Abstract

We propose the use of Nyquist OTDM-WDM signal for highly efficient, fully elastic all-optical networks. With the possibility of generation of ultra-coarse yet flexible granular channels, Nyquist OTDM-WDM can eliminate guard-bands in conventional WDM systems, and hence improves the spectral efficiency in network perspective. In this paper, transmission and pass-drop operations of mixed baudrate Nyquist OTDM-WDM channels from 43 Gbaud to dual-polarization 344 Gbaud are successfully demonstrated over 320 km fiber link with four FlexGrid-compatible WSS nodes. A stable clock recovery is also carried out for different baudrate Nyquist OTDMs by optical null-header insertion technique.

© 2013 OSA

Full Article  |  PDF Article
Related Articles
Transmission of 100Gb/s Coherent PDM-QPSK over 16x100km of Standard Fiber with all-erbium amplifiers

J. Renaudier, G. Charlet, O. Bertran-Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo
Opt. Express 17(7) 5112-5117 (2009)

Multiple-channel optical signal processing with wavelength-waveform conversions, pulsewidth tunability, and signal regeneration

Hung Nguyen Tan, Motoharu Matsuura, Tomoya Katafuchi, and Naoto Kishi
Opt. Express 17(25) 22960-22973 (2009)

An All-Optical Grooming Switch for Interconnecting Access and Metro Ring Networks [Invited]

R. Bonk, P. Vorreau, D. Hillerkuss, W. Freude, G. Zarris, D. Simeonidou, F. Parmigiani, P. Petropoulos, R. Weerasuriya, S. Ibrahim, A. D. Ellis, D. Klonidis, I. Tomkos, and J. Leuthold
J. Opt. Commun. Netw. 3(3) 206-214 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Gantz and D. Reinsel, “The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east,” IDC IVIEW, sponsored by EMC Corporation, 1–16 (2012), http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf .
  2. IEEE 802.3 Ethernet Working Group, “400 gigabit Ethernet call-for-interest consensus,” IEEE 802 (2013), http://www.ieee802.org/3/cfi/0313_1/CFI_01_0313.pdf .
  3. O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?,” IEEE Commun. Mag. 50(2), S12–S20 (2012).
    [Crossref]
  4. A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
    [Crossref]
  5. S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-denition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
    [Crossref]
  6. M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
    [Crossref] [PubMed]
  7. G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and COOFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
    [Crossref]
  8. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
    [Crossref]
  9. T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,” Opt. Express 20(14), 15001–15007 (2012).
    [Crossref] [PubMed]
  10. K. Harako, P. Ruan, T. Hirooka, and M. Nakazawa, “Large PMD tolerant 1.28 Tbit/s/ch transmission over 525 km with 640 Gbaud optical Nyquist pulses,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.38.
    [Crossref]
  11. H. Hu, J. Wang, H. Ji, E. Palushani, M. Galili, H. C. H. Mulvad, P. Jeppesen, and L. K. Oxenlowe, “Nyquist filtering of 160 GBaud NRZ-like DPSK signal,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.61.
    [Crossref]
  12. H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
    [Crossref]
  13. H. Nguyen Tan, T. Inoue, and S. Namiki, “Pass-drop operations of 4×172Gb/s Nyquist OTDM-WDM over cascade of WSSs using distributed matched filtering,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.50.
    [Crossref]
  14. H. Nguyen Tan, K. Tanizawa, T. Inoue, T. Kurosu, and Shu Namiki, “No-guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add-drop node,” Opt. Lett. 38(17) (4), 3287–3290(2013).
  15. T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
    [Crossref]
  16. G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2006, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
    [Crossref]
  17. T. Kurosu, K. Tanizawa, D. Wang, S. Y. Set, and S. Namiki, “Baud-rate flexible clock recovery and channel identification in OTDM realized by pulse position modulation,” Opt. Express 21(4), 4447–4455 (2013).
    [Crossref] [PubMed]
  18. P. Guan, H. C. H. Mulvad, K. Kasai, T. Hirooka, and M. Nakazawa, “High time-resolution 640-Gb/s clock recovery using time-domain optical Fourier transformation and narrowband optical filter,” IEEE Photon. Technol. Lett. 22(23), 1735–1737 (2010).
    [Crossref]
  19. N. Calabretta, J. Luo, J. Parra-Cetina, S. Latkowski, R. Maldonado-Basilio, P. Landais, and H. J. S. Dorren, “320 Gb/s all-optical clock recovery and time demultiplexing enabled by a single quantum dash mode-locked laser Fabry-Perot optical clock pulse generator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh4D.5.
    [Crossref]
  20. J. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, 2007).

2013 (2)

2012 (3)

2011 (3)

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-denition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

2010 (2)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and COOFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

P. Guan, H. C. H. Mulvad, K. Kasai, T. Hirooka, and M. Nakazawa, “High time-resolution 640-Gb/s clock recovery using time-domain optical Fourier transformation and narrowband optical filter,” IEEE Photon. Technol. Lett. 22(23), 1735–1737 (2010).
[Crossref]

2008 (1)

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
[Crossref]

Abakoumov, D.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2006, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
[Crossref]

Andersen, J. D.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

Bartos, A.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2006, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
[Crossref]

Baxter, G.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2006, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
[Crossref]

Bogoni, A.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

Bosco, G.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and COOFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Calabretta, N.

N. Calabretta, J. Luo, J. Parra-Cetina, S. Latkowski, R. Maldonado-Basilio, P. Landais, and H. J. S. Dorren, “320 Gb/s all-optical clock recovery and time demultiplexing enabled by a single quantum dash mode-locked laser Fabry-Perot optical clock pulse generator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh4D.5.
[Crossref]

Carena, A.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and COOFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Clarke, I.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2006, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
[Crossref]

Curri, V.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and COOFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Dorren, H. J. S.

N. Calabretta, J. Luo, J. Parra-Cetina, S. Latkowski, R. Maldonado-Basilio, P. Landais, and H. J. S. Dorren, “320 Gb/s all-optical clock recovery and time demultiplexing enabled by a single quantum dash mode-locked laser Fabry-Perot optical clock pulse generator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh4D.5.
[Crossref]

Forchhammer, S.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

Forghieri, F.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and COOFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Frisken, S.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2006, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
[Crossref]

Galili, M.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

H. Hu, J. Wang, H. Ji, E. Palushani, M. Galili, H. C. H. Mulvad, P. Jeppesen, and L. K. Oxenlowe, “Nyquist filtering of 160 GBaud NRZ-like DPSK signal,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.61.
[Crossref]

Gerstel, O.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?,” IEEE Commun. Mag. 50(2), S12–S20 (2012).
[Crossref]

Guan, P.

Harako, K.

K. Harako, P. Ruan, T. Hirooka, and M. Nakazawa, “Large PMD tolerant 1.28 Tbit/s/ch transmission over 525 km with 640 Gbaud optical Nyquist pulses,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.38.
[Crossref]

Hasama, T.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-denition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

Hirooka, T.

T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,” Opt. Express 20(14), 15001–15007 (2012).
[Crossref] [PubMed]

M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
[Crossref] [PubMed]

P. Guan, H. C. H. Mulvad, K. Kasai, T. Hirooka, and M. Nakazawa, “High time-resolution 640-Gb/s clock recovery using time-domain optical Fourier transformation and narrowband optical filter,” IEEE Photon. Technol. Lett. 22(23), 1735–1737 (2010).
[Crossref]

K. Harako, P. Ruan, T. Hirooka, and M. Nakazawa, “Large PMD tolerant 1.28 Tbit/s/ch transmission over 525 km with 640 Gbaud optical Nyquist pulses,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.38.
[Crossref]

Hu, H.

H. Hu, J. Wang, H. Ji, E. Palushani, M. Galili, H. C. H. Mulvad, P. Jeppesen, and L. K. Oxenlowe, “Nyquist filtering of 160 GBaud NRZ-like DPSK signal,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.61.
[Crossref]

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

Inoue, T.

H. Nguyen Tan, K. Tanizawa, T. Inoue, T. Kurosu, and Shu Namiki, “No-guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add-drop node,” Opt. Lett. 38(17) (4), 3287–3290(2013).

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
[Crossref]

H. Nguyen Tan, T. Inoue, and S. Namiki, “Pass-drop operations of 4×172Gb/s Nyquist OTDM-WDM over cascade of WSSs using distributed matched filtering,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.50.
[Crossref]

Ishikawa, H.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-denition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

Jeppesen, P.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

H. Hu, J. Wang, H. Ji, E. Palushani, M. Galili, H. C. H. Mulvad, P. Jeppesen, and L. K. Oxenlowe, “Nyquist filtering of 160 GBaud NRZ-like DPSK signal,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.61.
[Crossref]

Ji, H.

H. Hu, J. Wang, H. Ji, E. Palushani, M. Galili, H. C. H. Mulvad, P. Jeppesen, and L. K. Oxenlowe, “Nyquist filtering of 160 GBaud NRZ-like DPSK signal,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.61.
[Crossref]

Jinno, M.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?,” IEEE Commun. Mag. 50(2), S12–S20 (2012).
[Crossref]

Kasai, K.

P. Guan, H. C. H. Mulvad, K. Kasai, T. Hirooka, and M. Nakazawa, “High time-resolution 640-Gb/s clock recovery using time-domain optical Fourier transformation and narrowband optical filter,” IEEE Photon. Technol. Lett. 22(23), 1735–1737 (2010).
[Crossref]

Kong, D.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

Kurosu, T.

Kurumida, J.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-denition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

Landais, P.

N. Calabretta, J. Luo, J. Parra-Cetina, S. Latkowski, R. Maldonado-Basilio, P. Landais, and H. J. S. Dorren, “320 Gb/s all-optical clock recovery and time demultiplexing enabled by a single quantum dash mode-locked laser Fabry-Perot optical clock pulse generator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh4D.5.
[Crossref]

Larsen, K. J.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

Latkowski, S.

N. Calabretta, J. Luo, J. Parra-Cetina, S. Latkowski, R. Maldonado-Basilio, P. Landais, and H. J. S. Dorren, “320 Gb/s all-optical clock recovery and time demultiplexing enabled by a single quantum dash mode-locked laser Fabry-Perot optical clock pulse generator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh4D.5.
[Crossref]

Lord, A.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?,” IEEE Commun. Mag. 50(2), S12–S20 (2012).
[Crossref]

Luo, J.

N. Calabretta, J. Luo, J. Parra-Cetina, S. Latkowski, R. Maldonado-Basilio, P. Landais, and H. J. S. Dorren, “320 Gb/s all-optical clock recovery and time demultiplexing enabled by a single quantum dash mode-locked laser Fabry-Perot optical clock pulse generator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh4D.5.
[Crossref]

Maldonado-Basilio, R.

N. Calabretta, J. Luo, J. Parra-Cetina, S. Latkowski, R. Maldonado-Basilio, P. Landais, and H. J. S. Dorren, “320 Gb/s all-optical clock recovery and time demultiplexing enabled by a single quantum dash mode-locked laser Fabry-Perot optical clock pulse generator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh4D.5.
[Crossref]

Mulvad, H. C. H.

P. Guan, H. C. H. Mulvad, K. Kasai, T. Hirooka, and M. Nakazawa, “High time-resolution 640-Gb/s clock recovery using time-domain optical Fourier transformation and narrowband optical filter,” IEEE Photon. Technol. Lett. 22(23), 1735–1737 (2010).
[Crossref]

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

H. Hu, J. Wang, H. Ji, E. Palushani, M. Galili, H. C. H. Mulvad, P. Jeppesen, and L. K. Oxenlowe, “Nyquist filtering of 160 GBaud NRZ-like DPSK signal,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.61.
[Crossref]

Nakamura, M.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-denition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

Nakatogawa, T.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-denition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

Nakazawa, M.

M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
[Crossref] [PubMed]

T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,” Opt. Express 20(14), 15001–15007 (2012).
[Crossref] [PubMed]

P. Guan, H. C. H. Mulvad, K. Kasai, T. Hirooka, and M. Nakazawa, “High time-resolution 640-Gb/s clock recovery using time-domain optical Fourier transformation and narrowband optical filter,” IEEE Photon. Technol. Lett. 22(23), 1735–1737 (2010).
[Crossref]

K. Harako, P. Ruan, T. Hirooka, and M. Nakazawa, “Large PMD tolerant 1.28 Tbit/s/ch transmission over 525 km with 640 Gbaud optical Nyquist pulses,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.38.
[Crossref]

Namiki, S.

T. Kurosu, K. Tanizawa, D. Wang, S. Y. Set, and S. Namiki, “Baud-rate flexible clock recovery and channel identification in OTDM realized by pulse position modulation,” Opt. Express 21(4), 4447–4455 (2013).
[Crossref] [PubMed]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-denition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
[Crossref]

H. Nguyen Tan, T. Inoue, and S. Namiki, “Pass-drop operations of 4×172Gb/s Nyquist OTDM-WDM over cascade of WSSs using distributed matched filtering,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.50.
[Crossref]

Namiki, Shu

Nguyen Tan, H.

H. Nguyen Tan, K. Tanizawa, T. Inoue, T. Kurosu, and Shu Namiki, “No-guard-band wavelength translation of Nyquist OTDM-WDM signal for spectral defragmentation in an elastic add-drop node,” Opt. Lett. 38(17) (4), 3287–3290(2013).

H. Nguyen Tan, T. Inoue, and S. Namiki, “Pass-drop operations of 4×172Gb/s Nyquist OTDM-WDM over cascade of WSSs using distributed matched filtering,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.50.
[Crossref]

Nuccio, S. R.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

Oxenlowe, L. K.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

H. Hu, J. Wang, H. Ji, E. Palushani, M. Galili, H. C. H. Mulvad, P. Jeppesen, and L. K. Oxenlowe, “Nyquist filtering of 160 GBaud NRZ-like DPSK signal,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.61.
[Crossref]

Oyamada, K.

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-denition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

Palushani, E.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

H. Hu, J. Wang, H. Ji, E. Palushani, M. Galili, H. C. H. Mulvad, P. Jeppesen, and L. K. Oxenlowe, “Nyquist filtering of 160 GBaud NRZ-like DPSK signal,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.61.
[Crossref]

Parra-Cetina, J.

N. Calabretta, J. Luo, J. Parra-Cetina, S. Latkowski, R. Maldonado-Basilio, P. Landais, and H. J. S. Dorren, “320 Gb/s all-optical clock recovery and time demultiplexing enabled by a single quantum dash mode-locked laser Fabry-Perot optical clock pulse generator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh4D.5.
[Crossref]

Poggiolini, P.

G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011).
[Crossref]

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and COOFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

Poole, S.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2006, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
[Crossref]

Proakis, J.

J. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, 2007).

Rasmussen, A.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

Ruan, P.

T. Hirooka, P. Ruan, P. Guan, and M. Nakazawa, “Highly dispersion-tolerant 160 Gbaud optical Nyquist pulse TDM transmission over 525 km,” Opt. Express 20(14), 15001–15007 (2012).
[Crossref] [PubMed]

M. Nakazawa, T. Hirooka, P. Ruan, and P. Guan, “Ultrahigh-speed “orthogonal” TDM transmission with an optical Nyquist pulse train,” Opt. Express 20(2), 1129–1140 (2012).
[Crossref] [PubMed]

K. Harako, P. Ruan, T. Hirooka, and M. Nakazawa, “Large PMD tolerant 1.28 Tbit/s/ch transmission over 525 km with 640 Gbaud optical Nyquist pulses,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.38.
[Crossref]

Salehi, M.

J. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, 2007).

Set, S. Y.

Sorensen, B. M.

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

Tanizawa, K.

Wang, D.

Wang, J.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

H. Hu, J. Wang, H. Ji, E. Palushani, M. Galili, H. C. H. Mulvad, P. Jeppesen, and L. K. Oxenlowe, “Nyquist filtering of 160 GBaud NRZ-like DPSK signal,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.61.
[Crossref]

Willner, A. E.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

Wu, X.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

Yilmaz, O. F.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

Yoo, S. J. B.

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?,” IEEE Commun. Mag. 50(2), S12–S20 (2012).
[Crossref]

Zhang, L.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

Zhou, H.

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2006, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
[Crossref]

IEEE Commun. Mag. (1)

O. Gerstel, M. Jinno, A. Lord, and S. J. B. Yoo, “Elastic optical networking: a new dawn for the optical layer?,” IEEE Commun. Mag. 50(2), S12–S20 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17(2), 320–332 (2011).
[Crossref]

S. Namiki, T. Kurosu, K. Tanizawa, J. Kurumida, T. Hasama, H. Ishikawa, T. Nakatogawa, M. Nakamura, and K. Oyamada, “Ultrahigh-denition video transmission and extremely green optical networks for future,” IEEE J. Sel. Top. Quantum Electron. 17(2), 446–457 (2011).
[Crossref]

IEEE Photon. Technol. Lett. (2)

G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance limits of Nyquist-WDM and COOFDM in high-speed PM-QPSK systems,” IEEE Photon. Technol. Lett. 22(15), 1129–1131 (2010).
[Crossref]

P. Guan, H. C. H. Mulvad, K. Kasai, T. Hirooka, and M. Nakazawa, “High time-resolution 640-Gb/s clock recovery using time-domain optical Fourier transformation and narrowband optical filter,” IEEE Photon. Technol. Lett. 22(23), 1735–1737 (2010).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (1)

T. Inoue and S. Namiki, “Pulse compression techniques using highly nonlinear fibers,” Laser Photon. Rev. 2, 83–99 (2008).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Other (9)

N. Calabretta, J. Luo, J. Parra-Cetina, S. Latkowski, R. Maldonado-Basilio, P. Landais, and H. J. S. Dorren, “320 Gb/s all-optical clock recovery and time demultiplexing enabled by a single quantum dash mode-locked laser Fabry-Perot optical clock pulse generator,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper OTh4D.5.
[Crossref]

J. Proakis and M. Salehi, Digital Communications, 5th ed. (McGraw-Hill, 2007).

G. Baxter, S. Frisken, D. Abakoumov, H. Zhou, I. Clarke, A. Bartos, and S. Poole, “Highly programmable wavelength selective switch based on liquid crystal on silicon switching elements,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2006, OSA Technical Digest (CD) (Optical Society of America, 2006), paper OTuF2.
[Crossref]

J. Gantz and D. Reinsel, “The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east,” IDC IVIEW, sponsored by EMC Corporation, 1–16 (2012), http://www.emc.com/collateral/analyst-reports/idc-the-digital-universe-in-2020.pdf .

IEEE 802.3 Ethernet Working Group, “400 gigabit Ethernet call-for-interest consensus,” IEEE 802 (2013), http://www.ieee802.org/3/cfi/0313_1/CFI_01_0313.pdf .

K. Harako, P. Ruan, T. Hirooka, and M. Nakazawa, “Large PMD tolerant 1.28 Tbit/s/ch transmission over 525 km with 640 Gbaud optical Nyquist pulses,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.38.
[Crossref]

H. Hu, J. Wang, H. Ji, E. Palushani, M. Galili, H. C. H. Mulvad, P. Jeppesen, and L. K. Oxenlowe, “Nyquist filtering of 160 GBaud NRZ-like DPSK signal,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.61.
[Crossref]

H. Hu, D. Kong, E. Palushani, J. D. Andersen, A. Rasmussen, B. M. Sorensen, M. Galili, H. C. H. Mulvad, K. J. Larsen, S. Forchhammer, P. Jeppesen, and L. K. Oxenlowe, “1.28 Tbaud Nyquist signal transmission using time-domain optical Fourier transformation based receiver,” in CLEO:2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh5D.5.
[Crossref]

H. Nguyen Tan, T. Inoue, and S. Namiki, “Pass-drop operations of 4×172Gb/s Nyquist OTDM-WDM over cascade of WSSs using distributed matched filtering,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.50.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup for transmission and pass-drop operations of elastic Nyquist OTDM-WDM signals.

Fig. 2
Fig. 2

Spectra of dual-polarization Nyquist OTDM-WDM signal with different spectral arrangements: 3×688 Gbaud (344 Gbaud/pol) (a), 5×344 Gbaud (172 Gbaud/pol) (b), 9×172 Gbaud (86 Gbaud/pol) (c), and mixed baudrate Nyquist OTDM-WDM signals (d). Passed (e) and dropped (f) spectra of the Nyquist OTDM-WDM signal in (d) at WSS node.

Fig. 3
Fig. 3

Eye patterns of back-to-back signal at different baudrates: 43 Gbaud (a), 86 Gbaud (b), 172 Gbaud (c), and 344 Gbaud (d). Nyquist pulse waveforms (dot) and RC function fitting (solid line) for 86 Gbaud, 172 Gbaud, and 344 Gbaud Nyquist OTDM signals (e). The signals are captured by high resolution (1 ps) optical sampling oscilloscope (OSO).

Fig. 4
Fig. 4

RMS timing jitter of 43 GHz RF clock recovered from different baudrate signals as a function of transmission distance (a). Insets in (a) are the recovered clocks for 172 Gbaud signal after 4 spans, and for 344 Gbaud signal after 2 spans. RF spectrum of 172 Gbaud Nyquist OTDM over 4 spans after optical-electric conversion (b).

Fig. 5
Fig. 5

Eye patterns of different baudrate signals dropped at WSS nodes.

Fig. 6
Fig. 6

BER characteristics of Nyquist signals (X-polarization) at different baudrates: 43 Gbaud (a), 86 Gbaud (b), 172 Gbaud (c), and 344 Gbaud (d), dropped at WSS nodes. Inset in each case is eye pattern of demultiplexed tributary.

Fig. 7
Fig. 7

Power penalty at BER of 10−9 of all demultiplexed tributaries (X- and Y-polarization) for 172 Gbaud Nyquist OTDM after 4 spans (a), and for 344 Gbaud Nyquist OTDM after 2 spans (b).

Metrics