Abstract

We developed a new technique that conducts dynamic light scattering (DLS) under a microscope with high spatial resolution. This technique dramatically extends the range of DLS application from transparent to opaque samples. The total scattered electric field contains both electric field generated from the samples and time-independent reflected electric field. These two components are decomposed by applying a partial heterodyne method. By using this technique, we successfully calculate the characteristic size distribution of both multiple-scattering samples and strong light-absorbing samples. This is the first study to observe the collective motion of particles in a highly concentrated solution by using DLS.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, Inc., 1981).
  2. C. F. Bohren, Clouds in a Glass of Beer: Simple Experiments in Atmospheric Physics (Dover Publications, Inc., 2001).
  3. M. Shibayama, “Spatial inhomogeneity and dynamic fluctuations of polymer gels,” Macromol. Chem. Phys.199(1), 1–30 (1998).
    [CrossRef]
  4. G. D. J. Phillies, “Suppression of multiple scattering effects in quasielastic light scattering by homodyne crosscorrelation techniques,” J. Chem. Phys.74(1), 260–262 (1981).
    [CrossRef]
  5. G. D. J. Phillies, “Experimental demonstration of ruultiple-scattering suppression in quasielastic-light-scattering spectroscopy by homodyne coincidence techniques,” Phys. Rev. A24(4), 1939–1943 (1981).
    [CrossRef]
  6. K. Ishii, R. Yoshida, and T. Iwai, “Single-scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interferometer,” Opt. Lett.30(5), 555–557 (2005).
    [CrossRef] [PubMed]
  7. G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B65(4), 409–413 (1987).
    [CrossRef]
  8. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
    [CrossRef] [PubMed]
  9. R. Dzakpasu and D. Axelrod, “Dynamic light scattering microscopy,” in Nanotechnologies for the Life Sciences, C. Kumar, ed. (Wiley-VCH, 2006).
  10. Y. Takagi and K. Kurihara, “Application of a microscope to Brillouin scattering spectroscope,” Rev. Sci. Instrum.63(12), 5552–5555 (1992).
    [CrossRef]
  11. P. D. Kaplan, V. Trappe, and D. A. Weitz, “Light-scattering microscope,” Appl. Opt.38(19), 4151–4157 (1999).
    [CrossRef] [PubMed]
  12. D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum.78(1), 016106 (2007).
    [CrossRef] [PubMed]
  13. C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7(9), 2711–2717 (2007).
    [CrossRef] [PubMed]
  14. G. Louit, T. Asahi, G. Tanaka, T. Uwada, and H. Masuhara, “Spectral and 3-dimensional tracking of single gold nanoparticles in living cells studied by Rayleigh light scattering microscopy,” J. Phys. Chem. C113(27), 11766–11772 (2009).
    [CrossRef]
  15. P. N. Pusey and W. van Megen, “Dynamic light scattering by non-ergodic media,” Physica A157(2), 705–741 (1989).
    [CrossRef]
  16. J. G. H. Joosten, J. L. McCarthy, and P. N. Pusey, “Dynamic and static light scattering by aqueous polyacrylamide gels,” Macromolecules24(25), 6690–6699 (1991).
    [CrossRef]
  17. M. Shibayama, T. Norisuye, and S. Nomura, “Cross-link density dependence of spatial inhomogeneities and dynamic fluctuations of poly(N-isopropylacrylamide) gels,” Macromolecules29(27), 8746–8750 (1996).
    [CrossRef]
  18. H. Xia, K. Ishi, and T. Iwai, “Hydrodynamic radius sizing of nanoparticles in dense polydisperse media by low-coherence dynamic light scattering,” Jpn. J. Appl. Phys.44(8), 6261–6264 (2005).
    [CrossRef]
  19. P. Navabpour, C. Rega, C. J. Lloyd, D. Attwood, P. A. Lovell, P. Geraghty, and D. Clarke, “Influence of concentration on the particle size analysis of polymer latexes using diffusing-wave spectroscopy,” Colloid Polym. Sci.283(9), 1025–1032 (2005).
    [CrossRef]

2009

G. Louit, T. Asahi, G. Tanaka, T. Uwada, and H. Masuhara, “Spectral and 3-dimensional tracking of single gold nanoparticles in living cells studied by Rayleigh light scattering microscopy,” J. Phys. Chem. C113(27), 11766–11772 (2009).
[CrossRef]

2007

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum.78(1), 016106 (2007).
[CrossRef] [PubMed]

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7(9), 2711–2717 (2007).
[CrossRef] [PubMed]

2005

K. Ishii, R. Yoshida, and T. Iwai, “Single-scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interferometer,” Opt. Lett.30(5), 555–557 (2005).
[CrossRef] [PubMed]

H. Xia, K. Ishi, and T. Iwai, “Hydrodynamic radius sizing of nanoparticles in dense polydisperse media by low-coherence dynamic light scattering,” Jpn. J. Appl. Phys.44(8), 6261–6264 (2005).
[CrossRef]

P. Navabpour, C. Rega, C. J. Lloyd, D. Attwood, P. A. Lovell, P. Geraghty, and D. Clarke, “Influence of concentration on the particle size analysis of polymer latexes using diffusing-wave spectroscopy,” Colloid Polym. Sci.283(9), 1025–1032 (2005).
[CrossRef]

1999

1998

M. Shibayama, “Spatial inhomogeneity and dynamic fluctuations of polymer gels,” Macromol. Chem. Phys.199(1), 1–30 (1998).
[CrossRef]

1996

M. Shibayama, T. Norisuye, and S. Nomura, “Cross-link density dependence of spatial inhomogeneities and dynamic fluctuations of poly(N-isopropylacrylamide) gels,” Macromolecules29(27), 8746–8750 (1996).
[CrossRef]

1992

Y. Takagi and K. Kurihara, “Application of a microscope to Brillouin scattering spectroscope,” Rev. Sci. Instrum.63(12), 5552–5555 (1992).
[CrossRef]

1991

J. G. H. Joosten, J. L. McCarthy, and P. N. Pusey, “Dynamic and static light scattering by aqueous polyacrylamide gels,” Macromolecules24(25), 6690–6699 (1991).
[CrossRef]

1989

P. N. Pusey and W. van Megen, “Dynamic light scattering by non-ergodic media,” Physica A157(2), 705–741 (1989).
[CrossRef]

1988

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

1987

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B65(4), 409–413 (1987).
[CrossRef]

1981

G. D. J. Phillies, “Suppression of multiple scattering effects in quasielastic light scattering by homodyne crosscorrelation techniques,” J. Chem. Phys.74(1), 260–262 (1981).
[CrossRef]

G. D. J. Phillies, “Experimental demonstration of ruultiple-scattering suppression in quasielastic-light-scattering spectroscopy by homodyne coincidence techniques,” Phys. Rev. A24(4), 1939–1943 (1981).
[CrossRef]

Amer, M. S.

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum.78(1), 016106 (2007).
[CrossRef] [PubMed]

Asahi, T.

G. Louit, T. Asahi, G. Tanaka, T. Uwada, and H. Masuhara, “Spectral and 3-dimensional tracking of single gold nanoparticles in living cells studied by Rayleigh light scattering microscopy,” J. Phys. Chem. C113(27), 11766–11772 (2009).
[CrossRef]

Attwood, D.

P. Navabpour, C. Rega, C. J. Lloyd, D. Attwood, P. A. Lovell, P. Geraghty, and D. Clarke, “Influence of concentration on the particle size analysis of polymer latexes using diffusing-wave spectroscopy,” Colloid Polym. Sci.283(9), 1025–1032 (2005).
[CrossRef]

Casiraghi, C.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7(9), 2711–2717 (2007).
[CrossRef] [PubMed]

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Clarke, D.

P. Navabpour, C. Rega, C. J. Lloyd, D. Attwood, P. A. Lovell, P. Geraghty, and D. Clarke, “Influence of concentration on the particle size analysis of polymer latexes using diffusing-wave spectroscopy,” Colloid Polym. Sci.283(9), 1025–1032 (2005).
[CrossRef]

Ferrari, A. C.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7(9), 2711–2717 (2007).
[CrossRef] [PubMed]

Geraghty, P.

P. Navabpour, C. Rega, C. J. Lloyd, D. Attwood, P. A. Lovell, P. Geraghty, and D. Clarke, “Influence of concentration on the particle size analysis of polymer latexes using diffusing-wave spectroscopy,” Colloid Polym. Sci.283(9), 1025–1032 (2005).
[CrossRef]

Gokus, T.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7(9), 2711–2717 (2007).
[CrossRef] [PubMed]

Hartschuh, A.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7(9), 2711–2717 (2007).
[CrossRef] [PubMed]

Harutyunyan, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7(9), 2711–2717 (2007).
[CrossRef] [PubMed]

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Ishi, K.

H. Xia, K. Ishi, and T. Iwai, “Hydrodynamic radius sizing of nanoparticles in dense polydisperse media by low-coherence dynamic light scattering,” Jpn. J. Appl. Phys.44(8), 6261–6264 (2005).
[CrossRef]

Ishii, K.

Iwai, T.

K. Ishii, R. Yoshida, and T. Iwai, “Single-scattering spectroscopy for extremely dense colloidal suspensions by use of a low-coherence interferometer,” Opt. Lett.30(5), 555–557 (2005).
[CrossRef] [PubMed]

H. Xia, K. Ishi, and T. Iwai, “Hydrodynamic radius sizing of nanoparticles in dense polydisperse media by low-coherence dynamic light scattering,” Jpn. J. Appl. Phys.44(8), 6261–6264 (2005).
[CrossRef]

Joosten, J. G. H.

J. G. H. Joosten, J. L. McCarthy, and P. N. Pusey, “Dynamic and static light scattering by aqueous polyacrylamide gels,” Macromolecules24(25), 6690–6699 (1991).
[CrossRef]

Kaplan, P. D.

Kurihara, K.

Y. Takagi and K. Kurihara, “Application of a microscope to Brillouin scattering spectroscope,” Rev. Sci. Instrum.63(12), 5552–5555 (1992).
[CrossRef]

Lidorikis, E.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7(9), 2711–2717 (2007).
[CrossRef] [PubMed]

Liptak, D. C.

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum.78(1), 016106 (2007).
[CrossRef] [PubMed]

Lloyd, C. J.

P. Navabpour, C. Rega, C. J. Lloyd, D. Attwood, P. A. Lovell, P. Geraghty, and D. Clarke, “Influence of concentration on the particle size analysis of polymer latexes using diffusing-wave spectroscopy,” Colloid Polym. Sci.283(9), 1025–1032 (2005).
[CrossRef]

Louit, G.

G. Louit, T. Asahi, G. Tanaka, T. Uwada, and H. Masuhara, “Spectral and 3-dimensional tracking of single gold nanoparticles in living cells studied by Rayleigh light scattering microscopy,” J. Phys. Chem. C113(27), 11766–11772 (2009).
[CrossRef]

Lovell, P. A.

P. Navabpour, C. Rega, C. J. Lloyd, D. Attwood, P. A. Lovell, P. Geraghty, and D. Clarke, “Influence of concentration on the particle size analysis of polymer latexes using diffusing-wave spectroscopy,” Colloid Polym. Sci.283(9), 1025–1032 (2005).
[CrossRef]

Maguire, J. F.

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum.78(1), 016106 (2007).
[CrossRef] [PubMed]

Maret, G.

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B65(4), 409–413 (1987).
[CrossRef]

Masuhara, H.

G. Louit, T. Asahi, G. Tanaka, T. Uwada, and H. Masuhara, “Spectral and 3-dimensional tracking of single gold nanoparticles in living cells studied by Rayleigh light scattering microscopy,” J. Phys. Chem. C113(27), 11766–11772 (2009).
[CrossRef]

McCarthy, J. L.

J. G. H. Joosten, J. L. McCarthy, and P. N. Pusey, “Dynamic and static light scattering by aqueous polyacrylamide gels,” Macromolecules24(25), 6690–6699 (1991).
[CrossRef]

Navabpour, P.

P. Navabpour, C. Rega, C. J. Lloyd, D. Attwood, P. A. Lovell, P. Geraghty, and D. Clarke, “Influence of concentration on the particle size analysis of polymer latexes using diffusing-wave spectroscopy,” Colloid Polym. Sci.283(9), 1025–1032 (2005).
[CrossRef]

Nomura, S.

M. Shibayama, T. Norisuye, and S. Nomura, “Cross-link density dependence of spatial inhomogeneities and dynamic fluctuations of poly(N-isopropylacrylamide) gels,” Macromolecules29(27), 8746–8750 (1996).
[CrossRef]

Norisuye, T.

M. Shibayama, T. Norisuye, and S. Nomura, “Cross-link density dependence of spatial inhomogeneities and dynamic fluctuations of poly(N-isopropylacrylamide) gels,” Macromolecules29(27), 8746–8750 (1996).
[CrossRef]

Novoselov, K. S.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7(9), 2711–2717 (2007).
[CrossRef] [PubMed]

Phillies, G. D. J.

G. D. J. Phillies, “Suppression of multiple scattering effects in quasielastic light scattering by homodyne crosscorrelation techniques,” J. Chem. Phys.74(1), 260–262 (1981).
[CrossRef]

G. D. J. Phillies, “Experimental demonstration of ruultiple-scattering suppression in quasielastic-light-scattering spectroscopy by homodyne coincidence techniques,” Phys. Rev. A24(4), 1939–1943 (1981).
[CrossRef]

Pine, D. J.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Pusey, P. N.

J. G. H. Joosten, J. L. McCarthy, and P. N. Pusey, “Dynamic and static light scattering by aqueous polyacrylamide gels,” Macromolecules24(25), 6690–6699 (1991).
[CrossRef]

P. N. Pusey and W. van Megen, “Dynamic light scattering by non-ergodic media,” Physica A157(2), 705–741 (1989).
[CrossRef]

Qian, H.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7(9), 2711–2717 (2007).
[CrossRef] [PubMed]

Reber, J. C.

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum.78(1), 016106 (2007).
[CrossRef] [PubMed]

Rega, C.

P. Navabpour, C. Rega, C. J. Lloyd, D. Attwood, P. A. Lovell, P. Geraghty, and D. Clarke, “Influence of concentration on the particle size analysis of polymer latexes using diffusing-wave spectroscopy,” Colloid Polym. Sci.283(9), 1025–1032 (2005).
[CrossRef]

Shibayama, M.

M. Shibayama, “Spatial inhomogeneity and dynamic fluctuations of polymer gels,” Macromol. Chem. Phys.199(1), 1–30 (1998).
[CrossRef]

M. Shibayama, T. Norisuye, and S. Nomura, “Cross-link density dependence of spatial inhomogeneities and dynamic fluctuations of poly(N-isopropylacrylamide) gels,” Macromolecules29(27), 8746–8750 (1996).
[CrossRef]

Takagi, Y.

Y. Takagi and K. Kurihara, “Application of a microscope to Brillouin scattering spectroscope,” Rev. Sci. Instrum.63(12), 5552–5555 (1992).
[CrossRef]

Tanaka, G.

G. Louit, T. Asahi, G. Tanaka, T. Uwada, and H. Masuhara, “Spectral and 3-dimensional tracking of single gold nanoparticles in living cells studied by Rayleigh light scattering microscopy,” J. Phys. Chem. C113(27), 11766–11772 (2009).
[CrossRef]

Trappe, V.

Uwada, T.

G. Louit, T. Asahi, G. Tanaka, T. Uwada, and H. Masuhara, “Spectral and 3-dimensional tracking of single gold nanoparticles in living cells studied by Rayleigh light scattering microscopy,” J. Phys. Chem. C113(27), 11766–11772 (2009).
[CrossRef]

van Megen, W.

P. N. Pusey and W. van Megen, “Dynamic light scattering by non-ergodic media,” Physica A157(2), 705–741 (1989).
[CrossRef]

Weitz, D. A.

P. D. Kaplan, V. Trappe, and D. A. Weitz, “Light-scattering microscope,” Appl. Opt.38(19), 4151–4157 (1999).
[CrossRef] [PubMed]

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Wolf, P. E.

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B65(4), 409–413 (1987).
[CrossRef]

Xia, H.

H. Xia, K. Ishi, and T. Iwai, “Hydrodynamic radius sizing of nanoparticles in dense polydisperse media by low-coherence dynamic light scattering,” Jpn. J. Appl. Phys.44(8), 6261–6264 (2005).
[CrossRef]

Yoshida, R.

Appl. Opt.

Colloid Polym. Sci.

P. Navabpour, C. Rega, C. J. Lloyd, D. Attwood, P. A. Lovell, P. Geraghty, and D. Clarke, “Influence of concentration on the particle size analysis of polymer latexes using diffusing-wave spectroscopy,” Colloid Polym. Sci.283(9), 1025–1032 (2005).
[CrossRef]

J. Chem. Phys.

G. D. J. Phillies, “Suppression of multiple scattering effects in quasielastic light scattering by homodyne crosscorrelation techniques,” J. Chem. Phys.74(1), 260–262 (1981).
[CrossRef]

J. Phys. Chem. C

G. Louit, T. Asahi, G. Tanaka, T. Uwada, and H. Masuhara, “Spectral and 3-dimensional tracking of single gold nanoparticles in living cells studied by Rayleigh light scattering microscopy,” J. Phys. Chem. C113(27), 11766–11772 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

H. Xia, K. Ishi, and T. Iwai, “Hydrodynamic radius sizing of nanoparticles in dense polydisperse media by low-coherence dynamic light scattering,” Jpn. J. Appl. Phys.44(8), 6261–6264 (2005).
[CrossRef]

Macromol. Chem. Phys.

M. Shibayama, “Spatial inhomogeneity and dynamic fluctuations of polymer gels,” Macromol. Chem. Phys.199(1), 1–30 (1998).
[CrossRef]

Macromolecules

J. G. H. Joosten, J. L. McCarthy, and P. N. Pusey, “Dynamic and static light scattering by aqueous polyacrylamide gels,” Macromolecules24(25), 6690–6699 (1991).
[CrossRef]

M. Shibayama, T. Norisuye, and S. Nomura, “Cross-link density dependence of spatial inhomogeneities and dynamic fluctuations of poly(N-isopropylacrylamide) gels,” Macromolecules29(27), 8746–8750 (1996).
[CrossRef]

Nano Lett.

C. Casiraghi, A. Hartschuh, E. Lidorikis, H. Qian, H. Harutyunyan, T. Gokus, K. S. Novoselov, and A. C. Ferrari, “Rayleigh imaging of graphene and graphene layers,” Nano Lett.7(9), 2711–2717 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rev. A

G. D. J. Phillies, “Experimental demonstration of ruultiple-scattering suppression in quasielastic-light-scattering spectroscopy by homodyne coincidence techniques,” Phys. Rev. A24(4), 1939–1943 (1981).
[CrossRef]

Phys. Rev. Lett.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing wave spectroscopy,” Phys. Rev. Lett.60(12), 1134–1137 (1988).
[CrossRef] [PubMed]

Physica A

P. N. Pusey and W. van Megen, “Dynamic light scattering by non-ergodic media,” Physica A157(2), 705–741 (1989).
[CrossRef]

Rev. Sci. Instrum.

Y. Takagi and K. Kurihara, “Application of a microscope to Brillouin scattering spectroscope,” Rev. Sci. Instrum.63(12), 5552–5555 (1992).
[CrossRef]

D. C. Liptak, J. C. Reber, J. F. Maguire, and M. S. Amer, “On the development of a confocal Rayleigh-Brillouin microscope,” Rev. Sci. Instrum.78(1), 016106 (2007).
[CrossRef] [PubMed]

Z. Phys. B

G. Maret and P. E. Wolf, “Multiple light scattering from disordered media. The effect of brownian motion of scatterers,” Z. Phys. B65(4), 409–413 (1987).
[CrossRef]

Other

R. Dzakpasu and D. Axelrod, “Dynamic light scattering microscopy,” in Nanotechnologies for the Life Sciences, C. Kumar, ed. (Wiley-VCH, 2006).

H. C. van de Hulst, Light Scattering by Small Particles (Dover Publications, Inc., 1981).

C. F. Bohren, Clouds in a Glass of Beer: Simple Experiments in Atmospheric Physics (Dover Publications, Inc., 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the proposed DLS microscope: VND, variable neutral density filter; PH1, pinhole, ϕ = 25 μm; HM, half mirror; BD, beam diffuser; PH2, pinhole, ϕ = 50 μm; APD, avalanche photodiode.

Fig. 2
Fig. 2

Intensity correlation functions for a polystyrene latex suspension, 1 wt%. The nominal diameter of the polystyrene latex particles is 50 nm. Solid lines: Several data sets obtained from the DLS microscope (λ = 514.5 nm, θ = 180°) at different points within the suspension. Dashed line: Data obtained from a typical DLS system (DLS/SLS 5000 compact goniometer, ALV, λ = 632.8 nm, θ = 90°). The inset is a plot of DA vs. (1 1A )/A . The solid line is the best fit result based on Eq. (2).

Fig. 3
Fig. 3

(a) The appearance of the sample. The cover glass is fixed with manicure. (b) The definition of z. (c) Position dependence of I tot T (thin solid line), I R (dashed line), and I s T (thick solid line) for polystyrene latex suspension, 1 wt%. The nominal diameter of the polystyrene latex particles is 100 nm. The intensity is expressed in s−1, the photon counts in a second. (d) Position dependence of the diameter of the polystyrene latex suspension. The diameter calculated from the typical DLS is 116 nm, which is indicated in the figure. Solid lines: The diameter corrected using Eq. (2). Dashed line: The apparent diameter calculated by using apparent diffusion constant, DA.

Fig. 4
Fig. 4

(a) The appearance of the sample. (b) Position dependence of the scattered intensity from Chinese ink (10 wt%). Dashed line is the exponential fit. (c) The semi-log plot implying the Lambert-Beer law.

Fig. 5
Fig. 5

(a) Concentration dependence of the size distribution of a polystyrene latex suspension. The nominal diameter of the polystyrene latex particles is 100 nm. The 1 - 0.01 wt%, as measured by the DLS microscope, is represented by the solid lines. The 0.01 - 0.0001 wt%, as measured by the typical DLS system, is represented by the dashed lines. (b) Concentration dependence of the size distribution of Chinese ink. The 10 - 0.05 wt%, as measured by the DLS microscope, is represented by the solid lines. The 0.05 - 0.001 wt%, as measured by the typical DLS system, is represented by the dashed lines.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 1A = I s T I tot T ,
D A = 1 1A A D,

Metrics