Abstract

An in-depth experimental investigation was conducted into the use of a graphene oxide-based saturable absorber implemented on a side-polished fiber platform for femtosecond pulse generation in the 2 μm region. First, it was experimentally shown that an all-fiberized thulium-holmium (Tm-Ho)-codoped fiber ring laser with reduced cavity length can produce stable femtosecond pulses by incorporating a graphene oxide-deposited side-polished fiber. Second, the measurement accuracy issue in obtaining a precise pulse-width value by use of an autocorrelator together with a silica fiber-based 2 μm-band amplifier was investigated. It showed that the higher-order soliton compression effect caused by the combination of anomalous dispersion and Kerr nonlinearity can provide incorrect pulse-width information. Third, an experimental investigation into the precise role of the graphene oxide-deposited side-polished fiber was carried out to determine whether its polarization-dependent loss (PDL) can be a substantial contributor to mode-locking through nonlinear polarization rotation. By comparing its performance with that of a gold-deposited side-polished fiber, the PDL contribution to mode-locking was found to be insignificant, and the dominant mode-locking mechanism was shown to be saturable absorption due to mutual interaction between the evanescent field of the oscillated beam and the deposited graphene oxide particles.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+ -doped fluoride fiber laser for optical-based hydrocarbon has sensing,” IEEE J. Sel. Top. Quantum Electron.3(4), 1103–1111 (1997).
    [CrossRef]
  2. S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Electron.31, 4–15 (1993).
  3. G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt.50(14), 2098–2111 (2011).
    [CrossRef] [PubMed]
  4. M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2008).
  5. B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
    [CrossRef] [PubMed]
  6. K. D. Polder and S. Bruce, “Treatment of melasma using a novel 1,927-nm fractional thulium fiber laser: A Pilot Study,” Dermatol. Surg.38(2), 199–206 (2012).
    [CrossRef] [PubMed]
  7. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol.22(1), 51–56 (2004).
    [CrossRef]
  8. Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
    [CrossRef]
  9. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
    [CrossRef]
  10. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
    [CrossRef]
  11. S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30(4), 427–447 (2012).
    [CrossRef]
  12. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
    [CrossRef]
  13. J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett.37(11), 2085–2087 (2012).
    [CrossRef] [PubMed]
  14. J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
    [CrossRef]
  15. J. Liu, S. Wu, J. Xu, Q. Wang, Q.-H. Yang, and P. Wang, “Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber,” in Proc. CLEO, JW2A.76 (2012).
  16. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
    [CrossRef] [PubMed]
  17. Q. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5(11), 112702 (2012).
    [CrossRef]
  18. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and P. K. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett.102(13), 131117 (2013).
  19. G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express21(10), 12797–12802 (2013).
    [CrossRef] [PubMed]
  20. A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
    [CrossRef]
  21. S. Kivisö and O. G. Okhotnikov, “600-fs mode-locked Tm-Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber,” IEEE Photon. Technol. Lett.23(8), 477–479 (2011).
    [CrossRef]
  22. A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management,” Opt. Lett.37(13), 2466–2468 (2012).
    [CrossRef] [PubMed]
  23. L.-M. Yang, P. Wan, V. Protopopov, and J. Liu, “2 µm femtosecond fiber laser at low repetition rate and high pulse energy,” Opt. Express20(5), 5683–5688 (2012).
    [CrossRef] [PubMed]
  24. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber,” Opt. Express20(26), B124–B130 (2012).
    [CrossRef] [PubMed]
  25. G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater.22(22), 2392–2415 (2010).
    [CrossRef] [PubMed]
  26. J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20(14), 15474–15480 (2012).
    [CrossRef] [PubMed]
  27. J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
    [CrossRef]
  28. http://www.thorlabs.com/Thorcat/21000/SM2000-SpecSheet.pdf
  29. S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–808 (1992).
    [CrossRef]
  30. P. Lazaridis, G. Debarge, and P. Gallion, “Time-bandwidth product of chirped sech2 pulses: application to phase-amplitude-coupling factor measurement,” Opt. Lett.20(10), 1160–1162 (1995).
    [CrossRef] [PubMed]
  31. N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol.10(10), 1329–1333 (1992).
    [CrossRef]
  32. L. W. Liou and G. P. Agrawal, “Effect of frequency chirp on soliton spectral sidebands in fiber lasers,” Opt. Lett.20(11), 1286–1288 (1995).
    [CrossRef] [PubMed]
  33. G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, 2007).
  34. Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
    [CrossRef]
  35. Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett.32(2), 148–150 (2007).
    [CrossRef] [PubMed]
  36. J. H. Im, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express18(21), 22141–22146 (2010).
    [CrossRef] [PubMed]
  37. D. G. Moodie and W. Johnstone, “Wavelength tunability of components based on the evanescent coupling from a side-polished fiber to a high-index-overlay waveguide,” Opt. Lett.18(12), 1025–1027 (1993).
    [CrossRef] [PubMed]
  38. J. T. Kim and C.-G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express20(4), 3556–3562 (2012).
    [CrossRef] [PubMed]
  39. Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
    [CrossRef]

2013 (4)

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and P. K. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett.102(13), 131117 (2013).

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
[CrossRef]

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
[CrossRef]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express21(10), 12797–12802 (2013).
[CrossRef] [PubMed]

2012 (12)

K. D. Polder and S. Bruce, “Treatment of melasma using a novel 1,927-nm fractional thulium fiber laser: A Pilot Study,” Dermatol. Surg.38(2), 199–206 (2012).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

Q. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5(11), 112702 (2012).
[CrossRef]

J. T. Kim and C.-G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express20(4), 3556–3562 (2012).
[CrossRef] [PubMed]

S. Yamashita, “A tutorial on nonlinear photonic applications of carbon nanotube and graphene,” J. Lightwave Technol.30(4), 427–447 (2012).
[CrossRef]

L.-M. Yang, P. Wan, V. Protopopov, and J. Liu, “2 µm femtosecond fiber laser at low repetition rate and high pulse energy,” Opt. Express20(5), 5683–5688 (2012).
[CrossRef] [PubMed]

J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett.37(11), 2085–2087 (2012).
[CrossRef] [PubMed]

A. Wienke, F. Haxsen, D. Wandt, U. Morgner, J. Neumann, and D. Kracht, “Ultrafast, stretched-pulse thulium-doped fiber laser with a fiber-based dispersion management,” Opt. Lett.37(13), 2466–2468 (2012).
[CrossRef] [PubMed]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20(14), 15474–15480 (2012).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber,” Opt. Express20(26), B124–B130 (2012).
[CrossRef] [PubMed]

2011 (3)

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

G. D. Spiers, R. T. Menzies, J. Jacob, L. E. Christensen, M. W. Phillips, Y. Choi, and E. V. Browell, “Atmospheric CO2 measurements with a 2 μm airborne laser absorption spectrometer employing coherent detection,” Appl. Opt.50(14), 2098–2111 (2011).
[CrossRef] [PubMed]

S. Kivisö and O. G. Okhotnikov, “600-fs mode-locked Tm-Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber,” IEEE Photon. Technol. Lett.23(8), 477–479 (2011).
[CrossRef]

2010 (4)

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater.22(22), 2392–2415 (2010).
[CrossRef] [PubMed]

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

J. H. Im, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express18(21), 22141–22146 (2010).
[CrossRef] [PubMed]

2009 (2)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

2007 (1)

2004 (1)

1998 (1)

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

1997 (1)

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+ -doped fluoride fiber laser for optical-based hydrocarbon has sensing,” IEEE J. Sel. Top. Quantum Electron.3(4), 1103–1111 (1997).
[CrossRef]

1995 (2)

1993 (2)

D. G. Moodie and W. Johnstone, “Wavelength tunability of components based on the evanescent coupling from a side-polished fiber to a high-index-overlay waveguide,” Opt. Lett.18(12), 1025–1027 (1993).
[CrossRef] [PubMed]

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Electron.31, 4–15 (1993).

1992 (2)

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–808 (1992).
[CrossRef]

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol.10(10), 1329–1333 (1992).
[CrossRef]

Abramski, K. M.

Agrawal, G. P.

Ahn, J. H.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
[CrossRef]

Andonovic, I.

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol.10(10), 1329–1333 (1992).
[CrossRef]

Antipov, O. L.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
[CrossRef]

Arutyunyan, N. R.

Bae, M.-K.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Bao, Q.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Blow, K. J.

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol.10(10), 1329–1333 (1992).
[CrossRef]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Bouma, B. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Brezinski, M. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Browell, E. V.

Brown, C. T. A.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
[CrossRef]

Bruce, S.

K. D. Polder and S. Bruce, “Treatment of melasma using a novel 1,927-nm fractional thulium fiber laser: A Pilot Study,” Dermatol. Surg.38(2), 199–206 (2012).
[CrossRef] [PubMed]

Bruns, D. L.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Electron.31, 4–15 (1993).

Chen, K. P.

Q. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5(11), 112702 (2012).
[CrossRef]

Chen, P. K.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and P. K. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett.102(13), 131117 (2013).

Chen, T.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and P. K. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett.102(13), 131117 (2013).

Q. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5(11), 112702 (2012).
[CrossRef]

Chernysheva, M. A.

Chhowalla, M.

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater.22(22), 2392–2415 (2010).
[CrossRef] [PubMed]

Choi, C.-G.

Choi, S. Y.

Choi, Y.

Christensen, L. E.

Debarge, G.

Debnath, P.

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
[CrossRef]

Dianov, E. M.

Donegan, J. F.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+ -doped fluoride fiber laser for optical-based hydrocarbon has sensing,” IEEE J. Sel. Top. Quantum Electron.3(4), 1103–1111 (1997).
[CrossRef]

Eda, G.

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater.22(22), 2392–2415 (2010).
[CrossRef] [PubMed]

Ferrari, A. C.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Fujimoto, J. G.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Gallion, P.

Gao, W. L.

Goh, C. S.

Hale, C. P.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Electron.31, 4–15 (1993).

Han, W.-S.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Hannon, S. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Electron.31, 4–15 (1993).

Hasan, T.

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Haxsen, F.

Hegarty, J.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+ -doped fluoride fiber laser for optical-based hydrocarbon has sensing,” IEEE J. Sel. Top. Quantum Electron.3(4), 1103–1111 (1997).
[CrossRef]

Henderson, S. W.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Electron.31, 4–15 (1993).

Im, J. H.

Jablonski, M.

Jacob, J.

Jang, S.-Y.

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Johnstone, W.

Jones, D. J.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Kelleher, E. J. R.

Kelly, S. M.

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–808 (1992).
[CrossRef]

Kim, J. T.

Kivisö, S.

S. Kivisö and O. G. Okhotnikov, “600-fs mode-locked Tm-Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber,” IEEE Photon. Technol. Lett.23(8), 477–479 (2011).
[CrossRef]

Koo, J.

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
[CrossRef]

Kracht, D.

Krajewska, A.

Krylov, A. A.

Kryukov, P. G.

Kulmala, T. S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
[CrossRef]

Lagatsky, A. A.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
[CrossRef]

Lazaridis, P.

Lee, J.

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
[CrossRef]

Lee, J. H.

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
[CrossRef]

Lee, Y.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
[CrossRef]

Li, M.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and P. K. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett.102(13), 131117 (2013).

Q. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5(11), 112702 (2012).
[CrossRef]

Lim, C. H. Y. X.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Liou, L. W.

Liu, J.

Loh, K. P.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Lu, Y.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and P. K. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett.102(13), 131117 (2013).

Q. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5(11), 112702 (2012).
[CrossRef]

Lv, P.

Ma, J.

MacCraith, B. D.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+ -doped fluoride fiber laser for optical-based hydrocarbon has sensing,” IEEE J. Sel. Top. Quantum Electron.3(4), 1103–1111 (1997).
[CrossRef]

Magee, J. R.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Electron.31, 4–15 (1993).

Mazé, G.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+ -doped fluoride fiber laser for optical-based hydrocarbon has sensing,” IEEE J. Sel. Top. Quantum Electron.3(4), 1103–1111 (1997).
[CrossRef]

McAleavey, F. J.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+ -doped fluoride fiber laser for optical-based hydrocarbon has sensing,” IEEE J. Sel. Top. Quantum Electron.3(4), 1103–1111 (1997).
[CrossRef]

Menzies, R. T.

Milana, S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
[CrossRef]

Moodie, D. G.

Morgner, U.

Nelson, L. E.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Neumann, J.

Ni, Z.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

O’Gorman, J.

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+ -doped fluoride fiber laser for optical-based hydrocarbon has sensing,” IEEE J. Sel. Top. Quantum Electron.3(4), 1103–1111 (1997).
[CrossRef]

Obraztsova, E. D.

Okhotnikov, O. G.

S. Kivisö and O. G. Okhotnikov, “600-fs mode-locked Tm-Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber,” IEEE Photon. Technol. Lett.23(8), 477–479 (2011).
[CrossRef]

Pasternak, I.

Phillips, M. W.

Polder, K. D.

K. D. Polder and S. Bruce, “Treatment of melasma using a novel 1,927-nm fractional thulium fiber laser: A Pilot Study,” Dermatol. Surg.38(2), 199–206 (2012).
[CrossRef] [PubMed]

Popa, D.

Popov, S. V.

Pozharov, A. S.

Protopopov, V.

Qian, L. J.

Qu, Z. S.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

Rotermund, F.

Rozhin, A. G.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Set, S. Y.

Shen, Z. X.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Sibbett, W.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
[CrossRef]

Smith, N. J.

N. J. Smith, K. J. Blow, and I. Andonovic, “Sideband generation through perturbations to the average soliton model,” J. Lightwave Technol.10(10), 1329–1333 (1992).
[CrossRef]

Sobon, G.

Song, Y.-W.

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
[CrossRef]

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Y.-W. Song, S. Yamashita, C. S. Goh, and S. Y. Set, “Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers,” Opt. Lett.32(2), 148–150 (2007).
[CrossRef] [PubMed]

Sotor, J.

Spiers, G. D.

Strupinski, W.

Su, L. B.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

Sun, Z.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Sundaram, R. S.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
[CrossRef]

Suni, P. J. M.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Electron.31, 4–15 (1993).

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Tanaka, Y.

Tang, D. Y.

J. Ma, G. Q. Xie, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene mode-locked femtosecond laser at 2 μm wavelength,” Opt. Lett.37(11), 2085–2087 (2012).
[CrossRef] [PubMed]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Taylor, J. R.

Tearney, G. J.

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

Torrisi, F.

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
[CrossRef]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

Wan, P.

Wandt, D.

Wang, B.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Wang, F.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

Wang, J. Y.

Wang, P.

Wang, Q.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and P. K. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett.102(13), 131117 (2013).

Wang, Q. Q.

Q. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5(11), 112702 (2012).
[CrossRef]

Wang, Y.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Wang, Y. G.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

Wienke, A.

Wu, S.

Xie, G. Q.

Xu, J.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20(14), 15474–15480 (2012).
[CrossRef] [PubMed]

Yaguchi, H.

Yamashita, S.

Yan, Y.

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Yang, L.-M.

Yang, Q.-H.

Yeom, D.-I.

Yu, H. H.

Yuan, P.

Yuen, E. H.

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Electron.31, 4–15 (1993).

Zhang, B.

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and P. K. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett.102(13), 131117 (2013).

Q. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5(11), 112702 (2012).
[CrossRef]

Zhang, H.

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Zhang, H. J.

Zhang, M.

Zheng, L. H.

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

Adv. Funct. Mater. (1)

Q. Bao, H. Zhang, Y. Wang, Z. Ni, Y. Yan, Z. X. Shen, K. P. Loh, and D. Y. Tang, “Atomic-layer graphene as a saturable absorber for ultrafast pulsed lasers,” Adv. Funct. Mater.19(19), 3077–3083 (2009).
[CrossRef]

Adv. Mater. (2)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater.21(38–39), 3874–3899 (2009).
[CrossRef]

G. Eda and M. Chhowalla, “Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics,” Adv. Mater.22(22), 2392–2415 (2010).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Express (1)

Q. Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and K. P. Chen, “A mode-locked 1.91 μm fiber laser based on interaction between graphene oxide and evanescent field,” Appl. Phys. Express5(11), 112702 (2012).
[CrossRef]

Appl. Phys. Lett. (3)

Q. Wang, T. Chen, B. Zhang, M. Li, Y. Lu, and P. K. Chen, “All-fiber passively mode-locked thulium-doped fiber ring laser using optically deposited graphene saturable absorbers,” Appl. Phys. Lett.102(13), 131117 (2013).

A. A. Lagatsky, Z. Sun, T. S. Kulmala, R. S. Sundaram, S. Milana, F. Torrisi, O. L. Antipov, Y. Lee, J. H. Ahn, C. T. A. Brown, W. Sibbett, and A. C. Ferrari, “2 μm solid-state laser mode-locked by single-layer graphene,” Appl. Phys. Lett.102(1), 013113 (2013).
[CrossRef]

Y.-W. Song, S.-Y. Jang, W.-S. Han, and M.-K. Bae, “Graphene mode-lockers for fiber lasers functioned with evanescent field interaction,” Appl. Phys. Lett.96(5), 051122 (2010).
[CrossRef]

Dermatol. Surg. (1)

K. D. Polder and S. Bruce, “Treatment of melasma using a novel 1,927-nm fractional thulium fiber laser: A Pilot Study,” Dermatol. Surg.38(2), 199–206 (2012).
[CrossRef] [PubMed]

Electron. Lett. (1)

S. M. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett.28(8), 806–808 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

F. J. McAleavey, J. O’Gorman, J. F. Donegan, B. D. MacCraith, J. Hegarty, and G. Mazé, “Narrow linewidth, tunable Tm3+ -doped fluoride fiber laser for optical-based hydrocarbon has sensing,” IEEE J. Sel. Top. Quantum Electron.3(4), 1103–1111 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Kivisö and O. G. Okhotnikov, “600-fs mode-locked Tm-Ho-doped fiber laser synchronized to optical clock with optically driven semiconductor saturable absorber,” IEEE Photon. Technol. Lett.23(8), 477–479 (2011).
[CrossRef]

IEEE Trans. Geosci. Electron. (1)

S. W. Henderson, P. J. M. Suni, C. P. Hale, S. M. Hannon, J. R. Magee, D. L. Bruns, and E. H. Yuen, “Coherent laser radar at 2 μm using solid-state lasers,” IEEE Trans. Geosci. Electron.31, 4–15 (1993).

J. Biomed. Opt. (1)

B. E. Bouma, L. E. Nelson, G. J. Tearney, D. J. Jones, M. E. Brezinski, and J. G. Fujimoto, “Optical coherence tomographic imaging of human tissue at 1.55 μm and 1.81 μm using Er- and Tm-doped fiber sources,” J. Biomed. Opt.3(1), 76–79 (1998).
[CrossRef] [PubMed]

J. Lightwave Technol. (3)

Laser Phys. Lett. (2)

J. Lee, J. Koo, P. Debnath, Y.-W. Song, and J. H. Lee, “A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber,” Laser Phys. Lett.10(3), 035103 (2013).
[CrossRef]

J. Liu, Y. G. Wang, Z. S. Qu, L. H. Zheng, L. B. Su, and J. Xu, “Graphene oxide absorber for 2 μm passive mode-locking Tm:YAlO3 laser,” Laser Phys. Lett.9(1), 15–19 (2012).
[CrossRef]

Nat. Photonics (2)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010).
[CrossRef]

Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics5(7), 411–415 (2011).
[CrossRef]

Opt. Express (7)

L.-M. Yang, P. Wan, V. Protopopov, and J. Liu, “2 µm femtosecond fiber laser at low repetition rate and high pulse energy,” Opt. Express20(5), 5683–5688 (2012).
[CrossRef] [PubMed]

J. Xu, J. Liu, S. Wu, Q.-H. Yang, and P. Wang, “Graphene oxide mode-locked femtosecond erbium-doped fiber lasers,” Opt. Express20(14), 15474–15480 (2012).
[CrossRef] [PubMed]

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012).
[CrossRef] [PubMed]

M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, and E. M. Dianov, “Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber,” Opt. Express20(26), B124–B130 (2012).
[CrossRef] [PubMed]

G. Sobon, J. Sotor, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Thulium-doped all-fiber laser mode-locked by CVD-graphene/PMMA saturable absorber,” Opt. Express21(10), 12797–12802 (2013).
[CrossRef] [PubMed]

J. T. Kim and C.-G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express20(4), 3556–3562 (2012).
[CrossRef] [PubMed]

J. H. Im, S. Y. Choi, F. Rotermund, and D.-I. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express18(21), 22141–22146 (2010).
[CrossRef] [PubMed]

Opt. Lett. (6)

Physica E (1)

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012).
[CrossRef]

Other (4)

M. Ebrahim-Zadeh and I. T. Sorokina, Mid-Infrared Coherent Sources and Applications (Springer, 2008).

J. Liu, S. Wu, J. Xu, Q. Wang, Q.-H. Yang, and P. Wang, “Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber,” in Proc. CLEO, JW2A.76 (2012).

http://www.thorlabs.com/Thorcat/21000/SM2000-SpecSheet.pdf

G. P. Agrawal, Nonlinear Fiber Optics, 3rd Ed. (Academic Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) The laser schematic. (b) Measured linear absorption spectrum: Insets: Measured SEM image and Raman spectrum of the deposited graphene oxide. (c) Measured nonlinear absorption of the graphene oxide-deposited side polished fiber at 1.93 μm.

Fig. 2
Fig. 2

Measured (a) oscilloscope trace and (b) optical spectrum of the output pulses.

Fig. 3
Fig. 3

(a) Theoretically calculated Kelly sideband position relative to the center wavelength (Δλ) as a function of the temporal width of transform-limited pulses (TFWHM) for various Kelly sideband orders (m). (b) Measured electrical spectrum of the output pulses. The resolution bandwidth was 30 Hz.

Fig. 4
Fig. 4

Measured (a) optical spectra and (b) autocorrelation traces of the optical pulses that were amplified with the amplifier shown in Fig. 4, for various pump powers.

Fig. 5
Fig. 5

Measured pulse-width and average optical power of the amplified pulses as a function of amplifier pump power.

Fig. 6
Fig. 6

(a) Cross-sectional schematic and photo of the prepared gold-deposited side-polished fiber. (b) Measured oscilloscope trace of the output pulses, Inset: a close-up view.

Fig. 7
Fig. 7

Measured (a) optical and (b) electrical spectrum of the output pulses.

Tables (1)

Tables Icon

Table 1 Measured insertion loss and PDL values of the side-polished fibers with graphene oxide and gold deposited.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ= 2ln(1+ 2 ) λ 2 2πc T FWHM 4mπ L| β 2 | ( T FWHM 2ln(1+ 2 ) ) 2 1

Metrics