Abstract

We describe the fabrication of an antireflective surface structure with sub-wavelength dimensions on a glass surface using scalable low-cost techniques involving sol-gel coating, thermal annealing, and wet chemical etching. The glass surface structure consists of sand dune like protrusions with 250 nm periodicity and a maximum peak-to-valley height of 120 nm. The antireflective structure increases the transmission of the glass up to 0.9% at 700 nm, and the transmission remains enhanced over a wide spectral range and for a wide range of incident angles. Our measurements reveal a strong polarization dependence of the transmission change.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Glaubitt and P. Lobmann, “Antireflective coatings prepared by sol-gel processing: Principles and applications,” J. Eur. Ceram. Soc.32(11), 2995–2999 (2012).
    [CrossRef]
  2. S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, and J. K. Kim, “Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics,” Appl. Phys. Express4(5), 052503 (2011).
    [CrossRef]
  3. G. Helsch, E. Rädlein, and G. H. Frischat, “On the origin of the aging process of porous SiO2 antireflection coatings,” J. Non-Cryst. Solids265(1-2), 193–197 (2000).
    [CrossRef]
  4. C. G. Bernhard, G. Gemne, and J. Sallstrom, “Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function,” J. Comp. Physiol.67, 1–25 (1970).
  5. S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
    [CrossRef]
  6. Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
    [CrossRef] [PubMed]
  7. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
    [CrossRef]
  8. P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology8(2), 53–56 (1997).
    [CrossRef]
  9. S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale2(5), 799–805 (2010).
    [CrossRef] [PubMed]
  10. G. R. Lin, Y.-C. Chang, E.-S. Liu, H.-C. Kuo, and H.-S. Lin, “Low refractive index Si nanopillars on Si substrate,” Appl. Phys. Lett.90(18), 181923 (2007).
    [CrossRef]
  11. Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24(20), 1422–1424 (1999).
    [CrossRef] [PubMed]
  12. Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng.87(2), 125–128 (2010).
    [CrossRef]
  13. K.-S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells93(8), 1214–1217 (2009).
    [CrossRef]
  14. Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
    [CrossRef] [PubMed]
  15. T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelectron. Eng.83(4-9), 1503–1508 (2006).
    [CrossRef]
  16. Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express18(12), 13063–13071 (2010).
    [CrossRef] [PubMed]
  17. Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys.39(Part 2, No. 7B), L735–L737 (2000).
    [CrossRef]
  18. M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl.n/a (2012), doi:.
    [CrossRef]
  19. H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett.41(4), 377–379 (1982).
    [CrossRef]
  20. J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Coll. and Surf. A219(1-3), 1–6 (2003).
    [CrossRef]
  21. H.-C. Wang, C. Y. Wu, C.-C. Chung, M.-H. Lai, and T.-W. Chun, “Analysis of parameters and interaction between parameters in preparation of uniform silicon dioxide nanoparticles using response surface methodology,” Ind. Eng. Chem. Res.45(24), 8043–8048 (2006).
    [CrossRef]

2012 (2)

W. Glaubitt and P. Lobmann, “Antireflective coatings prepared by sol-gel processing: Principles and applications,” J. Eur. Ceram. Soc.32(11), 2995–2999 (2012).
[CrossRef]

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl.n/a (2012), doi:.
[CrossRef]

2011 (1)

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, and J. K. Kim, “Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics,” Appl. Phys. Express4(5), 052503 (2011).
[CrossRef]

2010 (4)

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale2(5), 799–805 (2010).
[CrossRef] [PubMed]

Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng.87(2), 125–128 (2010).
[CrossRef]

Y. M. Song, H. J. Choi, J. S. Yu, and Y. T. Lee, “Design of highly transparent glasses with broadband antireflective subwavelength structures,” Opt. Express18(12), 13063–13071 (2010).
[CrossRef] [PubMed]

2009 (1)

K.-S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells93(8), 1214–1217 (2009).
[CrossRef]

2008 (1)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

2007 (2)

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

G. R. Lin, Y.-C. Chang, E.-S. Liu, H.-C. Kuo, and H.-S. Lin, “Low refractive index Si nanopillars on Si substrate,” Appl. Phys. Lett.90(18), 181923 (2007).
[CrossRef]

2006 (2)

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelectron. Eng.83(4-9), 1503–1508 (2006).
[CrossRef]

H.-C. Wang, C. Y. Wu, C.-C. Chung, M.-H. Lai, and T.-W. Chun, “Analysis of parameters and interaction between parameters in preparation of uniform silicon dioxide nanoparticles using response surface methodology,” Ind. Eng. Chem. Res.45(24), 8043–8048 (2006).
[CrossRef]

2003 (1)

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Coll. and Surf. A219(1-3), 1–6 (2003).
[CrossRef]

2000 (2)

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys.39(Part 2, No. 7B), L735–L737 (2000).
[CrossRef]

G. Helsch, E. Rädlein, and G. H. Frischat, “On the origin of the aging process of porous SiO2 antireflection coatings,” J. Non-Cryst. Solids265(1-2), 193–197 (2000).
[CrossRef]

1999 (1)

1997 (1)

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology8(2), 53–56 (1997).
[CrossRef]

1982 (2)

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett.41(4), 377–379 (1982).
[CrossRef]

1970 (1)

C. G. Bernhard, G. Gemne, and J. Sallstrom, “Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function,” J. Comp. Physiol.67, 1–25 (1970).

Asakawa, K.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelectron. Eng.83(4-9), 1503–1508 (2006).
[CrossRef]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

Bernhard, C. G.

C. G. Bernhard, G. Gemne, and J. Sallstrom, “Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function,” J. Comp. Physiol.67, 1–25 (1970).

Bhatia, C. S.

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl.n/a (2012), doi:.
[CrossRef]

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

Chang, Y.-C.

G. R. Lin, Y.-C. Chang, E.-S. Liu, H.-C. Kuo, and H.-S. Lin, “Low refractive index Si nanopillars on Si substrate,” Appl. Phys. Lett.90(18), 181923 (2007).
[CrossRef]

Chang, Y.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chattopadhyay, S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, H.-L.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale2(5), 799–805 (2010).
[CrossRef] [PubMed]

Chen, K.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Chen, L.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Cheng, C.-C.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale2(5), 799–805 (2010).
[CrossRef] [PubMed]

Chhajed, S.

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, and J. K. Kim, “Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics,” Appl. Phys. Express4(5), 052503 (2011).
[CrossRef]

Cho, J.

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, and J. K. Kim, “Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics,” Appl. Phys. Express4(5), 052503 (2011).
[CrossRef]

Choi, C.-G.

Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng.87(2), 125–128 (2010).
[CrossRef]

Choi, H. J.

Chuang, S.-Y.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale2(5), 799–805 (2010).
[CrossRef] [PubMed]

Chun, T.-W.

H.-C. Wang, C. Y. Wu, C.-C. Chung, M.-H. Lai, and T.-W. Chun, “Analysis of parameters and interaction between parameters in preparation of uniform silicon dioxide nanoparticles using response surface methodology,” Ind. Eng. Chem. Res.45(24), 8043–8048 (2006).
[CrossRef]

Chung, C.-C.

H.-C. Wang, C. Y. Wu, C.-C. Chung, M.-H. Lai, and T.-W. Chun, “Analysis of parameters and interaction between parameters in preparation of uniform silicon dioxide nanoparticles using response surface methodology,” Ind. Eng. Chem. Res.45(24), 8043–8048 (2006).
[CrossRef]

Danner, A. J.

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl.n/a (2012), doi:.
[CrossRef]

Deckman, H. W.

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett.41(4), 377–379 (1982).
[CrossRef]

Dong, H.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Dunsmuir, J. H.

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett.41(4), 377–379 (1982).
[CrossRef]

Ebels, U.

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Coll. and Surf. A219(1-3), 1–6 (2003).
[CrossRef]

Frischat, G. H.

G. Helsch, E. Rädlein, and G. H. Frischat, “On the origin of the aging process of porous SiO2 antireflection coatings,” J. Non-Cryst. Solids265(1-2), 193–197 (2000).
[CrossRef]

Fujimoto, A.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelectron. Eng.83(4-9), 1503–1508 (2006).
[CrossRef]

Gemne, G.

C. G. Bernhard, G. Gemne, and J. Sallstrom, “Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function,” J. Comp. Physiol.67, 1–25 (1970).

Giersig, M.

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Coll. and Surf. A219(1-3), 1–6 (2003).
[CrossRef]

Glaubitt, W.

W. Glaubitt and P. Lobmann, “Antireflective coatings prepared by sol-gel processing: Principles and applications,” J. Eur. Ceram. Soc.32(11), 2995–2999 (2012).
[CrossRef]

Han, K.-S.

K.-S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells93(8), 1214–1217 (2009).
[CrossRef]

Hane, K.

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys.39(Part 2, No. 7B), L735–L737 (2000).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24(20), 1422–1424 (1999).
[CrossRef] [PubMed]

Helsch, G.

G. Helsch, E. Rädlein, and G. H. Frischat, “On the origin of the aging process of porous SiO2 antireflection coatings,” J. Non-Cryst. Solids265(1-2), 193–197 (2000).
[CrossRef]

Hiraoka, T.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelectron. Eng.83(4-9), 1503–1508 (2006).
[CrossRef]

Hsu, C.-H.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hsu, Y.-K.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Huang, Y.-F.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Hutley, M. C.

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

Jen, Y.-J.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Jia, F.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Kanamori, Y.

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys.39(Part 2, No. 7B), L735–L737 (2000).
[CrossRef]

Y. Kanamori, M. Sasaki, and K. Hane, “Broadband antireflection gratings fabricated upon silicon substrates,” Opt. Lett.24(20), 1422–1424 (1999).
[CrossRef] [PubMed]

Kang, Y. H.

Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng.87(2), 125–128 (2010).
[CrossRef]

Kikuta, H.

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys.39(Part 2, No. 7B), L735–L737 (2000).
[CrossRef]

Kim, D.

K.-S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells93(8), 1214–1217 (2009).
[CrossRef]

Kim, J. K.

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, and J. K. Kim, “Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics,” Appl. Phys. Express4(5), 052503 (2011).
[CrossRef]

Kim, Y.-S.

Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng.87(2), 125–128 (2010).
[CrossRef]

Kuo, H.-C.

G. R. Lin, Y.-C. Chang, E.-S. Liu, H.-C. Kuo, and H.-S. Lin, “Low refractive index Si nanopillars on Si substrate,” Appl. Phys. Lett.90(18), 181923 (2007).
[CrossRef]

Lai, M.-H.

H.-C. Wang, C. Y. Wu, C.-C. Chung, M.-H. Lai, and T.-W. Chun, “Analysis of parameters and interaction between parameters in preparation of uniform silicon dioxide nanoparticles using response surface methodology,” Ind. Eng. Chem. Res.45(24), 8043–8048 (2006).
[CrossRef]

Lalanne, P.

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology8(2), 53–56 (1997).
[CrossRef]

Lee, C.-S.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lee, H.

K.-S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells93(8), 1214–1217 (2009).
[CrossRef]

K.-S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells93(8), 1214–1217 (2009).
[CrossRef]

Lee, Y. T.

Li, Y.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Lin, C.-H.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale2(5), 799–805 (2010).
[CrossRef] [PubMed]

Lin, G. R.

G. R. Lin, Y.-C. Chang, E.-S. Liu, H.-C. Kuo, and H.-S. Lin, “Low refractive index Si nanopillars on Si substrate,” Appl. Phys. Lett.90(18), 181923 (2007).
[CrossRef]

Lin, H.-S.

G. R. Lin, Y.-C. Chang, E.-S. Liu, H.-C. Kuo, and H.-S. Lin, “Low refractive index Si nanopillars on Si substrate,” Appl. Phys. Lett.90(18), 181923 (2007).
[CrossRef]

Liu, E.-S.

G. R. Lin, Y.-C. Chang, E.-S. Liu, H.-C. Kuo, and H.-S. Lin, “Low refractive index Si nanopillars on Si substrate,” Appl. Phys. Lett.90(18), 181923 (2007).
[CrossRef]

Liu, H.-W.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale2(5), 799–805 (2010).
[CrossRef] [PubMed]

Liu, T.-A.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lo, H.-C.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Lobmann, P.

W. Glaubitt and P. Lobmann, “Antireflective coatings prepared by sol-gel processing: Principles and applications,” J. Eur. Ceram. Soc.32(11), 2995–2999 (2012).
[CrossRef]

Morris, G. M.

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology8(2), 53–56 (1997).
[CrossRef]

Nakanishi, T.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelectron. Eng.83(4-9), 1503–1508 (2006).
[CrossRef]

Oh, S. S.

Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng.87(2), 125–128 (2010).
[CrossRef]

Pan, C.-L.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Peng, C.-Y.

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Poxson, D. J.

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, and J. K. Kim, “Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics,” Appl. Phys. Express4(5), 052503 (2011).
[CrossRef]

Rädlein, E.

G. Helsch, E. Rädlein, and G. H. Frischat, “On the origin of the aging process of porous SiO2 antireflection coatings,” J. Non-Cryst. Solids265(1-2), 193–197 (2000).
[CrossRef]

Rybczynski, J.

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Coll. and Surf. A219(1-3), 1–6 (2003).
[CrossRef]

Saito, S.

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelectron. Eng.83(4-9), 1503–1508 (2006).
[CrossRef]

Sakhuja, M.

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl.n/a (2012), doi:.
[CrossRef]

Sallstrom, J.

C. G. Bernhard, G. Gemne, and J. Sallstrom, “Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function,” J. Comp. Physiol.67, 1–25 (1970).

Sasaki, M.

Schubert, E. F.

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, and J. K. Kim, “Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics,” Appl. Phys. Express4(5), 052503 (2011).
[CrossRef]

Shieh, J.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale2(5), 799–805 (2010).
[CrossRef] [PubMed]

Son, J.

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl.n/a (2012), doi:.
[CrossRef]

Song, Y. M.

Sood, A. K.

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, and J. K. Kim, “Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics,” Appl. Phys. Express4(5), 052503 (2011).
[CrossRef]

Tang, Y.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Verma, L. K.

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl.n/a (2012), doi:.
[CrossRef]

Wang, H.-C.

H.-C. Wang, C. Y. Wu, C.-C. Chung, M.-H. Lai, and T.-W. Chun, “Analysis of parameters and interaction between parameters in preparation of uniform silicon dioxide nanoparticles using response surface methodology,” Ind. Eng. Chem. Res.45(24), 8043–8048 (2006).
[CrossRef]

Wang, Z.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Welser, R. E.

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, and J. K. Kim, “Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics,” Appl. Phys. Express4(5), 052503 (2011).
[CrossRef]

Wilson, S. J.

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

Wu, C. Y.

H.-C. Wang, C. Y. Wu, C.-C. Chung, M.-H. Lai, and T.-W. Chun, “Analysis of parameters and interaction between parameters in preparation of uniform silicon dioxide nanoparticles using response surface methodology,” Ind. Eng. Chem. Res.45(24), 8043–8048 (2006).
[CrossRef]

Yan, X.

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, and J. K. Kim, “Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics,” Appl. Phys. Express4(5), 052503 (2011).
[CrossRef]

Yang, B.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Yang, H.

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl.n/a (2012), doi:.
[CrossRef]

Yu, C.-C.

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale2(5), 799–805 (2010).
[CrossRef] [PubMed]

Yu, J. S.

Zhang, J.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Zhang, L.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Zhang, S.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Zhu, S.

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Appl. Phys. Express (1)

S. Chhajed, D. J. Poxson, X. Yan, J. Cho, E. F. Schubert, R. E. Welser, A. K. Sood, and J. K. Kim, “Nanostructured Multilayer Tailored-Refractive-Index Antireflection Coating for Glass with Broadband and Omnidirectional Characteristics,” Appl. Phys. Express4(5), 052503 (2011).
[CrossRef]

Appl. Phys. Lett. (3)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett.93(13), 133108 (2008).
[CrossRef]

G. R. Lin, Y.-C. Chang, E.-S. Liu, H.-C. Kuo, and H.-S. Lin, “Low refractive index Si nanopillars on Si substrate,” Appl. Phys. Lett.90(18), 181923 (2007).
[CrossRef]

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett.41(4), 377–379 (1982).
[CrossRef]

Coll. and Surf. A (1)

J. Rybczynski, U. Ebels, and M. Giersig, “Large-scale, 2D arrays of magnetic nanoparticles,” Coll. and Surf. A219(1-3), 1–6 (2003).
[CrossRef]

Ind. Eng. Chem. Res. (1)

H.-C. Wang, C. Y. Wu, C.-C. Chung, M.-H. Lai, and T.-W. Chun, “Analysis of parameters and interaction between parameters in preparation of uniform silicon dioxide nanoparticles using response surface methodology,” Ind. Eng. Chem. Res.45(24), 8043–8048 (2006).
[CrossRef]

J. Comp. Physiol. (1)

C. G. Bernhard, G. Gemne, and J. Sallstrom, “Comparative ultrastructure of corneal surface topography in insects with aspects on phylogenesis and function,” J. Comp. Physiol.67, 1–25 (1970).

J. Eur. Ceram. Soc. (1)

W. Glaubitt and P. Lobmann, “Antireflective coatings prepared by sol-gel processing: Principles and applications,” J. Eur. Ceram. Soc.32(11), 2995–2999 (2012).
[CrossRef]

J. Non-Cryst. Solids (1)

G. Helsch, E. Rädlein, and G. H. Frischat, “On the origin of the aging process of porous SiO2 antireflection coatings,” J. Non-Cryst. Solids265(1-2), 193–197 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Kanamori, H. Kikuta, and K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys.39(Part 2, No. 7B), L735–L737 (2000).
[CrossRef]

Langmuir (1)

Y. Li, J. Zhang, S. Zhu, H. Dong, F. Jia, Z. Wang, Y. Tang, L. Zhang, S. Zhang, and B. Yang, “Bioinspired silica surfaces with near-infrared improved transmittance and superhydrophobicity by colloidal lithography,” Langmuir26(12), 9842–9847 (2010).
[CrossRef] [PubMed]

Microelectron. Eng. (2)

T. Nakanishi, T. Hiraoka, A. Fujimoto, S. Saito, and K. Asakawa, “Nano-patterning using an embedded particle monolayer as an etch mask,” Microelectron. Eng.83(4-9), 1503–1508 (2006).
[CrossRef]

Y. H. Kang, S. S. Oh, Y.-S. Kim, and C.-G. Choi, “Fabrication of antireflection nanostructures by hybrid nano-patterning lithography,” Microelectron. Eng.87(2), 125–128 (2010).
[CrossRef]

Nanoscale (1)

S.-Y. Chuang, H.-L. Chen, J. Shieh, C.-H. Lin, C.-C. Cheng, H.-W. Liu, and C.-C. Yu, “Nanoscale of biomimetic moth eye structures exhibiting inverse polarization phenomena at the Brewster angle,” Nanoscale2(5), 799–805 (2010).
[CrossRef] [PubMed]

Nanotechnology (1)

P. Lalanne and G. M. Morris, “Antireflection behavior of silicon subwavelength periodic structures for visible light,” Nanotechnology8(2), 53–56 (1997).
[CrossRef]

Nat. Nanotechnol. (1)

Y.-F. Huang, S. Chattopadhyay, Y.-J. Jen, C.-Y. Peng, T.-A. Liu, Y.-K. Hsu, C.-L. Pan, H.-C. Lo, C.-H. Hsu, Y.-H. Chang, C.-S. Lee, K.-H. Chen, and L.-C. Chen, “Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures,” Nat. Nanotechnol.2(12), 770–774 (2007).
[CrossRef] [PubMed]

Opt. Acta (Lond.) (1)

S. J. Wilson and M. C. Hutley, “The optical properties of ‘moth eye’ antireflection surfaces,” Opt. Acta (Lond.)29(7), 993–1009 (1982).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Prog. Photovolt. Res. Appl. (1)

M. Sakhuja, J. Son, L. K. Verma, H. Yang, C. S. Bhatia, and A. J. Danner, “Omnidirectional study of nanostructured glass packaging for solar modules,” Prog. Photovolt. Res. Appl.n/a (2012), doi:.
[CrossRef]

Sol. Energy Mater. Sol. Cells (1)

K.-S. Han, H. Lee, D. Kim, and H. Lee, “Fabrication of anti-reflection structure on protective layer of solar cells by hot-embossing method,” Sol. Energy Mater. Sol. Cells93(8), 1214–1217 (2009).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Fabrication of antireflective structures. (a) Etch mask after the fixation dip. A monolayer of nanoparticles fixed by an additional thin SiO2 layer covers the glass surface. (b) Etch rate of fixation layer after thermal annealing. The dashed baseline indicates the etch rate of the glass substrate. (c) Etch mask and glass surface after 120 seconds HF-etching. The beginning of nanoparticle detachment and etched protrusions are visible. (d) ARS in glass surface after 135 s HF-etch.

Fig. 2
Fig. 2

Experimental setup for transmission measurement.

Fig. 3
Fig. 3

(a) Spectral transmission difference between ARS glass and unstructured glass for non-polarized light at various angles of incidence. (b) Angular dependence of transmission difference for non-polarized light.

Fig. 4
Fig. 4

Polarization dependent transmission difference between ARS glass and unstructured glass for 15° (a), 45° (b), and 65° (c) incidence.

Metrics