Abstract

The acoustically modulated laser speckle contrast technique has been employed to quantify and classify 25 colors (made up by different percentages of the two base colors cyan and magenta) hidden behind a 5 mm thick opaque layer with 0.24% transmittance. The main components included two He-Ne lasers (543 and 633 nm), a consumer grade digital camera (Nikon 1 J1), focusing optics and a loudspeaker. The camera captured the laser speckle patterns with the sound on and off, respectively, from which the speckle contrast differences were calculated and used in a nearest neighbor classification algorithm. The classification accuracy was between 55% and 88% depending on the underlying reflectance of all the colors to be classified.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
    [CrossRef] [PubMed]
  2. J. Li, G. Ku, and L. V. Wang, “Ultrasound-modulated optical tomography of biological tissue by use of contrast of laser speckles,” Appl. Opt.41(28), 6030–6035 (2002).
    [CrossRef] [PubMed]
  3. R. Li, D. S. Elson, C. Dunsby, R. Eckersley, and M. X. Tang, “Effects of acoustic radiation force and shear waves for absorption and stiffness sensing in ultrasound modulated optical tomography,” Opt. Express19(8), 7299–7311 (2011).
    [CrossRef] [PubMed]
  4. S. J. Kirkpatrick, R. K. Wang, D. D. Duncan, M. Kulesz-Martin, and K. Lee, “Imaging the mechanical stiffness of skin lesions by in vivo acousto-optical elastography,” Opt. Express14(21), 9770–9779 (2006).
    [CrossRef] [PubMed]
  5. T. S. Leung and S. Jiang, “Measuring the reflectance of hidden color objects with acoustically modulated laser speckle,” Opt. Lett.37(19), 4092–4094 (2012).
    [CrossRef] [PubMed]
  6. S. Lévêque-Fort, “Three-dimensional acousto-optic imaging in biological tissues with parallel signal processing,” Appl. Opt.40(7), 1029–1036 (2000).
    [CrossRef] [PubMed]
  7. R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification and Scene Analysis, 2nd ed. (Wiley-Interscience, 1995).
  8. S. J. Kirkpatrick, D. D. Duncan, and E. M. Wells-Gray, “Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging,” Opt. Lett.33(24), 2886–2888 (2008).
    [CrossRef] [PubMed]
  9. J. Li, “Ultrasound-Modulated Optical Tomography for Biomedical Applications,” (Texas A&M University, 2004).
  10. D. A. Seehusen, M. M. Reeves, and D. A. Fomin, “Cerebrospinal fluid analysis,” Am. Fam. Physician68(6), 1103–1108 (2003).
    [PubMed]
  11. T. S. Leung and S. Gunadi, “The sensitivity of acousto-optic sensing measurements to absorption changes in superficial and deep layers,” Proc. SPIE8223, 822326 (2012).
    [CrossRef]
  12. S. Gunadi and T. S. Leung, “Spatial sensitivity of acousto-optic and optical near-infrared spectroscopy sensing measurements,” J. Biomed. Opt.16(12), 127005 (2011).
    [CrossRef] [PubMed]
  13. O. Yang and B. Choi, “Laser speckle imaging using a consumer-grade color camera,” Opt. Lett.37(19), 3957–3959 (2012).
    [CrossRef] [PubMed]
  14. J. D. Briers, “A note on the statistics of laser speckle patterns added to coherent and incoherent uniform background fields, and a possible application for the case of incoherent addition,” Opt. Quantum Electron.7(5), 422–424 (1975).
    [CrossRef]

2012 (3)

2011 (2)

2010 (1)

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

2008 (1)

2006 (1)

2003 (1)

D. A. Seehusen, M. M. Reeves, and D. A. Fomin, “Cerebrospinal fluid analysis,” Am. Fam. Physician68(6), 1103–1108 (2003).
[PubMed]

2002 (1)

2000 (1)

1975 (1)

J. D. Briers, “A note on the statistics of laser speckle patterns added to coherent and incoherent uniform background fields, and a possible application for the case of incoherent addition,” Opt. Quantum Electron.7(5), 422–424 (1975).
[CrossRef]

Boas, D. A.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

Briers, J. D.

J. D. Briers, “A note on the statistics of laser speckle patterns added to coherent and incoherent uniform background fields, and a possible application for the case of incoherent addition,” Opt. Quantum Electron.7(5), 422–424 (1975).
[CrossRef]

Choi, B.

Duncan, D. D.

Dunn, A. K.

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

Dunsby, C.

Eckersley, R.

Elson, D. S.

Fomin, D. A.

D. A. Seehusen, M. M. Reeves, and D. A. Fomin, “Cerebrospinal fluid analysis,” Am. Fam. Physician68(6), 1103–1108 (2003).
[PubMed]

Gunadi, S.

T. S. Leung and S. Gunadi, “The sensitivity of acousto-optic sensing measurements to absorption changes in superficial and deep layers,” Proc. SPIE8223, 822326 (2012).
[CrossRef]

S. Gunadi and T. S. Leung, “Spatial sensitivity of acousto-optic and optical near-infrared spectroscopy sensing measurements,” J. Biomed. Opt.16(12), 127005 (2011).
[CrossRef] [PubMed]

Jiang, S.

Kirkpatrick, S. J.

Ku, G.

Kulesz-Martin, M.

Lee, K.

Leung, T. S.

T. S. Leung and S. Gunadi, “The sensitivity of acousto-optic sensing measurements to absorption changes in superficial and deep layers,” Proc. SPIE8223, 822326 (2012).
[CrossRef]

T. S. Leung and S. Jiang, “Measuring the reflectance of hidden color objects with acoustically modulated laser speckle,” Opt. Lett.37(19), 4092–4094 (2012).
[CrossRef] [PubMed]

S. Gunadi and T. S. Leung, “Spatial sensitivity of acousto-optic and optical near-infrared spectroscopy sensing measurements,” J. Biomed. Opt.16(12), 127005 (2011).
[CrossRef] [PubMed]

Lévêque-Fort, S.

Li, J.

Li, R.

Reeves, M. M.

D. A. Seehusen, M. M. Reeves, and D. A. Fomin, “Cerebrospinal fluid analysis,” Am. Fam. Physician68(6), 1103–1108 (2003).
[PubMed]

Seehusen, D. A.

D. A. Seehusen, M. M. Reeves, and D. A. Fomin, “Cerebrospinal fluid analysis,” Am. Fam. Physician68(6), 1103–1108 (2003).
[PubMed]

Tang, M. X.

Wang, L. V.

Wang, R. K.

Wells-Gray, E. M.

Yang, O.

Am. Fam. Physician (1)

D. A. Seehusen, M. M. Reeves, and D. A. Fomin, “Cerebrospinal fluid analysis,” Am. Fam. Physician68(6), 1103–1108 (2003).
[PubMed]

Appl. Opt. (2)

J. Biomed. Opt. (2)

S. Gunadi and T. S. Leung, “Spatial sensitivity of acousto-optic and optical near-infrared spectroscopy sensing measurements,” J. Biomed. Opt.16(12), 127005 (2011).
[CrossRef] [PubMed]

D. A. Boas and A. K. Dunn, “Laser speckle contrast imaging in biomedical optics,” J. Biomed. Opt.15(1), 011109 (2010).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

J. D. Briers, “A note on the statistics of laser speckle patterns added to coherent and incoherent uniform background fields, and a possible application for the case of incoherent addition,” Opt. Quantum Electron.7(5), 422–424 (1975).
[CrossRef]

Proc. SPIE (1)

T. S. Leung and S. Gunadi, “The sensitivity of acousto-optic sensing measurements to absorption changes in superficial and deep layers,” Proc. SPIE8223, 822326 (2012).
[CrossRef]

Other (2)

J. Li, “Ultrasound-Modulated Optical Tomography for Biomedical Applications,” (Texas A&M University, 2004).

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification and Scene Analysis, 2nd ed. (Wiley-Interscience, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Twenty five colors formed by different percentages of cyan and magenta (each color represented by a color ID number).

Fig. 2
Fig. 2

The experimental setup: LA1 – red laser; LA2 – green laser; M1 – mirror; M2 – mirror; I – iris; L – lens; SL – scattering layer; R – reflector (color paper); CR – connecting rod; LS – loudspeaker; FG– function generator; F – Neutral density filter; DC – Digital camera; LT – Lens tube

Fig. 3
Fig. 3

The speckle contrast difference ΔC increases with M (or Im when Ib is constant).

Fig. 4
Fig. 4

Using the green laser (543 nm) as the light source: (a) obstructed reflectance and direct reflectance, and (b) speckle contrast difference ΔC and direct reflectance. (The x-axis corresponds to the absolute direct reflectance. The numbers along the direct reflectance line in (a) are the color IDs.)

Fig. 5
Fig. 5

Using the red laser (633 nm) as the light source: (a) obstructed reflectance and direct reflectance, and (b) speckle contrast difference ΔC and direct reflectance. (The x-axis corresponds to the absolute direct reflectance. The numbers along the direct reflectance line in (a) are the color IDs.)

Fig. 6
Fig. 6

Scatter plot of the direct reflectance (no barrier) of the 25 colors measured at 543 and 633 nm, and two examples of inter-reflectance distance: IRD of color ID 1 = 0.69% and IRD of color ID 2 = 0.54%.

Fig. 7
Fig. 7

Scatter plot of the speckle contrast difference ΔC (with barrier) of the 25 colors measured at 543 (green) and 633 (red) nm.

Fig. 8
Fig. 8

Color classification accuracy using the nearest neighbor algorithm based on (i) ΔC and (ii) obstructed reflectance. Solid lines are the linear regression lines of the data points.

Tables (1)

Tables Icon

Table 1 Inter-reflectance Distances (IRDs) of the 25 Colors

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

ΔC= C off C on = σ off I ¯ σ on I ¯
I ¯ = I b + I m
ΔC C b 2 +2M C b 1+M
D(color)= [ Δ C 633,uk Δ C 633,tn (color) ] 2 + [ Δ C 543,uk Δ C 543,tn (color) ] 2
IRD(color)= [ R 633 (color) R 633 (nearest color) ] 2 + [ R 543 (color) R 543 (nearest color) ] 2
E b = I b exp[ i( ω 0 t φ b ) ]
E m = I m exp[ i( ω 0 t φ m + ω a t ) ]
I=( E b + E m ) ( E b + E m ) * = I b + I m +2 I b I m cos( Δφ+ ω a t )
I ¯ = I b + I m +2 I b I m 1 T 0 T cos( ω a t+Δφ)dt = I b + I m +2 I b I m sinc( ω a T 2 )cos( ω a T 2 +Δφ )
I ¯ = I b + I m
I ¯ 2 = I b 2 + I m 2 +2sin c 2 ( ω a T 2 ) I b I m +2 I b I m
I ¯ 2 = I b 2 + I m 2 +2 I b I m
σ 2 = I ¯ 2 I ¯ 2 = I b 2 I b 2 + I m 2 I m 2 +2sin c 2 ( ω a T 2 ) I b I m
C= σ I ¯ = I b 2 I b 2 + I m 2 I m 2 +2sin c 2 ( ω a T 2 ) I b I m I b + I m
C on = σ on I ¯ = I b 2 I b 2 + I m 2 I m 2 I b + I m
C off = σ off I ¯ = I b 2 I b 2 + I m 2 I m 2 +2 I b I m I b + I m
ΔC= C off C on = C b 2 + C m 2 M 2 +2M 1+M C b 2 + C m 2 M 2 1+M
C b = I b 2 I b 2 I b , C m = I m 2 I m 2 I m  and M= I m I b .
ΔC= C b 2 +2M C b 1+M

Metrics