, H. T.

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys.107(9), 093104 (2010).
[CrossRef]

Wegener, M.

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Wen, S. C.

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011).
[CrossRef]

Withayachumnankul, W.

J. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchel, S. Sriram, M. Bhaskaran, S. J. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett.102(12), 121101 (2013).
[CrossRef]

Wu, C.

Wu, D. M.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies,” Phys. Rev. B76(7), 073101 (2007).
[CrossRef]

Wu, J. B.

Wu, P. H.

Wu, Q. Y.

L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013).
[CrossRef]

Xiang, Y. J.

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011).
[CrossRef]

Xu, J.

G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi, “Molecular-beam epitaxial growth of high quality InSb for p-i-n photodetectors,” J. Vac. Sci. Technol. B13(2), 782–785 (1995).
[CrossRef]

Xu, W. W.

Xue, Y. H.

Yang, H.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett.105(24), 247402 (2010).
[CrossRef] [PubMed]

Yoon, S. F.

L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013).
[CrossRef]

Yun, B. F.

Zayats, A. V.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett.106(6), 067402 (2011).
[CrossRef] [PubMed]

Zhang, C. H.

Zhang, F.

Zhang, L. B.

Zhang, W.

Zhang, X.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies,” Phys. Rev. B76(7), 073101 (2007).
[CrossRef]

Zhang, X. H.

L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013).
[CrossRef]

Zhao, Q.

Zheludev, N. I.

T. Roy, E. T. Rogers, and N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express21(6), 7577–7582 (2013).
[CrossRef] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Zhou, J.

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19(2), 1563–1568 (2011).
[CrossRef] [PubMed]

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Zhu, S.

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009).
[CrossRef]

Zhu, S. N.

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies,” Phys. Rev. B76(7), 073101 (2007).
[CrossRef]

Adv. Opt. Mater. (1)

L. Y. Deng, J. H. Teng, H. W. Liu, Q. Y. Wu, J. Tang, X. H. Zhang, S. A. Maier, K. P. Lim, C. Y. Ngo, S. F. Yoon, and S. J. Chua, “Direct optical tuning of the terahertz plasmonic response of InSb subwavelength Gratings,” Adv. Opt. Mater.1(2), 128–132 (2013).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Express (1)

N. T. Tung, D. T. Viet, B. S. Tung, N. V. Hieu, P. Lievens, and V. D. Lam, “Broadband Negative Permeability by Hybridized Cut-Wire Pair Metamaterials,” Appl. Phys. Express5(11), 112001 (2012).
[CrossRef]

Appl. Phys. Lett. (2)

S. C. Howells and L. A. Schlie, “Transient terahertz reflection spectroscopy of undoped InSb from 0.1 to 1.1 THz,” Appl. Phys. Lett.69(4), 550–552 (1996).
[CrossRef]

J. J. Li, C. M. Shah, W. Withayachumnankul, B. S.-Y. Ung, A. Mitchel, S. Sriram, M. Bhaskaran, S. J. Chang, and D. Abbott, “Mechanically tunable terahertz metamaterials,” Appl. Phys. Lett.102(12), 121101 (2013).
[CrossRef]

Electromagnetics (1)

B. Sauivac, C. R. Simovski, and S. Tretyakov, “Double split-ring resonators: Analytical modeling and numerical simulations,” Electromagnetics24(5), 317–338 (2004).
[CrossRef]

J. Appl. Phys. (2)

Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. T. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys.107(9), 093104 (2010).
[CrossRef]

X. Y. Dai, Y. J. Xiang, S. C. Wen, and H. Y. He, “Thermally tunable and omnidirectional terahertz photonic bandgap in the one-dimensional photonic crystals containing semiconductor InSb,” J. Appl. Phys.109(5), 053104 (2011).
[CrossRef]

J. Mod. Opt. (1)

J. Han and A. Lakhtakia, “Semiconductor split-ring resonators for thermally tunable terahertz metamaterials,” J. Mod. Opt.56(4), 554–557 (2009).
[CrossRef]

J. Vac. Sci. Technol. B (1)

G. Singh, E. Michel, C. Jelen, S. Slivken, J. Xu, P. Bove, I. Ferguson, and M. Razeghi, “Molecular-beam epitaxial growth of high quality InSb for p-i-n photodetectors,” J. Vac. Sci. Technol. B13(2), 782–785 (1995).
[CrossRef]

Light: Sci. Appl. (1)

P. Dardano, M. Gagliardi, I. Rendina, S. Cabrini, and V. Mocella, “Ellipsometric determination of permittivity in a negative index photonic crystal metamaterial,” Light: Sci. Appl.1(12), e42 (2012).
[CrossRef]

Metamaterials (Amst.) (1)

V. Delgado, O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, “Analytical circuit model for split ring resonators in the far infrared and optical frequency range,” Metamaterials (Amst.)3(2), 57–62 (2009).
[CrossRef]

Nano Lett. (2)

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. Stockman, “Plasmon hybridization in nanoparticle dimers,” Nano Lett.4(5), 899–903 (2004).
[CrossRef]

Nat. Commun. (1)

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun.3, 1205 (2012).
[CrossRef] [PubMed]

Nat. Mater. (1)

S. P. Burgos, R. de Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater.9(5), 407–412 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

H. T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

N. Liu, H. Liu, S. Zhu, and H. Giessen, “Stereometamaterials,” Nat. Photonics3(3), 157–162 (2009).
[CrossRef]

Nature (1)

M. Choi, S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K. Y. Kang, Y. H. Lee, N. Park, and B. Min, “A terahertz metamaterial with unnaturally high refractive index,” Nature470(7334), 369–373 (2011).
[CrossRef] [PubMed]

Opt. Express (10)

V. Mocella, P. Dardano, I. Rendina, and S. Cabrini, “An extraordinary directive radiation based on optical antimatter at near infrared,” Opt. Express18(24), 25068–25074 (2010).
[CrossRef] [PubMed]

C. H. Lin, R. L. Chern, and H. Y. Lin, “Polarization-independent broad-band nearly perfect absorbers in the visible regime,” Opt. Express19(2), 415–424 (2011).
[CrossRef] [PubMed]

T. Roy, E. T. Rogers, and N. I. Zheludev, “Sub-wavelength focusing meta-lens,” Opt. Express21(6), 7577–7582 (2013).
[CrossRef] [PubMed]

F. Zhang, W. Zhang, Q. Zhao, J. Sun, K. Qiu, J. Zhou, and D. Lippens, “Electrically controllable fishnet metamaterial based on nematic liquid crystal,” Opt. Express19(2), 1563–1568 (2011).
[CrossRef] [PubMed]

M. J. Dicken, K. Aydin, I. M. Pryce, L. A. Sweatlock, E. M. Boyd, S. Walavalkar, J. Ma, and H. A. Atwater, “Frequency tunable near-infrared metamaterials based on VO2 phase transition,” Opt. Express17(20), 18330–18339 (2009).
[CrossRef] [PubMed]

J. B. Wu, B. B. Jin, Y. H. Xue, C. H. Zhang, H. Dai, L. B. Zhang, C. H. Cao, L. Kang, W. W. Xu, J. Chen, and P. H. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express19(13), 12021–12026 (2011).
[CrossRef] [PubMed]

R. Singh, E. Smirnova, A. J. Taylor, J. F. O’Hara, and W. Zhang, “Optically thin terahertz metamaterials,” Opt. Express16(9), 6537–6543 (2008).
[CrossRef] [PubMed]

C. Ma and Z. Liu, “Focusing light into deep subwavelength using metamaterial immersion lenses,” Opt. Express18(5), 4838–4844 (2010).
[CrossRef] [PubMed]

J. Han, A. Lakhtakia, and C. W. Qiu, “Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability,” Opt. Express16(19), 14390–14396 (2008).
[CrossRef] [PubMed]

D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale, and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express19(10), 9968–9975 (2011).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. B (2)

R. S. Penciu, M. Kafesaki, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Magnetic response of nanoscale left-handed metamaterials,” Phys. Rev. B81(23), 235111 (2010).
[CrossRef]

H. Liu, D. A. Genov, D. M. Wu, Y. M. Liu, Z. W. Liu, C. Sun, S. N. Zhu, and X. Zhang, “Magnetic plasmon hybridization and optical activity at optical frequencies,” Phys. Rev. B76(7), 073101 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

V. Mocella, S. Cabrini, A. S. P. Chang, P. Dardano, L. Moretti, I. Rendina, D. Olynick, B. Harteneck, and S. Dhuey, “Self-collimation of light over millimeter-scale distance in a quasi-zero-average-index metamaterial,” Phys. Rev. Lett.102(13), 133902 (2009).
[CrossRef] [PubMed]

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett.106(6), 067402 (2011).
[CrossRef] [PubMed]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett.105(24), 247402 (2010).
[CrossRef] [PubMed]

N. H. Shen, M. Massaouti, M. Gokkavas, J. M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, and C. M. Soukoulis, “Optically implemented broadband blueshift switch in the terahertz regime,” Phys. Rev. Lett.106(3), 037403 (2011).
[CrossRef] [PubMed]

Science (1)

S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, “Magnetic response of metamaterials at 100 terahertz,” Science306(5700), 1351–1353 (2004).
[CrossRef] [PubMed]

Other (2)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005)

L. D. Landau and E. M. Lifschitz, Electrodynamics of Continuous Media (Pergamon Press, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of an array of InSb metamaterial composed of (a) a single SRR and (b) two coaxially aligned SRRs in each unit cell. The geometric parameters are initially chosen as h = 2 μm, r = 15 μm, w = 4 μm, g = 6 μm, Px = Py = 54 μm and s = 3 μm.

Fig. 2
Fig. 2

(a) Transmission spectra of the single-layer InSb SRRs with different carrier density N. The transmission dips indicated by triangles represent the LC resonance mode. (b) The resonance frequency and tuning sensitivity as a function of N. The red and black solid lines show the analytical results and the blue dots show the FDTD simulation results.

Fig. 3
Fig. 3

Contour plot of RKG (Lk /Lg) as a function of SRR thickness h and radius r at (a) N = 1 × 1016 cm−3 and (b) N = 1 × 1017 cm−3. The red to blue colors represent high to low values. The relative tuning range in dependence with (c) thickness and (d) radius. The resonance frequency as a function of N at different (e) thickness and (f) radius. In (c)-(e), the dots represent the simulation results and solid curves show the analytical results from LC model.

Fig. 4
Fig. 4

The magnetic field Hz of the stacked SRR-dimer at different resonance modes. (a) Hz of the anti-boning mode for the stacked SRR-dimer MM with φ = 180°. (b) Hz of the boning mode for the stacked SRR-dimer MM with φ = 0°. The white arrows represent the direction of loop currents. The color scale represents the direction and the magnitude of Hz, with red color meaning the maximum value in the z direction and blue color the maximum value in the -z direction.

Fig. 5
Fig. 5

The transmission spectra of a single-layer (dashed lines) and stacked SRR-dimers with φ = 180° (solid lines) at different carrier densities. The black to pink color represents an increasing carrier density from 1 × 1016 cm−3 to 1 × 1017 cm−3. The structure sizes are the same with those in Fig. 1.

Fig. 6
Fig. 6

(a) RKG and the normalized mutual inductance (red line) at different separation s. The blue (black) line presents RKG of stacked SRR-dimers at the anti-bonding (bonding) mode under the carrier density N = 1 × 1017 cm−3. The green dashed line shows RKG of the single-layer SRRs. (b) The s dependent relative tuning range of stacked SRR-dimers at the anti-bonding mode (upper branch) and the bonding-mode (lower branch). Also the green dashed line shows the relative tuning range of the single-layer SRRs.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

( L g + L k ) dI dt +RI+ Idt C =0,
f= 1 2π 1 ( L g + L k )C R 2 4 ( L g + L k ) 2 .
f= 1 2π ( L g + L k )C .
L k = 2πr-g ε 0 wh ω p 2 = (2πr-g) m * wh e 2 1 N ,
L g = μ 0 r(Log( 8r w+h )-0.5),
C g = ε 0 wh g + ε 0 (w+h+g),
C s = 2 ε 0 π (w+h)Log( 4r g ),
C= C g +α C s ,
R= γ ε 0 ω p 2 2πr-g wh .
S= f N .
S= L k 4πN ( L k + L g ) 3/2 ( C g +α C s ) = f 2( L k + L g ) L k N .
Δf f( N 1 ) = N 1 N 2 S(N) dN f( N 1 ) = f( N 2 )-f( N 1 ) f( N 1 ) = ( L g + L k1 )( C g +α C s ) ( L g + L k2 )( C g +α C s ) 1= 1+ N 2 N 1 L k2 L g 1+ L k2 L g 1.
f= 1 2π ( L g | M |+ L k ) C tot .
Δf f( N 1 ) = N 1 N 2 S(N) dN f( N 1 ) = ( L g + L k1 ) C tot ( L g + L k2 ) C tot 1= 1+ N 2 N 1 L k2 L g / 1+ L k2 L g 1.
| M |= 2 μ 0 r(K(x)E(x)) x .

Metrics