Abstract

We propose a plasmon-induced transparency (PIT) nanocavity for achieving nanoscopic coherent light source. The compact cavity is constructed by a pair of detuned nano-stubs incorporated with four-level gain medium. The PIT response enables the reduction of the coupling loss from cavity to waveguide while keeping the cavity size unchanged, different from the end-facet Fabry-Pérot cavity in which the radiation loss decreases at the cost of size increment. In order to study the lasing behavior of surface plasmon wave in the PIT cavity, the self-consistent finite element method is employed to model the interactions between gain and propagating surface plasmons. The dynamics of the whole lasing process is observed, and the linear output-input relation is obtained for the single mode plasmon lasing. It is demonstrated that smaller stub-pair detuning provides stronger feedback inside the cavity. Consequently, the lasing threshold of pumping rate decreases quadratically with the decreasing of detuning. However, the output-input extraction efficiency will improve when the detuning is not so small. One of the advantages for the proposal is that the lasing output power from the cavity can directly couple towards the metal-dielectric-metal waveguide platform, facilitating the field of integrated plasmonic circuits and molecular-scale coherent light source.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N.  Wang, J.  Dong, Y.  Yang, Y.  Zhang, X.  He, C.  Wang, B.  Li, G.  Yang, “Nanoscopic light sources: General strategy for nanoscopic light source fabrication,” Adv. Mater. 23(26), 2937–2940 (2011).
    [CrossRef]
  2. R. F.  Oulton, V. J.  Sorger, T.  Zentgraf, R. M.  Ma, C.  Gladden, L.  Dai, G.  Bartal, X.  Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  3. M. T.  Hill, M.  Marell, E. S. P.  Leong, B.  Smalbrugge, Y.  Zhu, M.  Sun, P. J.  van Veldhoven, E. J.  Geluk, F.  Karouta, Y.-S.  Oei, R.  Nötzel, C.-Z.  Ning, M. K.  Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
    [CrossRef] [PubMed]
  4. S.-W.  Chang, T.-R.  Lin, S. L.  Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18(14), 15039–15053 (2010).
    [CrossRef] [PubMed]
  5. Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
    [CrossRef] [PubMed]
  6. M.  Khajavikhan, A.  Simic, M.  Katz, J. H.  Lee, B.  Slutsky, A.  Mizrahi, V.  Lomakin, Y.  Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
    [CrossRef] [PubMed]
  7. M. J. H.  Marell, B.  Smalbrugge, E. J.  Geluk, P. J.  van Veldhoven, B.  Barcones, B.  Koopmans, R.  Nötzel, M. K.  Smit, M. T.  Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19(16), 15109–15118 (2011).
    [CrossRef] [PubMed]
  8. R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, G.  Bartal, X.  Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
    [CrossRef] [PubMed]
  9. R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, X.  Zhang, “Plasmon lasers: Coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013).
    [CrossRef]
  10. P.  Berini, I.  De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
    [CrossRef]
  11. S. I.  Bozhevolnyi, A. B.  Evlyukhin, A.  Pors, M. G.  Nielsen, M.  Willatzen, O.  Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
    [CrossRef]
  12. Z.  Han, S. I.  Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
    [CrossRef] [PubMed]
  13. Y.  Huang, C.  Min, G.  Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
    [CrossRef]
  14. X.  Piao, S.  Yu, N.  Park, “Control of fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20(17), 18994–18999 (2012).
    [CrossRef] [PubMed]
  15. G.  Wang, H.  Lu, X.  Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20(19), 20902–20907 (2012).
    [CrossRef] [PubMed]
  16. N. I.  Zheludev, S. L.  Prosvirnin, N.  Papasimakis, V. A.  Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
    [CrossRef]
  17. Z.-G.  Dong, H.  Liu, J.-X.  Cao, T.  Li, S.-M.  Wang, S.-N.  Zhu, X.  Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
    [CrossRef]
  18. Z.-L.  Deng, J.-W.  Dong, H.-Z.  Wang, S. H.  Cheng, J.  Li, “Power transmission and group delay in gain-assisted plasmon-induced transparency,” AIP Adv. 3(3), 032138 (2013).
    [CrossRef]
  19. A.  Fang, T.  Koschny, C. M.  Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12(2), 024013 (2010).
    [CrossRef]
  20. A.  Fang, T.  Koschny, M.  Wegener, C. M.  Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
    [CrossRef]
  21. A.  Fang, T.  Koschny, C. M.  Soukoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82(12), 121102 (2010).
    [CrossRef]
  22. A.  Fang, Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19(13), 12688–12699 (2011).
    [CrossRef] [PubMed]
  23. Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett. 108(18), 187402 (2012).
    [CrossRef] [PubMed]
  24. S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
    [CrossRef] [PubMed]
  25. J. M.  Hamm, S.  Wuestner, K. L.  Tsakmakidis, O.  Hess, “Theory of light amplification in active fishnet metamaterials,” Phys. Rev. Lett. 107(16), 167405 (2011).
    [CrossRef] [PubMed]
  26. S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. London, Ser. A 369(1950), 3525–3550 (2011).
    [CrossRef] [PubMed]
  27. A.  Pusch, S.  Wuestner, J. M.  Hamm, K. L.  Tsakmakidis, O.  Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: A Maxwell-Bloch langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
    [CrossRef] [PubMed]
  28. S.  Wuestner, J. M.  Hamm, A.  Pusch, F.  Renn, K. L.  Tsakmakidis, O.  Hess, “Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials,” Phys. Rev. B 85(20), 201406 (2012).
    [CrossRef]
  29. C.  Fietz, C. M.  Soukoulis, “Finite element simulation of microphotonic lasing system,” Opt. Express 20(10), 11548–11560 (2012).
    [CrossRef] [PubMed]
  30. A. E. Siegman, Lasers (University Science Books, 1986).
  31. Y.  Matsuzaki, T.  Okamoto, M.  Haraguchi, M.  Fukui, M.  Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
    [CrossRef] [PubMed]

2013 (2)

R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, X.  Zhang, “Plasmon lasers: Coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013).
[CrossRef]

Z.-L.  Deng, J.-W.  Dong, H.-Z.  Wang, S. H.  Cheng, J.  Li, “Power transmission and group delay in gain-assisted plasmon-induced transparency,” AIP Adv. 3(3), 032138 (2013).
[CrossRef]

2012 (8)

X.  Piao, S.  Yu, N.  Park, “Control of fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20(17), 18994–18999 (2012).
[CrossRef] [PubMed]

G.  Wang, H.  Lu, X.  Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20(19), 20902–20907 (2012).
[CrossRef] [PubMed]

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

M.  Khajavikhan, A.  Simic, M.  Katz, J. H.  Lee, B.  Slutsky, A.  Mizrahi, V.  Lomakin, Y.  Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett. 108(18), 187402 (2012).
[CrossRef] [PubMed]

A.  Pusch, S.  Wuestner, J. M.  Hamm, K. L.  Tsakmakidis, O.  Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: A Maxwell-Bloch langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[CrossRef] [PubMed]

S.  Wuestner, J. M.  Hamm, A.  Pusch, F.  Renn, K. L.  Tsakmakidis, O.  Hess, “Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials,” Phys. Rev. B 85(20), 201406 (2012).
[CrossRef]

C.  Fietz, C. M.  Soukoulis, “Finite element simulation of microphotonic lasing system,” Opt. Express 20(10), 11548–11560 (2012).
[CrossRef] [PubMed]

2011 (10)

A.  Fang, Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19(13), 12688–12699 (2011).
[CrossRef] [PubMed]

J. M.  Hamm, S.  Wuestner, K. L.  Tsakmakidis, O.  Hess, “Theory of light amplification in active fishnet metamaterials,” Phys. Rev. Lett. 107(16), 167405 (2011).
[CrossRef] [PubMed]

S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. London, Ser. A 369(1950), 3525–3550 (2011).
[CrossRef] [PubMed]

M. J. H.  Marell, B.  Smalbrugge, E. J.  Geluk, P. J.  van Veldhoven, B.  Barcones, B.  Koopmans, R.  Nötzel, M. K.  Smit, M. T.  Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19(16), 15109–15118 (2011).
[CrossRef] [PubMed]

R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, G.  Bartal, X.  Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[CrossRef] [PubMed]

P.  Berini, I.  De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[CrossRef]

S. I.  Bozhevolnyi, A. B.  Evlyukhin, A.  Pors, M. G.  Nielsen, M.  Willatzen, O.  Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[CrossRef]

Z.  Han, S. I.  Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
[CrossRef] [PubMed]

Y.  Huang, C.  Min, G.  Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[CrossRef]

N.  Wang, J.  Dong, Y.  Yang, Y.  Zhang, X.  He, C.  Wang, B.  Li, G.  Yang, “Nanoscopic light sources: General strategy for nanoscopic light source fabrication,” Adv. Mater. 23(26), 2937–2940 (2011).
[CrossRef]

2010 (5)

A.  Fang, T.  Koschny, C. M.  Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12(2), 024013 (2010).
[CrossRef]

S.-W.  Chang, T.-R.  Lin, S. L.  Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18(14), 15039–15053 (2010).
[CrossRef] [PubMed]

Z.-G.  Dong, H.  Liu, J.-X.  Cao, T.  Li, S.-M.  Wang, S.-N.  Zhu, X.  Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[CrossRef]

A.  Fang, T.  Koschny, C. M.  Soukoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82(12), 121102 (2010).
[CrossRef]

S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
[CrossRef] [PubMed]

2009 (3)

A.  Fang, T.  Koschny, M.  Wegener, C. M.  Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[CrossRef]

R. F.  Oulton, V. J.  Sorger, T.  Zentgraf, R. M.  Ma, C.  Gladden, L.  Dai, G.  Bartal, X.  Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

M. T.  Hill, M.  Marell, E. S. P.  Leong, B.  Smalbrugge, Y.  Zhu, M.  Sun, P. J.  van Veldhoven, E. J.  Geluk, F.  Karouta, Y.-S.  Oei, R.  Nötzel, C.-Z.  Ning, M. K.  Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[CrossRef] [PubMed]

2008 (2)

Albrektsen, O.

S. I.  Bozhevolnyi, A. B.  Evlyukhin, A.  Pors, M. G.  Nielsen, M.  Willatzen, O.  Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[CrossRef]

Barcones, B.

Bartal, G.

R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, G.  Bartal, X.  Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[CrossRef] [PubMed]

R. F.  Oulton, V. J.  Sorger, T.  Zentgraf, R. M.  Ma, C.  Gladden, L.  Dai, G.  Bartal, X.  Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Berini, P.

P.  Berini, I.  De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[CrossRef]

Bozhevolnyi, S. I.

S. I.  Bozhevolnyi, A. B.  Evlyukhin, A.  Pors, M. G.  Nielsen, M.  Willatzen, O.  Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[CrossRef]

Z.  Han, S. I.  Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
[CrossRef] [PubMed]

Cao, J.-X.

Z.-G.  Dong, H.  Liu, J.-X.  Cao, T.  Li, S.-M.  Wang, S.-N.  Zhu, X.  Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[CrossRef]

Chang, S.-W.

Chang, W.-H.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Chen, H.-Y.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Chen, L.-J.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Cheng, S. H.

Z.-L.  Deng, J.-W.  Dong, H.-Z.  Wang, S. H.  Cheng, J.  Li, “Power transmission and group delay in gain-assisted plasmon-induced transparency,” AIP Adv. 3(3), 032138 (2013).
[CrossRef]

Chuang, S. L.

Dabidian, N.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Dai, L.

R. F.  Oulton, V. J.  Sorger, T.  Zentgraf, R. M.  Ma, C.  Gladden, L.  Dai, G.  Bartal, X.  Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

De Leon, I.

P.  Berini, I.  De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[CrossRef]

Deng, Z.-L.

Z.-L.  Deng, J.-W.  Dong, H.-Z.  Wang, S. H.  Cheng, J.  Li, “Power transmission and group delay in gain-assisted plasmon-induced transparency,” AIP Adv. 3(3), 032138 (2013).
[CrossRef]

Dong, J.

N.  Wang, J.  Dong, Y.  Yang, Y.  Zhang, X.  He, C.  Wang, B.  Li, G.  Yang, “Nanoscopic light sources: General strategy for nanoscopic light source fabrication,” Adv. Mater. 23(26), 2937–2940 (2011).
[CrossRef]

Dong, J.-W.

Z.-L.  Deng, J.-W.  Dong, H.-Z.  Wang, S. H.  Cheng, J.  Li, “Power transmission and group delay in gain-assisted plasmon-induced transparency,” AIP Adv. 3(3), 032138 (2013).
[CrossRef]

Dong, Z.-G.

Z.-G.  Dong, H.  Liu, J.-X.  Cao, T.  Li, S.-M.  Wang, S.-N.  Zhu, X.  Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[CrossRef]

Evlyukhin, A. B.

S. I.  Bozhevolnyi, A. B.  Evlyukhin, A.  Pors, M. G.  Nielsen, M.  Willatzen, O.  Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[CrossRef]

Fainman, Y.

M.  Khajavikhan, A.  Simic, M.  Katz, J. H.  Lee, B.  Slutsky, A.  Mizrahi, V.  Lomakin, Y.  Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Fang, A.

A.  Fang, Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19(13), 12688–12699 (2011).
[CrossRef] [PubMed]

A.  Fang, T.  Koschny, C. M.  Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12(2), 024013 (2010).
[CrossRef]

A.  Fang, T.  Koschny, C. M.  Soukoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82(12), 121102 (2010).
[CrossRef]

A.  Fang, T.  Koschny, M.  Wegener, C. M.  Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[CrossRef]

Fedotov, V. A.

N. I.  Zheludev, S. L.  Prosvirnin, N.  Papasimakis, V. A.  Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

Fietz, C.

Fukui, M.

Geluk, E. J.

Gladden, C.

R. F.  Oulton, V. J.  Sorger, T.  Zentgraf, R. M.  Ma, C.  Gladden, L.  Dai, G.  Bartal, X.  Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Gwo, S.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Hamm, J. M.

A.  Pusch, S.  Wuestner, J. M.  Hamm, K. L.  Tsakmakidis, O.  Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: A Maxwell-Bloch langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[CrossRef] [PubMed]

S.  Wuestner, J. M.  Hamm, A.  Pusch, F.  Renn, K. L.  Tsakmakidis, O.  Hess, “Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials,” Phys. Rev. B 85(20), 201406 (2012).
[CrossRef]

S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. London, Ser. A 369(1950), 3525–3550 (2011).
[CrossRef] [PubMed]

J. M.  Hamm, S.  Wuestner, K. L.  Tsakmakidis, O.  Hess, “Theory of light amplification in active fishnet metamaterials,” Phys. Rev. Lett. 107(16), 167405 (2011).
[CrossRef] [PubMed]

S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
[CrossRef] [PubMed]

Han, Z.

Haraguchi, M.

He, X.

N.  Wang, J.  Dong, Y.  Yang, Y.  Zhang, X.  He, C.  Wang, B.  Li, G.  Yang, “Nanoscopic light sources: General strategy for nanoscopic light source fabrication,” Adv. Mater. 23(26), 2937–2940 (2011).
[CrossRef]

Hess, O.

A.  Pusch, S.  Wuestner, J. M.  Hamm, K. L.  Tsakmakidis, O.  Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: A Maxwell-Bloch langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[CrossRef] [PubMed]

S.  Wuestner, J. M.  Hamm, A.  Pusch, F.  Renn, K. L.  Tsakmakidis, O.  Hess, “Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials,” Phys. Rev. B 85(20), 201406 (2012).
[CrossRef]

J. M.  Hamm, S.  Wuestner, K. L.  Tsakmakidis, O.  Hess, “Theory of light amplification in active fishnet metamaterials,” Phys. Rev. Lett. 107(16), 167405 (2011).
[CrossRef] [PubMed]

S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. London, Ser. A 369(1950), 3525–3550 (2011).
[CrossRef] [PubMed]

S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
[CrossRef] [PubMed]

Hill, M. T.

Huang, Y.

Y.  Huang, C.  Min, G.  Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[CrossRef]

Huang, Z.

Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett. 108(18), 187402 (2012).
[CrossRef] [PubMed]

A.  Fang, Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19(13), 12688–12699 (2011).
[CrossRef] [PubMed]

Karouta, F.

Katz, M.

M.  Khajavikhan, A.  Simic, M.  Katz, J. H.  Lee, B.  Slutsky, A.  Mizrahi, V.  Lomakin, Y.  Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Khajavikhan, M.

M.  Khajavikhan, A.  Simic, M.  Katz, J. H.  Lee, B.  Slutsky, A.  Mizrahi, V.  Lomakin, Y.  Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Kim, J.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Koopmans, B.

Koschny, T.

Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett. 108(18), 187402 (2012).
[CrossRef] [PubMed]

A.  Fang, Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19(13), 12688–12699 (2011).
[CrossRef] [PubMed]

A.  Fang, T.  Koschny, C. M.  Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12(2), 024013 (2010).
[CrossRef]

A.  Fang, T.  Koschny, C. M.  Soukoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82(12), 121102 (2010).
[CrossRef]

A.  Fang, T.  Koschny, M.  Wegener, C. M.  Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[CrossRef]

Lee, J. H.

M.  Khajavikhan, A.  Simic, M.  Katz, J. H.  Lee, B.  Slutsky, A.  Mizrahi, V.  Lomakin, Y.  Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Leong, E. S. P.

Li, B.

N.  Wang, J.  Dong, Y.  Yang, Y.  Zhang, X.  He, C.  Wang, B.  Li, G.  Yang, “Nanoscopic light sources: General strategy for nanoscopic light source fabrication,” Adv. Mater. 23(26), 2937–2940 (2011).
[CrossRef]

Li, B.-H.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Li, J.

Z.-L.  Deng, J.-W.  Dong, H.-Z.  Wang, S. H.  Cheng, J.  Li, “Power transmission and group delay in gain-assisted plasmon-induced transparency,” AIP Adv. 3(3), 032138 (2013).
[CrossRef]

Li, T.

Z.-G.  Dong, H.  Liu, J.-X.  Cao, T.  Li, S.-M.  Wang, S.-N.  Zhu, X.  Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[CrossRef]

Lin, T.-R.

Liu, H.

Z.-G.  Dong, H.  Liu, J.-X.  Cao, T.  Li, S.-M.  Wang, S.-N.  Zhu, X.  Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[CrossRef]

Liu, X.

Lomakin, V.

M.  Khajavikhan, A.  Simic, M.  Katz, J. H.  Lee, B.  Slutsky, A.  Mizrahi, V.  Lomakin, Y.  Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Lu, H.

Lu, M.-Y.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Lu, Y.-J.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Ma, R. M.

R. F.  Oulton, V. J.  Sorger, T.  Zentgraf, R. M.  Ma, C.  Gladden, L.  Dai, G.  Bartal, X.  Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Ma, R.-M.

R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, X.  Zhang, “Plasmon lasers: Coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013).
[CrossRef]

R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, G.  Bartal, X.  Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[CrossRef] [PubMed]

Marell, M.

Marell, M. J. H.

Matsuzaki, Y.

Min, C.

Y.  Huang, C.  Min, G.  Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[CrossRef]

Mizrahi, A.

M.  Khajavikhan, A.  Simic, M.  Katz, J. H.  Lee, B.  Slutsky, A.  Mizrahi, V.  Lomakin, Y.  Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Nakagaki, M.

Nielsen, M. G.

S. I.  Bozhevolnyi, A. B.  Evlyukhin, A.  Pors, M. G.  Nielsen, M.  Willatzen, O.  Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[CrossRef]

Ning, C.-Z.

Nötzel, R.

Oei, Y.-S.

Okamoto, T.

Oulton, R. F.

R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, X.  Zhang, “Plasmon lasers: Coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013).
[CrossRef]

R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, G.  Bartal, X.  Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[CrossRef] [PubMed]

R. F.  Oulton, V. J.  Sorger, T.  Zentgraf, R. M.  Ma, C.  Gladden, L.  Dai, G.  Bartal, X.  Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Papasimakis, N.

N. I.  Zheludev, S. L.  Prosvirnin, N.  Papasimakis, V. A.  Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

Park, N.

Piao, X.

Pors, A.

S. I.  Bozhevolnyi, A. B.  Evlyukhin, A.  Pors, M. G.  Nielsen, M.  Willatzen, O.  Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[CrossRef]

Prosvirnin, S. L.

N. I.  Zheludev, S. L.  Prosvirnin, N.  Papasimakis, V. A.  Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

Pusch, A.

A.  Pusch, S.  Wuestner, J. M.  Hamm, K. L.  Tsakmakidis, O.  Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: A Maxwell-Bloch langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[CrossRef] [PubMed]

S.  Wuestner, J. M.  Hamm, A.  Pusch, F.  Renn, K. L.  Tsakmakidis, O.  Hess, “Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials,” Phys. Rev. B 85(20), 201406 (2012).
[CrossRef]

S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. London, Ser. A 369(1950), 3525–3550 (2011).
[CrossRef] [PubMed]

S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
[CrossRef] [PubMed]

Qiu, X.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Renn, F.

S.  Wuestner, J. M.  Hamm, A.  Pusch, F.  Renn, K. L.  Tsakmakidis, O.  Hess, “Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials,” Phys. Rev. B 85(20), 201406 (2012).
[CrossRef]

Sanders, C. E.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Shih, C.-K.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Shvets, G.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Simic, A.

M.  Khajavikhan, A.  Simic, M.  Katz, J. H.  Lee, B.  Slutsky, A.  Mizrahi, V.  Lomakin, Y.  Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Slutsky, B.

M.  Khajavikhan, A.  Simic, M.  Katz, J. H.  Lee, B.  Slutsky, A.  Mizrahi, V.  Lomakin, Y.  Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

Smalbrugge, B.

Smit, M. K.

Sorger, V. J.

R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, X.  Zhang, “Plasmon lasers: Coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013).
[CrossRef]

R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, G.  Bartal, X.  Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[CrossRef] [PubMed]

R. F.  Oulton, V. J.  Sorger, T.  Zentgraf, R. M.  Ma, C.  Gladden, L.  Dai, G.  Bartal, X.  Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Soukoulis, C. M.

Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett. 108(18), 187402 (2012).
[CrossRef] [PubMed]

C.  Fietz, C. M.  Soukoulis, “Finite element simulation of microphotonic lasing system,” Opt. Express 20(10), 11548–11560 (2012).
[CrossRef] [PubMed]

A.  Fang, Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19(13), 12688–12699 (2011).
[CrossRef] [PubMed]

A.  Fang, T.  Koschny, C. M.  Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12(2), 024013 (2010).
[CrossRef]

A.  Fang, T.  Koschny, C. M.  Soukoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82(12), 121102 (2010).
[CrossRef]

A.  Fang, T.  Koschny, M.  Wegener, C. M.  Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[CrossRef]

Sun, M.

Tsakmakidis, K. L.

A.  Pusch, S.  Wuestner, J. M.  Hamm, K. L.  Tsakmakidis, O.  Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: A Maxwell-Bloch langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[CrossRef] [PubMed]

S.  Wuestner, J. M.  Hamm, A.  Pusch, F.  Renn, K. L.  Tsakmakidis, O.  Hess, “Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials,” Phys. Rev. B 85(20), 201406 (2012).
[CrossRef]

J. M.  Hamm, S.  Wuestner, K. L.  Tsakmakidis, O.  Hess, “Theory of light amplification in active fishnet metamaterials,” Phys. Rev. Lett. 107(16), 167405 (2011).
[CrossRef] [PubMed]

S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. London, Ser. A 369(1950), 3525–3550 (2011).
[CrossRef] [PubMed]

S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
[CrossRef] [PubMed]

van Veldhoven, P. J.

Veronis, G.

Y.  Huang, C.  Min, G.  Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[CrossRef]

Wang, C.

N.  Wang, J.  Dong, Y.  Yang, Y.  Zhang, X.  He, C.  Wang, B.  Li, G.  Yang, “Nanoscopic light sources: General strategy for nanoscopic light source fabrication,” Adv. Mater. 23(26), 2937–2940 (2011).
[CrossRef]

Wang, C.-Y.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Wang, G.

Wang, H.-Z.

Z.-L.  Deng, J.-W.  Dong, H.-Z.  Wang, S. H.  Cheng, J.  Li, “Power transmission and group delay in gain-assisted plasmon-induced transparency,” AIP Adv. 3(3), 032138 (2013).
[CrossRef]

Wang, N.

N.  Wang, J.  Dong, Y.  Yang, Y.  Zhang, X.  He, C.  Wang, B.  Li, G.  Yang, “Nanoscopic light sources: General strategy for nanoscopic light source fabrication,” Adv. Mater. 23(26), 2937–2940 (2011).
[CrossRef]

Wang, S.-M.

Z.-G.  Dong, H.  Liu, J.-X.  Cao, T.  Li, S.-M.  Wang, S.-N.  Zhu, X.  Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[CrossRef]

Wegener, M.

A.  Fang, T.  Koschny, M.  Wegener, C. M.  Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[CrossRef]

Willatzen, M.

S. I.  Bozhevolnyi, A. B.  Evlyukhin, A.  Pors, M. G.  Nielsen, M.  Willatzen, O.  Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[CrossRef]

Wu, C.

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Wuestner, S.

A.  Pusch, S.  Wuestner, J. M.  Hamm, K. L.  Tsakmakidis, O.  Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: A Maxwell-Bloch langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[CrossRef] [PubMed]

S.  Wuestner, J. M.  Hamm, A.  Pusch, F.  Renn, K. L.  Tsakmakidis, O.  Hess, “Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials,” Phys. Rev. B 85(20), 201406 (2012).
[CrossRef]

S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. London, Ser. A 369(1950), 3525–3550 (2011).
[CrossRef] [PubMed]

J. M.  Hamm, S.  Wuestner, K. L.  Tsakmakidis, O.  Hess, “Theory of light amplification in active fishnet metamaterials,” Phys. Rev. Lett. 107(16), 167405 (2011).
[CrossRef] [PubMed]

S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
[CrossRef] [PubMed]

Yang, G.

N.  Wang, J.  Dong, Y.  Yang, Y.  Zhang, X.  He, C.  Wang, B.  Li, G.  Yang, “Nanoscopic light sources: General strategy for nanoscopic light source fabrication,” Adv. Mater. 23(26), 2937–2940 (2011).
[CrossRef]

Yang, Y.

N.  Wang, J.  Dong, Y.  Yang, Y.  Zhang, X.  He, C.  Wang, B.  Li, G.  Yang, “Nanoscopic light sources: General strategy for nanoscopic light source fabrication,” Adv. Mater. 23(26), 2937–2940 (2011).
[CrossRef]

Yu, S.

Zentgraf, T.

R. F.  Oulton, V. J.  Sorger, T.  Zentgraf, R. M.  Ma, C.  Gladden, L.  Dai, G.  Bartal, X.  Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, X.

R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, X.  Zhang, “Plasmon lasers: Coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013).
[CrossRef]

R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, G.  Bartal, X.  Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[CrossRef] [PubMed]

Z.-G.  Dong, H.  Liu, J.-X.  Cao, T.  Li, S.-M.  Wang, S.-N.  Zhu, X.  Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[CrossRef]

R. F.  Oulton, V. J.  Sorger, T.  Zentgraf, R. M.  Ma, C.  Gladden, L.  Dai, G.  Bartal, X.  Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, Y.

N.  Wang, J.  Dong, Y.  Yang, Y.  Zhang, X.  He, C.  Wang, B.  Li, G.  Yang, “Nanoscopic light sources: General strategy for nanoscopic light source fabrication,” Adv. Mater. 23(26), 2937–2940 (2011).
[CrossRef]

Zheludev, N. I.

N. I.  Zheludev, S. L.  Prosvirnin, N.  Papasimakis, V. A.  Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

Zhu, S.-N.

Z.-G.  Dong, H.  Liu, J.-X.  Cao, T.  Li, S.-M.  Wang, S.-N.  Zhu, X.  Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[CrossRef]

Zhu, Y.

ACS Nano (1)

A.  Pusch, S.  Wuestner, J. M.  Hamm, K. L.  Tsakmakidis, O.  Hess, “Coherent amplification and noise in gain-enhanced nanoplasmonic metamaterials: A Maxwell-Bloch langevin approach,” ACS Nano 6(3), 2420–2431 (2012).
[CrossRef] [PubMed]

Adv. Mater. (1)

N.  Wang, J.  Dong, Y.  Yang, Y.  Zhang, X.  He, C.  Wang, B.  Li, G.  Yang, “Nanoscopic light sources: General strategy for nanoscopic light source fabrication,” Adv. Mater. 23(26), 2937–2940 (2011).
[CrossRef]

AIP Adv. (1)

Z.-L.  Deng, J.-W.  Dong, H.-Z.  Wang, S. H.  Cheng, J.  Li, “Power transmission and group delay in gain-assisted plasmon-induced transparency,” AIP Adv. 3(3), 032138 (2013).
[CrossRef]

Appl. Phys. Lett. (2)

Y.  Huang, C.  Min, G.  Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011).
[CrossRef]

Z.-G.  Dong, H.  Liu, J.-X.  Cao, T.  Li, S.-M.  Wang, S.-N.  Zhu, X.  Zhang, “Enhanced sensing performance by the plasmonic analog of electromagnetically induced transparency in active metamaterials,” Appl. Phys. Lett. 97(11), 114101 (2010).
[CrossRef]

J. Opt. (1)

A.  Fang, T.  Koschny, C. M.  Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12(2), 024013 (2010).
[CrossRef]

Laser Photonics Rev. (1)

R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, X.  Zhang, “Plasmon lasers: Coherent light source at molecular scales,” Laser Photonics Rev. 7(1), 1–21 (2013).
[CrossRef]

Nat. Mater. (1)

R.-M.  Ma, R. F.  Oulton, V. J.  Sorger, G.  Bartal, X.  Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011).
[CrossRef] [PubMed]

Nat. Photonics (2)

N. I.  Zheludev, S. L.  Prosvirnin, N.  Papasimakis, V. A.  Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008).
[CrossRef]

P.  Berini, I.  De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011).
[CrossRef]

Nature (2)

R. F.  Oulton, V. J.  Sorger, T.  Zentgraf, R. M.  Ma, C.  Gladden, L.  Dai, G.  Bartal, X.  Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

M.  Khajavikhan, A.  Simic, M.  Katz, J. H.  Lee, B.  Slutsky, A.  Mizrahi, V.  Lomakin, Y.  Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012).
[CrossRef] [PubMed]

New J. Phys. (1)

S. I.  Bozhevolnyi, A. B.  Evlyukhin, A.  Pors, M. G.  Nielsen, M.  Willatzen, O.  Albrektsen, “Optical transparency by detuned electrical dipoles,” New J. Phys. 13(2), 023034 (2011).
[CrossRef]

Opt. Express (9)

Z.  Han, S. I.  Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011).
[CrossRef] [PubMed]

M. T.  Hill, M.  Marell, E. S. P.  Leong, B.  Smalbrugge, Y.  Zhu, M.  Sun, P. J.  van Veldhoven, E. J.  Geluk, F.  Karouta, Y.-S.  Oei, R.  Nötzel, C.-Z.  Ning, M. K.  Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009).
[CrossRef] [PubMed]

S.-W.  Chang, T.-R.  Lin, S. L.  Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18(14), 15039–15053 (2010).
[CrossRef] [PubMed]

M. J. H.  Marell, B.  Smalbrugge, E. J.  Geluk, P. J.  van Veldhoven, B.  Barcones, B.  Koopmans, R.  Nötzel, M. K.  Smit, M. T.  Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19(16), 15109–15118 (2011).
[CrossRef] [PubMed]

X.  Piao, S.  Yu, N.  Park, “Control of fano asymmetry in plasmon induced transparency and its application to plasmonic waveguide modulator,” Opt. Express 20(17), 18994–18999 (2012).
[CrossRef] [PubMed]

G.  Wang, H.  Lu, X.  Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20(19), 20902–20907 (2012).
[CrossRef] [PubMed]

A.  Fang, Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19(13), 12688–12699 (2011).
[CrossRef] [PubMed]

C.  Fietz, C. M.  Soukoulis, “Finite element simulation of microphotonic lasing system,” Opt. Express 20(10), 11548–11560 (2012).
[CrossRef] [PubMed]

Y.  Matsuzaki, T.  Okamoto, M.  Haraguchi, M.  Fukui, M.  Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16(21), 16314–16325 (2008).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. London, Ser. A (1)

S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Gain and plasmon dynamics in active negative-index metamaterials,” Philos. Trans. R. Soc. London, Ser. A 369(1950), 3525–3550 (2011).
[CrossRef] [PubMed]

Phys. Rev. B (3)

S.  Wuestner, J. M.  Hamm, A.  Pusch, F.  Renn, K. L.  Tsakmakidis, O.  Hess, “Control and dynamic competition of bright and dark lasing states in active nanoplasmonic metamaterials,” Phys. Rev. B 85(20), 201406 (2012).
[CrossRef]

A.  Fang, T.  Koschny, M.  Wegener, C. M.  Soukoulis, “Self-consistent calculation of metamaterials with gain,” Phys. Rev. B 79(24), 241104 (2009).
[CrossRef]

A.  Fang, T.  Koschny, C. M.  Soukoulis, “Self-consistent calculations of loss-compensated fishnet metamaterials,” Phys. Rev. B 82(12), 121102 (2010).
[CrossRef]

Phys. Rev. Lett. (3)

Z.  Huang, T.  Koschny, C. M.  Soukoulis, “Theory of pump-probe experiments of metallic metamaterials coupled to a gain medium,” Phys. Rev. Lett. 108(18), 187402 (2012).
[CrossRef] [PubMed]

S.  Wuestner, A.  Pusch, K. L.  Tsakmakidis, J. M.  Hamm, O.  Hess, “Overcoming losses with gain in a negative refractive index metamaterial,” Phys. Rev. Lett. 105(12), 127401 (2010).
[CrossRef] [PubMed]

J. M.  Hamm, S.  Wuestner, K. L.  Tsakmakidis, O.  Hess, “Theory of light amplification in active fishnet metamaterials,” Phys. Rev. Lett. 107(16), 167405 (2011).
[CrossRef] [PubMed]

Science (1)

Y.-J.  Lu, J.  Kim, H.-Y.  Chen, C.  Wu, N.  Dabidian, C. E.  Sanders, C.-Y.  Wang, M.-Y.  Lu, B.-H.  Li, X.  Qiu, W.-H.  Chang, L.-J.  Chen, G.  Shvets, C.-K.  Shih, S.  Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337(6093), 450–453 (2012).
[CrossRef] [PubMed]

Other (1)

A. E. Siegman, Lasers (University Science Books, 1986).

Supplementary Material (10)

» Media 1: AVI (1012 KB)     
» Media 2: AVI (2045 KB)     
» Media 3: AVI (1955 KB)     
» Media 4: AVI (2022 KB)     
» Media 5: AVI (1815 KB)     
» Media 6: AVI (1012 KB)     
» Media 7: AVI (1955 KB)     
» Media 8: AVI (2022 KB)     
» Media 9: AVI (1815 KB)     
» Media 10: AVI (2045 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of the studied structure. (b) Energy level diagram for the gain medium. (c) Transmission spectra of ‘cold cavity’ (without gain) for varying detunings. (d) Magnetic and electric field patterns at the PIT frequency for ΔL = L1-L2 = 20nm.

Fig. 2
Fig. 2

Radiative quality factor of (a) the PIT cavity and (b) the end-facet FP cavity in the MDM platform for different geometry parameters. For the same radiative quality factor (e.g. 100), the PIT cavity requires ΔL = 20nm with the total length of L = L1 + L2 = 300nm, while the end-facet FP cavity requires the length to be L = 4000nm.

Fig. 3
Fig. 3

Evolution of the transmission, reflection and absorption spectra when increasing the pumping rate imposed on the gain medium for ΔL = L1-L2 = 20nm (Media 1).

Fig. 4
Fig. 4

Peak transmittance as a function of the pumping rate below lasing threshold for different detunings. In the loss-compensation regime (Tmax<1), the smaller the detuning, the lower the peak transmittance. In the amplification regime (Tmax>1), the smaller the detuning, the higher the peak transmittance.

Fig. 5
Fig. 5

Dynamics of (a) magnetic field amplitudes and (b) population inversions in the whole lasing process for ΔL = 20nm and Γp = 0.2ns−1. The spatial profiles of (c) the magnetic field amplitude |Hz| (Media 2), (d) the population inversion (N2-N1)/Ntot (Media 3), (e) x-component of electric field |Ex| (Media 4), and (f) y-component of electric field |Ey| (Media 5).

Fig. 6
Fig. 6

(a) Output intensity and (b) internal cavity intensity as a function of the pumping rate for differnt detunings ΔL. The insets show the slopes of the lines after lasing threshold. (c) Relationship between the threshold of pumping rate and the detuning ΔL. We can fit the curve as a quadratic function Γpth = 0.001ΔL2 + 0.081. (d) The contour for optimal output coupling in the plane of the detuning and the pumping rate.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

2 P D ( r,t ) t 2 +γ P D ( r,t ) t = ε 0 ω p 2 E( r,t ),
2 P a ( r,t ) t 2 + γ a P a ( r,t ) t + ω a 2 P a ( r,t )= σ a ( N 2 ( r,t ) N 1 ( r,t ) )E( r,t ),
N 3 ( r,t ) t = Γ p N 0 ( r,t ) N 3 ( r,t ) τ 32 ,
N 2 ( r,t ) t = N 3 ( r,t ) τ 32 + 1 ω a E( r,t ) P a ( r,t ) t N 2 ( r,t ) τ 21 ,
N 1 ( r,t ) t = N 2 ( r,t ) τ 21 1 ω a E( r,t ) P a ( r,t ) t N 1 ( r,t ) τ 10 ,
N 0 ( r,t ) t = N 1 ( r,t ) τ 10 Γ p N 0 ( r,t ).
X( r,t )=[ X 1 ( r,t ) e i ω 1 t + X 1 * ( r,t ) e i ω 1 t ]/2,
1 μ 0 ×× A 1 + ε ε 0 ( ω 1 2 A 1 +2i ω 1 A 1 t + 2 A 1 t 2 )+σ( i ω 1 A 1 + A 1 t )=i ω 1 P 1 + P 1 t + J 1 ,
E 1 ( r,t )=i ω 1 A 1 ( r,t ) A 1 ( r,t )/t ( E( r,t )=A( r,t )/t ), B 1 ( r,t )=× A 1 ( r,t ) ( B( r,t )=×A( r,t ) ).
i ω 1 P D1 + P D1 t +γ P D1 = ε 0 ω p 2 A 1 ;
2 P a1 t 2 +2i ω 1 P a1 t ω 1 2 P a1 + γ a ( i ω 1 P a1 + P a1 t )+ ω a 2 P a1 = σ a ( N 2 N 1 )( i ω 1 A 1 + A 1 t ).
1 ω a E 1 P a1 t = 1 2 ω a [ ( -i ω 1 A 1 A 1 t ) * ( -i ω 1 P a1 + P a1 t ) ].
F left ( A 1 ˜ , A 1 )= 1 z MDM A 1y ˜ ( i ω 1 A 1y + A 1y t ) 1 μ 0 A 1y ˜ A 1x y ,
F right ( A 1 ˜ , A 1 )= 1 z MDM A 1y ˜ ( i ω 1 A 1y + A 1y t )+ 1 μ 0 A 1y ˜ A 1x y ,

Metrics