Abstract

In the evaluation a fused biconical taper 1480/1580 nm WDM’s ability to handle high power cascaded Raman laser throughput (>100 W) a significant degradation in performance was observed. A systematic root cause investigation was conducted and it is experimentally confirmed that the WDM degradation was caused by an interaction between the high power 1480 nm line, an out-of-band Stokes line, and the -OH content of the glass optical fiber. Slanted fiber Bragg grating (SFBG) was introduced to filter out the 1390 nm out-of-band Stokes line in an attempt to avoid this interaction. Ultimately a series of tests were conducted and it was confirmed that the addition of a 1390 nm SFBG in between a high power Raman laser and the high power WDM has successfully prevented the degradation which therefore allowed the continued high power operation of the WDM. NAVAIR Public Release SPR 2013-469 Distribution Statement A-“Approved for Public release; distribution is unlimited”.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Supradeepa, J. W. Nicholson, and K. Feder, “Continuous wave erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480nm Raman fiber laser,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM2N.8.
  2. J. W. Nicholson, J. Fini, J. Phillips, A. DeSantolo, K. Feder, X. Liu, P. Westbrook, E. Monberg, F. DiMarcello, C. Headley, and D. DiGiovanni, “Higher order mode erbium-doped fiber amplifiers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3C.5.
    [CrossRef]
  3. J. W. Nicholson, A. M. DeSantolo, S. Ghalmi, J. M. Fini, J. Fleming, E. Monberg, F. DiMarcello, and S. Ramachandran, “Nanosecond pulse amplification in a higher-order-mode erbium-doped fiber amplifier,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB5.
    [CrossRef]
  4. C. Headley and G. P. Agrawal, Raman amplification in fiber optical communication systems (Elsevier, 2005).
  5. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express13(18), 6772–6776 (2005).
    [CrossRef] [PubMed]
  6. Y. Feng, L. R. Taylor, and D. B. Calia, “150 W highly-efficient Raman fiber laser,” Opt. Express17(26), 23678–23683 (2009).
    [CrossRef] [PubMed]
  7. V. R. Supradeepa and J. W. Nichsolson, “Power scaling of high-efficiency 1.5 µm cascaded Raman fiber lasers,” Opt. Lett.38(14), 2538–2541 (2013).
    [CrossRef]
  8. T. Yilmaz, L. Vaissie, M. Akbulut, D. M. Gaudiosi, L. Collura, T. J. Booth, J. C. Jasapara, M. J. Andrejco, A. D. Yablon, C. E. Headley, and D. J. DiGiovanni, “Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm,” Proc. SPIE6873, 68731I, 68731I-8 (2008).
    [CrossRef]
  9. W. Samir, S. J. Garth, and C. Pask, “Theory of fused-tapered nonlinear optical fiber couplers,” Appl. Opt.32(24), 4513–4516 (1993).
    [CrossRef] [PubMed]
  10. K. Jedrzejewski, “Biconical fused taper – a universal fibre devices technology,” Opto-Electron. Rev.8(2), 153–159 (2000).
  11. R. C. Gutierrez, G. M. Swift, S. Dubovitsky, R. K. Bartman, C. E. Barnes, and L. Dorsky, “Radiation effects on fused biconical taper wavelength division multiplexers,” IEEE Trans. Nucl. Sci.41(6), 1950–1957 (1994).
    [CrossRef]
  12. R. J. Orazi, S. D. Russell, T. T. Vu, and P. K. L. Yu, “UV fine tuning of narrow channel fused fibre wavelength division multiplexing couplers,” Electron. Lett.33(2), 154–155 (1997).
    [CrossRef]
  13. A. F. Fernandez, B. Brichard, and F. Berghmans, “In situ measurement of refractive index changes induced by gamma radiation in germanosilicate fibers,” IEEE Photon. Technol. Lett.15(10), 1428–1430 (2003).
    [CrossRef]
  14. A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol.28(4), 360–364 (2010).
    [CrossRef]
  15. C. Jáuregui, A. Quintela, and J. M. López-Higuera, “Interrogation unit for fiber Bragg grating sensors that uses a slanted fiber grating,” Opt. Lett.29(7), 676–678 (2004).
    [CrossRef] [PubMed]
  16. V. I. Karpov, E. M. Dianov, V. M. Paramonov, O. I. Medvedkov, M. M. Bubnov, S. L. Semyonov, S. A. Vasiliev, V. N. Protopopov, O. N. Egorova, V. F. Hopin, A. N. Guryanov, M. P. Bachynski, and W. R. L. Clements, “Laser-diode-pumped phosphosilicate-fiber Raman laser with an output power of 1 W at 1.48 mum,” Opt. Lett.24(13), 887–889 (1999).
    [CrossRef] [PubMed]
  17. O. I. Medvedkov, S. A. Vasiliev, P. I. Gnusin, and E. M. Dianov, “Photosensitivity of optical fibers with extremely high germanium concentration,” Opt. Mater. Express2(11), 1478–1489 (2012).
    [CrossRef]

2013 (1)

2012 (1)

2010 (1)

2009 (1)

2008 (1)

T. Yilmaz, L. Vaissie, M. Akbulut, D. M. Gaudiosi, L. Collura, T. J. Booth, J. C. Jasapara, M. J. Andrejco, A. D. Yablon, C. E. Headley, and D. J. DiGiovanni, “Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm,” Proc. SPIE6873, 68731I, 68731I-8 (2008).
[CrossRef]

2005 (1)

2004 (1)

2003 (1)

A. F. Fernandez, B. Brichard, and F. Berghmans, “In situ measurement of refractive index changes induced by gamma radiation in germanosilicate fibers,” IEEE Photon. Technol. Lett.15(10), 1428–1430 (2003).
[CrossRef]

2000 (1)

K. Jedrzejewski, “Biconical fused taper – a universal fibre devices technology,” Opto-Electron. Rev.8(2), 153–159 (2000).

1999 (1)

1997 (1)

R. J. Orazi, S. D. Russell, T. T. Vu, and P. K. L. Yu, “UV fine tuning of narrow channel fused fibre wavelength division multiplexing couplers,” Electron. Lett.33(2), 154–155 (1997).
[CrossRef]

1994 (1)

R. C. Gutierrez, G. M. Swift, S. Dubovitsky, R. K. Bartman, C. E. Barnes, and L. Dorsky, “Radiation effects on fused biconical taper wavelength division multiplexers,” IEEE Trans. Nucl. Sci.41(6), 1950–1957 (1994).
[CrossRef]

1993 (1)

Akbulut, M.

T. Yilmaz, L. Vaissie, M. Akbulut, D. M. Gaudiosi, L. Collura, T. J. Booth, J. C. Jasapara, M. J. Andrejco, A. D. Yablon, C. E. Headley, and D. J. DiGiovanni, “Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm,” Proc. SPIE6873, 68731I, 68731I-8 (2008).
[CrossRef]

Andrejco, M. J.

T. Yilmaz, L. Vaissie, M. Akbulut, D. M. Gaudiosi, L. Collura, T. J. Booth, J. C. Jasapara, M. J. Andrejco, A. D. Yablon, C. E. Headley, and D. J. DiGiovanni, “Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm,” Proc. SPIE6873, 68731I, 68731I-8 (2008).
[CrossRef]

Bachynski, M. P.

Barnes, C. E.

R. C. Gutierrez, G. M. Swift, S. Dubovitsky, R. K. Bartman, C. E. Barnes, and L. Dorsky, “Radiation effects on fused biconical taper wavelength division multiplexers,” IEEE Trans. Nucl. Sci.41(6), 1950–1957 (1994).
[CrossRef]

Bartman, R. K.

R. C. Gutierrez, G. M. Swift, S. Dubovitsky, R. K. Bartman, C. E. Barnes, and L. Dorsky, “Radiation effects on fused biconical taper wavelength division multiplexers,” IEEE Trans. Nucl. Sci.41(6), 1950–1957 (1994).
[CrossRef]

Berghmans, F.

A. F. Fernandez, B. Brichard, and F. Berghmans, “In situ measurement of refractive index changes induced by gamma radiation in germanosilicate fibers,” IEEE Photon. Technol. Lett.15(10), 1428–1430 (2003).
[CrossRef]

Booth, T. J.

T. Yilmaz, L. Vaissie, M. Akbulut, D. M. Gaudiosi, L. Collura, T. J. Booth, J. C. Jasapara, M. J. Andrejco, A. D. Yablon, C. E. Headley, and D. J. DiGiovanni, “Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm,” Proc. SPIE6873, 68731I, 68731I-8 (2008).
[CrossRef]

Brichard, B.

A. F. Fernandez, B. Brichard, and F. Berghmans, “In situ measurement of refractive index changes induced by gamma radiation in germanosilicate fibers,” IEEE Photon. Technol. Lett.15(10), 1428–1430 (2003).
[CrossRef]

Bubnov, M. M.

Calia, D. B.

Clements, W. R. L.

Collura, L.

T. Yilmaz, L. Vaissie, M. Akbulut, D. M. Gaudiosi, L. Collura, T. J. Booth, J. C. Jasapara, M. J. Andrejco, A. D. Yablon, C. E. Headley, and D. J. DiGiovanni, “Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm,” Proc. SPIE6873, 68731I, 68731I-8 (2008).
[CrossRef]

Dianov, E. M.

DiGiovanni, D. J.

T. Yilmaz, L. Vaissie, M. Akbulut, D. M. Gaudiosi, L. Collura, T. J. Booth, J. C. Jasapara, M. J. Andrejco, A. D. Yablon, C. E. Headley, and D. J. DiGiovanni, “Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm,” Proc. SPIE6873, 68731I, 68731I-8 (2008).
[CrossRef]

Dorsky, L.

R. C. Gutierrez, G. M. Swift, S. Dubovitsky, R. K. Bartman, C. E. Barnes, and L. Dorsky, “Radiation effects on fused biconical taper wavelength division multiplexers,” IEEE Trans. Nucl. Sci.41(6), 1950–1957 (1994).
[CrossRef]

Dronov, A. G.

Dubovitsky, S.

R. C. Gutierrez, G. M. Swift, S. Dubovitsky, R. K. Bartman, C. E. Barnes, and L. Dorsky, “Radiation effects on fused biconical taper wavelength division multiplexers,” IEEE Trans. Nucl. Sci.41(6), 1950–1957 (1994).
[CrossRef]

Egorova, O. N.

Feng, Y.

Fernandez, A. F.

A. F. Fernandez, B. Brichard, and F. Berghmans, “In situ measurement of refractive index changes induced by gamma radiation in germanosilicate fibers,” IEEE Photon. Technol. Lett.15(10), 1428–1430 (2003).
[CrossRef]

Gapontsev, V. P.

Garth, S. J.

Gaudiosi, D. M.

T. Yilmaz, L. Vaissie, M. Akbulut, D. M. Gaudiosi, L. Collura, T. J. Booth, J. C. Jasapara, M. J. Andrejco, A. D. Yablon, C. E. Headley, and D. J. DiGiovanni, “Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm,” Proc. SPIE6873, 68731I, 68731I-8 (2008).
[CrossRef]

Georgiev, D.

Gnusin, P. I.

Guryanov, A. N.

Gutierrez, R. C.

R. C. Gutierrez, G. M. Swift, S. Dubovitsky, R. K. Bartman, C. E. Barnes, and L. Dorsky, “Radiation effects on fused biconical taper wavelength division multiplexers,” IEEE Trans. Nucl. Sci.41(6), 1950–1957 (1994).
[CrossRef]

Headley, C. E.

T. Yilmaz, L. Vaissie, M. Akbulut, D. M. Gaudiosi, L. Collura, T. J. Booth, J. C. Jasapara, M. J. Andrejco, A. D. Yablon, C. E. Headley, and D. J. DiGiovanni, “Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm,” Proc. SPIE6873, 68731I, 68731I-8 (2008).
[CrossRef]

Hopin, V. F.

Jasapara, J. C.

T. Yilmaz, L. Vaissie, M. Akbulut, D. M. Gaudiosi, L. Collura, T. J. Booth, J. C. Jasapara, M. J. Andrejco, A. D. Yablon, C. E. Headley, and D. J. DiGiovanni, “Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm,” Proc. SPIE6873, 68731I, 68731I-8 (2008).
[CrossRef]

Jáuregui, C.

Jedrzejewski, K.

K. Jedrzejewski, “Biconical fused taper – a universal fibre devices technology,” Opto-Electron. Rev.8(2), 153–159 (2000).

Karpov, V. I.

López-Higuera, J. M.

Medvedkov, O. I.

Nichsolson, J. W.

Orazi, R. J.

R. J. Orazi, S. D. Russell, T. T. Vu, and P. K. L. Yu, “UV fine tuning of narrow channel fused fibre wavelength division multiplexing couplers,” Electron. Lett.33(2), 154–155 (1997).
[CrossRef]

Paramonov, V. M.

Pask, C.

Popov, S. V.

Protopopov, V. N.

Quintela, A.

Rulkov, A. B.

Russell, S. D.

R. J. Orazi, S. D. Russell, T. T. Vu, and P. K. L. Yu, “UV fine tuning of narrow channel fused fibre wavelength division multiplexing couplers,” Electron. Lett.33(2), 154–155 (1997).
[CrossRef]

Samir, W.

Semyonov, S. L.

Supradeepa, V. R.

Swift, G. M.

R. C. Gutierrez, G. M. Swift, S. Dubovitsky, R. K. Bartman, C. E. Barnes, and L. Dorsky, “Radiation effects on fused biconical taper wavelength division multiplexers,” IEEE Trans. Nucl. Sci.41(6), 1950–1957 (1994).
[CrossRef]

Taylor, J. R.

Taylor, L. R.

Vaissie, L.

T. Yilmaz, L. Vaissie, M. Akbulut, D. M. Gaudiosi, L. Collura, T. J. Booth, J. C. Jasapara, M. J. Andrejco, A. D. Yablon, C. E. Headley, and D. J. DiGiovanni, “Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm,” Proc. SPIE6873, 68731I, 68731I-8 (2008).
[CrossRef]

Vasiliev, S. A.

Vu, T. T.

R. J. Orazi, S. D. Russell, T. T. Vu, and P. K. L. Yu, “UV fine tuning of narrow channel fused fibre wavelength division multiplexing couplers,” Electron. Lett.33(2), 154–155 (1997).
[CrossRef]

Vyatkin, M. Y.

Yablon, A. D.

A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved Fourier transform spectroscopy,” J. Lightwave Technol.28(4), 360–364 (2010).
[CrossRef]

T. Yilmaz, L. Vaissie, M. Akbulut, D. M. Gaudiosi, L. Collura, T. J. Booth, J. C. Jasapara, M. J. Andrejco, A. D. Yablon, C. E. Headley, and D. J. DiGiovanni, “Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm,” Proc. SPIE6873, 68731I, 68731I-8 (2008).
[CrossRef]

Yilmaz, T.

T. Yilmaz, L. Vaissie, M. Akbulut, D. M. Gaudiosi, L. Collura, T. J. Booth, J. C. Jasapara, M. J. Andrejco, A. D. Yablon, C. E. Headley, and D. J. DiGiovanni, “Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm,” Proc. SPIE6873, 68731I, 68731I-8 (2008).
[CrossRef]

Yu, P. K. L.

R. J. Orazi, S. D. Russell, T. T. Vu, and P. K. L. Yu, “UV fine tuning of narrow channel fused fibre wavelength division multiplexing couplers,” Electron. Lett.33(2), 154–155 (1997).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (1)

R. J. Orazi, S. D. Russell, T. T. Vu, and P. K. L. Yu, “UV fine tuning of narrow channel fused fibre wavelength division multiplexing couplers,” Electron. Lett.33(2), 154–155 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. F. Fernandez, B. Brichard, and F. Berghmans, “In situ measurement of refractive index changes induced by gamma radiation in germanosilicate fibers,” IEEE Photon. Technol. Lett.15(10), 1428–1430 (2003).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

R. C. Gutierrez, G. M. Swift, S. Dubovitsky, R. K. Bartman, C. E. Barnes, and L. Dorsky, “Radiation effects on fused biconical taper wavelength division multiplexers,” IEEE Trans. Nucl. Sci.41(6), 1950–1957 (1994).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (3)

Opt. Mater. Express (1)

Opto-Electron. Rev. (1)

K. Jedrzejewski, “Biconical fused taper – a universal fibre devices technology,” Opto-Electron. Rev.8(2), 153–159 (2000).

Proc. SPIE (1)

T. Yilmaz, L. Vaissie, M. Akbulut, D. M. Gaudiosi, L. Collura, T. J. Booth, J. C. Jasapara, M. J. Andrejco, A. D. Yablon, C. E. Headley, and D. J. DiGiovanni, “Large-mode-area Er-doped fiber chirped-pulse amplification system for high-energy sub-picosecond pulses at 1.55 μm,” Proc. SPIE6873, 68731I, 68731I-8 (2008).
[CrossRef]

Other (4)

V. R. Supradeepa, J. W. Nicholson, and K. Feder, “Continuous wave erbium-doped fiber laser with output power of >100 W at 1550 nm in-band core-pumped by a 1480nm Raman fiber laser,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), paper CM2N.8.

J. W. Nicholson, J. Fini, J. Phillips, A. DeSantolo, K. Feder, X. Liu, P. Westbrook, E. Monberg, F. DiMarcello, C. Headley, and D. DiGiovanni, “Higher order mode erbium-doped fiber amplifiers,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM3C.5.
[CrossRef]

J. W. Nicholson, A. M. DeSantolo, S. Ghalmi, J. M. Fini, J. Fleming, E. Monberg, F. DiMarcello, and S. Ramachandran, “Nanosecond pulse amplification in a higher-order-mode erbium-doped fiber amplifier,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (CD) (Optical Society of America, 2010), paper CPDB5.
[CrossRef]

C. Headley and G. P. Agrawal, Raman amplification in fiber optical communication systems (Elsevier, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Optical spectrum of the high power cascaded Raman fiber laser operating at a total power of 130 W and 111 W at 1480 nm.

Fig. 2
Fig. 2

High power 1480/1580 nm WDM and its channel assignment. P1: input channel. P2: 1480 nm output channel. P3: 1580 nm output channel.

Fig. 3
Fig. 3

Optical power monitored at the 1480/1580 nm WDM output 1480 nm channel P2.

Fig. 4
Fig. 4

(a) Optical spectral transfer functions of P1 to P2, and (b) P1 to P3 of the high power 1480/1580nm WDM before (open square) and after (open circle) the burn-in test for 46.5 hours, and their respective polynomial fits (solid curve and dashed curve).

Fig. 5
Fig. 5

Coupling ratio vs. wavelength of the high power 1480/1580 nm WDM with increasing refractive index from nominal 1.444 to 1.474 at 1500 nm.

Fig. 6
Fig. 6

(a) Simulated minimum coupling ratio wavelength vs. refractive index at 1500 nm and (b) insertion loss at 1480 nm vs. the minimum coupling ratio wavelength of the 1480/1580 nm WDM.

Fig. 7
Fig. 7

(a) Interference fringes and (b) high resolution microscope image across the fused biconical taper section of the degraded 1480/1580 nm WDM.

Fig. 8
Fig. 8

Three 1480/1580 nm WDMs, WDM A, WDM B, and WDM C, were cascaded to identify WDM high power degradation root cause.

Fig. 9
Fig. 9

Optical power monitored at the 1480/1580 nm WDM C output 1480 nm channel P2C.

Fig. 10
Fig. 10

Optical spectral transfer functions from P1 to P2 of (a) the WDM A, (b) the WDM B, and (c) the WDM C before and after the high power burn-in test, and their respective polynomial fitted curves.

Fig. 11
Fig. 11

(a) Excess loss around the –OH absorption peak of a standard high power 1480/1580 nm WDM and a “wet” 1480/1580 nm WDM, and (b) optical power monitored at the “wet” 1480/1580 nm WDM output 1480 nm channel P2.

Fig. 12
Fig. 12

(a) Transmission spectrum of a regular 1390 nm SFBG designed and developed for filtering out the 1390 nm Stokes line. (b) Optical spectrum of the high power Raman laser measured directly at the high power Raman laser output (solid black), and after being spliced to the 1390 nm SFBG (dashed blue).

Fig. 13
Fig. 13

(a) Optical power logging data over a period of 300 hours at the 1480/1580 nm WDM output 1480 nm channel P2. A 1390 nm SFBG was spliced between the high power Raman laser and the high power 1480/1580 nm WDM. (b) Optical spectral transfer functions of P1 to P2 of the high power 1480/1580nm WDM before (black open square) and after (red open circle) the burn-in test for 300 hours, and their respective polynomial fits (black and red curves).

Tables (1)

Tables Icon

Table 1 Optical power distribution of the Stokes lines of the cascaded Raman fiber laser

Metrics