Abstract

Ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators are proposed, simulated and analyzed. Comparing with Si slot microring modulator, hybrid plasmonic microring modulator shows about 6-times enhancement of the figure of merit when the bending radius is around 510 nm, due to its much larger intrinsic quality factor in sub-micron radius range. Influences of the EO polymer height and Si height on the device’s performance are analyzed and optimal design is given. When operating with a bias of 3.6V, the proposed device has optical modulation amplitude of 0.8 and insertion loss of about 1 dB. The estimated power consumption is about 5 fJ/bit at100 GHz.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
    [Crossref]
  2. R. Zia, J. A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
    [Crossref]
  3. D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30(10), 1186–1188 (2005).
    [Crossref] [PubMed]
  4. P. Holmström, L. Thylén, and A. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
    [Crossref]
  5. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
    [Crossref] [PubMed]
  6. M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JThD112.
  7. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  8. D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
    [Crossref] [PubMed]
  9. Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylen, S. He, and L. Wosinski, “Experimental Realization of a Low-loss Nano-scale Si Hybrid Plasmonic Waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.
    [Crossref]
  10. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [Crossref] [PubMed]
  11. K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express 21(4), 4728–4733 (2013).
    [Crossref] [PubMed]
  12. D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
    [Crossref]
  13. F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).
    [Crossref]
  14. Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
    [Crossref] [PubMed]
  15. Q. Li, Y. Song, G. Zhou, Y. Su, and M. Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Opt. Lett. 35(19), 3153–3155 (2010).
    [Crossref] [PubMed]
  16. F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012).
    [Crossref] [PubMed]
  17. J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20(23), 25345–25355 (2012).
    [Crossref] [PubMed]
  18. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37(1), 55–57 (2012).
    [Crossref] [PubMed]
  19. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
    [Crossref] [PubMed]
  20. S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010).
    [Crossref] [PubMed]
  21. L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
    [Crossref]
  22. S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
    [Crossref]
  23. R. Dinu, D. Jin, G. Yu, B. Chen, D. Huang, H. Chen, A. Barklund, E. Miller, C. Wei, and J. Vemagiri, “Environmental stress testing of electro-optic polymer modulators,” J. Lightwave Technol. 27(11), 1527–1532 (2009).
    [Crossref]
  24. D. Jin, H. Chen, A. Barklund, J. Mallari, G. Yu, E. Miller, and R. Dinu, “EO polymer modulators reliability study,” Proc. SPIE 7599, 75990H (2010).
    [Crossref]
  25. W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
    [Crossref] [PubMed]
  26. M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an Electro-Optic Modulator Based on a Silicon-Plasmonic Hybrid Phase Shifter,” J. Lightwave Technol. 31(8), 1170–1177 (2013).
    [Crossref]
  27. X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50(20), 3428–3434 (2011).
    [Crossref] [PubMed]
  28. Z. Wu, R. L. Nelson, J. W. Haus, and Q. Zhan, “Plasmonic electro-optic modulator design using a resonant metal grating,” Opt. Lett. 33(6), 551–553 (2008).
    [Crossref] [PubMed]
  29. F. Lou, L. Thylen, and L. Wosinski, “Hybrid plasmonic microdisk resonators for optical interconnect applications,” Proc. SPIE 8781, 87810X (2013).
    [Crossref]
  30. X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions,” Opt. Express 20(3), 2507–2515 (2012).
    [Crossref] [PubMed]
  31. H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
    [Crossref]
  32. K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic Stabilization of a Microring Modulator Under Thermal Perturbation,” Proc. Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW4F.2.
    [Crossref]
  33. J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18(16), 16902–16928 (2010).
    [Crossref] [PubMed]
  34. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J. M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
    [Crossref] [PubMed]
  35. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
    [Crossref] [PubMed]
  36. C. Koos, J. Brosi, M. Waldow, W. Freude, and J. Leuthold, “Silicon-on-insulator modulators for next-generation 100 Gbit/s-Ethernet,” Proc. European Conf. on Optical Communication (ECOC), Paper P056 (2007).
    [Crossref]
  37. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [Crossref]
  38. J. Takayesu, M. Hochberg, T. Baehr-Jones, E. Chan, G. Wang, P. Sullivan, Y. Liao, J. Davies, L. Dalton, A. Scherer, and W. Krug, “A Hybrid Electrooptic Microring Resonator-Based 1×4×1 ROADM for Wafer Scale Optical Interconnects,” J. Lightwave Technol. 27(4), 440–448 (2009).
    [Crossref]
  39. D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011).
    [Crossref] [PubMed]
  40. R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express 15(26), 17967–17972 (2007).
    [Crossref] [PubMed]
  41. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  42. S.-H. Kwon, “Deep subwavelength plasmonic whispering-gallery-mode cavity,” Opt. Express 20(22), 24918–24924 (2012).
    [Crossref] [PubMed]
  43. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
    [Crossref]
  44. X. Wang, C. Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
    [Crossref] [PubMed]
  45. R. Ding, T. Baehr-Jones, W. Kim, A. Spott, M. Fournier, J. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-Volt Silicon-Organic Electro-optic Modulator With 500 MHz Bandwidth,” J. Lightwave Technol. 29(8), 1112–1117 (2011).
    [Crossref]

2013 (4)

K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express 21(4), 4728–4733 (2013).
[Crossref] [PubMed]

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

F. Lou, L. Thylen, and L. Wosinski, “Hybrid plasmonic microdisk resonators for optical interconnect applications,” Proc. SPIE 8781, 87810X (2013).
[Crossref]

M. Xu, F. Li, T. Wang, J. Wu, L. Lu, L. Zhou, and Y. Su, “Design of an Electro-Optic Modulator Based on a Silicon-Plasmonic Hybrid Phase Shifter,” J. Lightwave Technol. 31(8), 1170–1177 (2013).
[Crossref]

2012 (7)

2011 (6)

X. Wang, C. Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
[Crossref] [PubMed]

R. Ding, T. Baehr-Jones, W. Kim, A. Spott, M. Fournier, J. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-Volt Silicon-Organic Electro-optic Modulator With 500 MHz Bandwidth,” J. Lightwave Technol. 29(8), 1112–1117 (2011).
[Crossref]

X. Sun, L. Zhou, X. Li, Z. Hong, and J. Chen, “Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide,” Appl. Opt. 50(20), 3428–3434 (2011).
[Crossref] [PubMed]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J. M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
[Crossref] [PubMed]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011).
[Crossref] [PubMed]

2010 (8)

J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18(16), 16902–16928 (2010).
[Crossref] [PubMed]

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

D. Jin, H. Chen, A. Barklund, J. Mallari, G. Yu, E. Miller, and R. Dinu, “EO polymer modulators reliability study,” Proc. SPIE 7599, 75990H (2010).
[Crossref]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010).
[Crossref] [PubMed]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[Crossref] [PubMed]

Q. Li, Y. Song, G. Zhou, Y. Su, and M. Qiu, “Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss,” Opt. Lett. 35(19), 3153–3155 (2010).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

P. Holmström, L. Thylén, and A. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[Crossref]

2009 (6)

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[Crossref] [PubMed]

R. Dinu, D. Jin, G. Yu, B. Chen, D. Huang, H. Chen, A. Barklund, E. Miller, C. Wei, and J. Vemagiri, “Environmental stress testing of electro-optic polymer modulators,” J. Lightwave Technol. 27(11), 1527–1532 (2009).
[Crossref]

J. Takayesu, M. Hochberg, T. Baehr-Jones, E. Chan, G. Wang, P. Sullivan, Y. Liao, J. Davies, L. Dalton, A. Scherer, and W. Krug, “A Hybrid Electrooptic Microring Resonator-Based 1×4×1 ROADM for Wafer Scale Optical Interconnects,” J. Lightwave Technol. 27(4), 440–448 (2009).
[Crossref]

2008 (2)

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Z. Wu, R. L. Nelson, J. W. Haus, and Q. Zhan, “Plasmonic electro-optic modulator design using a resonant metal grating,” Opt. Lett. 33(6), 551–553 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

R. Zia, J. A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[Crossref]

2005 (3)

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30(10), 1186–1188 (2005).
[Crossref] [PubMed]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
[Crossref] [PubMed]

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

2004 (1)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

1987 (1)

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aitchison, J. S.

Akelaitis, A.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Alam, M. Z.

Alloatti, L.

Amend, J.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

Baehr-Jones, T.

Baets, R.

Bale, D.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Barklund, A.

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Bennett, B. R.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Bhatambrekar, N.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Bhattacharjee, S.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Bogaerts, W.

Bousseksou, A.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

Bratkovsky, A.

P. Holmström, L. Thylén, and A. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[Crossref]

Brongersma, M.

R. Zia, J. A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[Crossref]

Brongersma, M. L.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[Crossref] [PubMed]

Buker, N.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Cai, W.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[Crossref] [PubMed]

Chakravarty, S.

Chan, E.

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[Crossref]

Chee, J.

Chen, A.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Chen, B.

Chen, H.

Chen, J.

Chen, R. T.

Chong, F. T.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chu, T.

Colombelli, R.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Costantini, D.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Dai, D.

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).
[Crossref]

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012).
[Crossref] [PubMed]

D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011).
[Crossref] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[Crossref] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Dalton, L.

Dalton, L. R.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Davies, J.

De Wilde, Y.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Decobert, J.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

Ding, K.

Ding, R.

Dinu, R.

Dionne, J.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

Dong, P.

Duan, G.-H.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Dumon, P.

Eichinger, B.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Fan, S.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Fedeli, J.

Fedeli, J. M.

Feng, N. N.

Firestone, K.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Fournier, M.

Freude, W.

Genov, D. A.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Gould, M.

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30(10), 1186–1188 (2005).
[Crossref] [PubMed]

Greffet, J.-J.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Greusard, L.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Habert, B.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Haller, M.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Hammond, S.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Han, Z.

Hau, S. K.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Haus, J. W.

He, S.

Hill, M. T.

Hillerkuss, D.

Hochberg, M.

Holmström, P.

P. Holmström, L. Thylén, and A. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[Crossref]

Hong, C. Y.

Hong, Z.

Hu, Y.

Huang, D.

Huang, S.

Jang, S.-H.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Jen, A.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Jen, A. K.-Y.

Jin, D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Kim, T.-D.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Kim, W.

Kimerling, L.

Koos, C.

Korn, D.

Krug, W.

Kwon, S.-H.

Kwong, D. L.

Lelarge, F.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Leuthold, J.

Li, F.

Li, J.

Li, Q.

Li, X.

Li, Z.

Liao, Y.

J. Takayesu, M. Hochberg, T. Baehr-Jones, E. Chan, G. Wang, P. Sullivan, Y. Liao, J. Davies, L. Dalton, A. Scherer, and W. Krug, “A Hybrid Electrooptic Microring Resonator-Based 1×4×1 ROADM for Wafer Scale Optical Interconnects,” J. Lightwave Technol. 27(4), 440–448 (2009).
[Crossref]

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Lin, C. Y.

Lingwood, M.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Lipson, M.

Liu, L.

Liu, S.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Liu, Z. C.

Lo, G. Q.

Lou, F.

F. Lou, L. Thylen, and L. Wosinski, “Hybrid plasmonic microdisk resonators for optical interconnect applications,” Proc. SPIE 8781, 87810X (2013).
[Crossref]

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).
[Crossref]

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012).
[Crossref] [PubMed]

Lu, L.

Luo, J.

X. Wang, C. Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36(6), 882–884 (2011).
[Crossref] [PubMed]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J. M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
[Crossref] [PubMed]

R. Ding, T. Baehr-Jones, W. Kim, A. Spott, M. Fournier, J. Fedeli, S. Huang, J. Luo, A. K.-Y. Jen, L. Dalton, and M. Hochberg, “Sub-Volt Silicon-Organic Electro-optic Modulator With 500 MHz Bandwidth,” J. Lightwave Technol. 29(8), 1112–1117 (2011).
[Crossref]

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Mallari, J.

D. Jin, H. Chen, A. Barklund, J. Mallari, G. Yu, E. Miller, and R. Dinu, “EO polymer modulators reliability study,” Proc. SPIE 7599, 75990H (2010).
[Crossref]

Marquier, F.

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

Michel, J.

Miller, E.

Mojahedi, M.

Nelson, R. L.

Ning, C. Z.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Palmer, R.

Pile, D. F. P.

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

D. F. P. Pile and D. K. Gramotnev, “Plasmonic subwavelength waveguides: next to zero losses at sharp bends,” Opt. Lett. 30(10), 1186–1188 (2005).
[Crossref] [PubMed]

Qiu, M.

Ried, P.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Robinson, B.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Rommel, H.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Scherer, A.

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[Crossref]

Sherwood, T.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Shi, Y.

Shi, Z.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Sinness, J.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Snoeberger, R.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Song, Y.

Soref, R. A.

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Spott, A.

Steier, W.

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Su, Y.

Suh, W.

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Sullivan, P.

J. Takayesu, M. Hochberg, T. Baehr-Jones, E. Chan, G. Wang, P. Sullivan, Y. Liao, J. Davies, L. Dalton, A. Scherer, and W. Krug, “A Hybrid Electrooptic Microring Resonator-Based 1×4×1 ROADM for Wafer Scale Optical Interconnects,” J. Lightwave Technol. 27(4), 440–448 (2009).
[Crossref]

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Sun, R.

Sun, X.

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

Takayesu, J.

Theogarajan, L.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Thylen, L.

F. Lou, L. Thylen, and L. Wosinski, “Hybrid plasmonic microdisk resonators for optical interconnect applications,” Proc. SPIE 8781, 87810X (2013).
[Crossref]

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).
[Crossref]

D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011).
[Crossref] [PubMed]

Thylén, L.

P. Holmström, L. Thylén, and A. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[Crossref]

Tiwari, M.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Valamehr, J. K.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

van Veldhoven, P. J.

Vemagiri, J.

Wang, G.

Wang, J.

Wang, T.

Wang, X.

Wang, Z.

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).
[Crossref]

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

Wassel, H. M. G.

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

Wei, C.

White, J. S.

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[Crossref] [PubMed]

Wieland, J.

Witzens, J.

Wosinski, L.

F. Lou, L. Thylen, and L. Wosinski, “Hybrid plasmonic microdisk resonators for optical interconnect applications,” Proc. SPIE 8781, 87810X (2013).
[Crossref]

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).
[Crossref]

F. Lou, D. Dai, and L. Wosinski, “Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler,” Opt. Lett. 37(16), 3372–3374 (2012).
[Crossref] [PubMed]

D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011).
[Crossref] [PubMed]

Wu, J.

Wu, Z.

Xiao, X.

Xiong, K.

Xu, H.

Xu, M.

Yan, M.

Yin, L. J.

Yip, H.-L.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Yu, G.

Yu, H.

Yu, J.

Yu, Y.

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Zhan, Q.

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhou, G.

Zhou, L.

Zhou, X.-H.

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

Zhu, S.

Zhu, S. Y.

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

S. Huang, T.-D. Kim, J. Luo, S. K. Hau, Z. Shi, X.-H. Zhou, H.-L. Yip, and A. K.-Y. Jen, “Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode,” Appl. Phys. Lett. 96(24), 243311 (2010).
[Crossref]

P. Holmström, L. Thylén, and A. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss,” Appl. Phys. Lett. 97(7), 073110 (2010).
[Crossref]

D. Costantini, L. Greusard, A. Bousseksou, Y. De Wilde, B. Habert, F. Marquier, J.-J. Greffet, F. Lelarge, J. Decobert, G.-H. Duan, and R. Colombelli, “A hybrid plasmonic semiconductor laser,” Appl. Phys. Lett. 102(10), 101106 (2013).
[Crossref]

F. Lou, Z. Wang, D. Dai, L. Thylen, and L. Wosinski, “Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides,” Appl. Phys. Lett. 100(24), 241105 (2012).
[Crossref]

IEEE J. Emer. Sel. Top. Circuits Systems (1)

H. M. G. Wassel, D. Dai, M. Tiwari, J. K. Valamehr, L. Theogarajan, J. Dionne, F. T. Chong, and T. Sherwood, “Opportunities and Challenges of Using Plasmonic Components in Nanophotonic Architectures,” IEEE J. Emer. Sel. Top. Circuits Systems 2(2), 154–168 (2012).
[Crossref]

IEEE J. Quantum Electron. (2)

W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40(10), 1511–1518 (2004).
[Crossref]

R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[Crossref]

J. Lightwave Technol. (4)

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006).
[Crossref]

Nano Lett. (2)

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[Crossref] [PubMed]

W. Cai, J. S. White, and M. L. Brongersma, “Compact, high-speed and power-efficient electrooptic plasmonic modulators,” Nano Lett. 9(12), 4403–4411 (2009).
[Crossref] [PubMed]

Nat. Photonics (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010).
[Crossref]

R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Nature (1)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[Crossref] [PubMed]

Opt. Express (13)

K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, “Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature,” Opt. Express 21(4), 4728–4733 (2013).
[Crossref] [PubMed]

D. Dai and S. He, “A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement,” Opt. Express 17(19), 16646–16653 (2009).
[Crossref] [PubMed]

L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005).
[Crossref] [PubMed]

S. Y. Zhu, G. Q. Lo, and D. L. Kwong, “Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators,” Opt. Express 18(26), 27802–27819 (2010).
[Crossref] [PubMed]

J. Chee, S. Zhu, and G. Q. Lo, “CMOS compatible polarization splitter using hybrid plasmonic waveguide,” Opt. Express 20(23), 25345–25355 (2012).
[Crossref] [PubMed]

Y. Song, J. Wang, Q. Li, M. Yan, and M. Qiu, “Broadband coupler between silicon waveguide and hybrid plasmonic waveguide,” Opt. Express 18(12), 13173–13179 (2010).
[Crossref] [PubMed]

X. Xiao, H. Xu, X. Li, Y. Hu, K. Xiong, Z. Li, T. Chu, Y. Yu, and J. Yu, “25 Gbit/s silicon microring modulator based on misalignment-tolerant interleaved PN junctions,” Opt. Express 20(3), 2507–2515 (2012).
[Crossref] [PubMed]

D. Dai, Y. Shi, S. He, L. Wosinski, and L. Thylen, “Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides,” Opt. Express 19(24), 23671–23682 (2011).
[Crossref] [PubMed]

R. Sun, P. Dong, N. N. Feng, C. Y. Hong, J. Michel, M. Lipson, and L. Kimerling, “Horizontal single and multiple slot waveguides: optical transmission at λ = 1550 nm,” Opt. Express 15(26), 17967–17972 (2007).
[Crossref] [PubMed]

J. Witzens, T. Baehr-Jones, and M. Hochberg, “Design of transmission line driven slot waveguide Mach-Zehnder interferometers and application to analog optical links,” Opt. Express 18(16), 16902–16928 (2010).
[Crossref] [PubMed]

M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J. M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19(5), 3952–3961 (2011).
[Crossref] [PubMed]

L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19(12), 11841–11851 (2011).
[Crossref] [PubMed]

S.-H. Kwon, “Deep subwavelength plasmonic whispering-gallery-mode cavity,” Opt. Express 20(22), 24918–24924 (2012).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Proc. SPIE (3)

F. Lou, L. Thylen, and L. Wosinski, “Hybrid plasmonic microdisk resonators for optical interconnect applications,” Proc. SPIE 8781, 87810X (2013).
[Crossref]

D. Jin, H. Chen, A. Barklund, J. Mallari, G. Yu, E. Miller, and R. Dinu, “EO polymer modulators reliability study,” Proc. SPIE 7599, 75990H (2010).
[Crossref]

L. R. Dalton, B. Robinson, A. Jen, P. Ried, B. Eichinger, P. Sullivan, A. Akelaitis, D. Bale, M. Haller, J. Luo, S. Liu, Y. Liao, K. Firestone, N. Bhatambrekar, S. Bhattacharjee, J. Sinness, S. Hammond, N. Buker, R. Snoeberger, M. Lingwood, H. Rommel, J. Amend, S.-H. Jang, A. Chen, and W. Steier, “Electro-optic coefficients of 500 pm/V and beyond for organic materials,” Proc. SPIE 5935, 593502 (2005).
[Crossref]

Other (4)

M. Z. Alam, J. Meier, J. S. Aitchison, and M. Mojahedi, “Super mode propagation in low index medium,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper JThD112.

Z. Wang, D. Dai, Y. Shi, G. Somesfalean, P. Holmstrom, L. Thylen, S. He, and L. Wosinski, “Experimental Realization of a Low-loss Nano-scale Si Hybrid Plasmonic Waveguide,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, OSA Technical Digest (CD) (Optical Society of America, 2011), paper JThA017.
[Crossref]

C. Koos, J. Brosi, M. Waldow, W. Freude, and J. Leuthold, “Silicon-on-insulator modulators for next-generation 100 Gbit/s-Ethernet,” Proc. European Conf. on Optical Communication (ECOC), Paper P056 (2007).
[Crossref]

K. Padmaraju, J. Chan, L. Chen, M. Lipson, and K. Bergman, “Dynamic Stabilization of a Microring Modulator Under Thermal Perturbation,” Proc. Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW4F.2.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic diagram of the proposed hybrid plasmonic microring modulator. Cross-sectional view along the (b) xy and (c) xz planes of the Ez field distributions of a resonant mode at 1550 nm, with an azimuthal number of 6. The bending radius is R = 542 nm.

Fig. 2
Fig. 2

Quality factors of Si slot microrings and HP microrings as functions of bending radius. QSlot and QHP are shown by the left Y axis and the ratio between QHP and QSlot is shown by the right Y axis.

Fig. 3
Fig. 3

(a) Tuning efficiencies of Si Slot microring and HP microring. (b) Enhancement of FOM by HP microring as a function of bending radius.

Fig. 4
Fig. 4

(a) Quality factors and tuning efficiencies of HP microrings as functions of EOP slot height; the silicon height is either 400 nm or 300 nm. (b) Figure of merits of HP microrings as functions of EOP slot height.

Fig. 5
Fig. 5

(a) Quality factors of HP microrings as functions of radius and silicon height. (b) Enhancement of quality factor and tuning efficiency for different azimuthal numbers. (c) Enhancement of figure of merit. (d) Optimal Si height as a function of azimuthal number.

Fig. 6
Fig. 6

Transmission spectra of the waveguide-loaded HP microring modulator when EOP index changes by 0 and 0.025. CW light has a wavelength at 1549 nm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

FOM = Q λ 0 Γ= Δλ Res Δλ 3dB 1 Δn EOP ,
Ov= EOP Slot n | E | 2 dxdydz Z 0 Re(E×H ) dxdydz ,
E= FOM FOM(200) = Q Q(200) Γ Γ(200) ,
t= j(Δω/ ω 0 )+1/2 Q i 1/2 Q w j(Δω/ ω 0 )+1/2 Q i +1/2 Q w ,

Metrics