Abstract

Polarization-insensitive (PI) phase-transmultiplexing (PTM) of a 10-Gb/s return-to-zero on-off keying (RZ-OOK) pump and a 10-Gb/s RZ-binary phase-shift keying (RZ-BPSK) probe to 20-Gb/s RZ-quadrature-PSK (RZ-QPSK) has been successfully demonstrated for the first time in a passive, birefringent AlGaAs waveguide, utilizing PI cross-phase modulation (PI-XPM). For differential QPSK (DQPSK)-detection, a 10−9-BER pre-amplified receiver sensitivity penalty of ≈2.5 dB for the in-phase component and ≈4.9 dB for the quadrature component were found. The penalties were relative to the FPGA-precoded RZ-DQPSK baseline for a pump-probe detuning of ≈12 nm, when the probe state of polarization was scrambled and the pump was launched off-axis into the waveguide.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol.12(11), 1916–1920 (1994).
    [CrossRef]
  2. T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett.5(8), 947–949 (1993).
    [CrossRef]
  3. K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic Crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005).
    [CrossRef]
  4. T. Yang, C. Shu, and C. Lin, “Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber,” Opt. Express13(14), 5409–5415 (2005).
    [CrossRef] [PubMed]
  5. J. Li, A. Berntson, and G. Jacobsen, “Polarization-independent optical demultiplexing using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett.20(9), 691–693 (2008).
    [CrossRef]
  6. T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett.17(5), 1052–1054 (2005).
    [CrossRef]
  7. A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett.18(12), 1329–1331 (2006).
    [CrossRef]
  8. A. S. Lenihan and G. M. Carter, “Polarization-insensitive wavelength conversion at 40 Gb/s using birefringent nonlinear fiber,” in Lasers and Electro-Optics, 2007. CLEO 2007. Conference On (2007), pp. 1 –2.
  9. W. Astar, C.-C. Wei, Y.-J. Chen, J. Chen, and G. M. Carter, “Polarization-insensitive, 40 Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF,” Opt. Express16(16), 12039–12049 (2008).
    [CrossRef] [PubMed]
  10. B. M. Cannon, W. Astar, T. Mahmood, P. Apiratikul, G. A. Porkolab, C. J. K. Richardson, and G. M. Carter, “Data transfer from RZ-OOK to RZ-BPSK by polarization-insensitive XPM in a passive birefringent nonlinear AlGaAs waveguide,” J. Lightwave Technol.31(6), 952–966 (2013).
    [CrossRef]
  11. H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenløwe, and P. Jeppesen, “640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion,” Opt. Express18(10), 9961–9966 (2010).
    [CrossRef] [PubMed]
  12. M. Pu, H. Hu, C. Peucheret, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide,” Opt. Express20(15), 16374–16380 (2012).
    [CrossRef]
  13. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. Vlasov, G. M. Carter, and R. M. Osgood, “Tunable wavelength conversion by XPM in a silicon nanowire, and the potential for XPM-multicasting,” J. Lightwave Technol.28(17), 2499–2511 (2010).
    [CrossRef]
  14. W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire,” Opt. Express17(15), 12987–12999 (2009).
    [CrossRef] [PubMed]
  15. S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Quantum Electron.16(1), 250–256 (2010).
    [CrossRef]
  16. J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: experiment and theoretical investigation,” IEEE J. Quantum Electron.16(5), 1448–1459 (2010).
    [CrossRef]
  17. M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
    [CrossRef]
  18. H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian H Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express19(21), 19886–19894 (2011).
    [CrossRef] [PubMed]
  19. S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa(1−x)As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys.87(11), 7825–7837 (2000).
    [CrossRef]
  20. J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, “AlGaAs below half bandgap: a laboratory for spatial soliton physics,” Pure and Appl. Opt.: J. European Opt. Society Part A5, 583–594 (1996).
  21. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33(3), 341–348 (1997).
    [CrossRef]
  22. K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express19(13), 12440–12455 (2011).
    [CrossRef] [PubMed]
  23. K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett.35(24), 4093–4095 (2010).
    [CrossRef] [PubMed]
  24. W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett.22(9), 637–639 (2010).
    [CrossRef]
  25. W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, and G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AlGaAs waveguide,” IEEE Photon. Technol. Lett.23(19), 1397–1399 (2011).
    [CrossRef]
  26. J. J. Wathen, P. Apiratikul, B. M. Cannon, T. Mahmood, W. Astar, C. J. K. Richardson, G. A. Porkolab, G. M. Carter, and T. E. Murphy, “Efficient continuous-wave four-wave mixing and self-phase modulation in a bandgap-engineered AlGaAs waveguide,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), Paper CW1A.4. (2012).
  27. M. Galili, C. Schmidt-Langhorst, R. Ludwig, F. Futami, S. Watanabe, and C. Schubert, “All-optical combination of DPSK and OOK to 160 Gbit/s DQPSK data signals,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (2007), pp. 1 –3.
    [CrossRef]
  28. E. Kapon and R. Bhat, “Low loss single mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(23), 1628–1630 (1987).
    [CrossRef]
  29. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol.26(11), 1423–1431 (2008).
    [CrossRef]
  30. A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett.61(2), 147–149 (1992).
    [CrossRef]
  31. G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).
  32. P. J. Winzer and A. Kalmar, “Sensitivity enhancement of optical receivers by impulsive coding,” J. Lightwave Technol.17(2), 171–177 (1999).
    [CrossRef]
  33. P. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol.9(11), 1576–1582 (1991).
    [CrossRef]
  34. C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, “DWDM 40G transmission over trans-pacific distance (10 000 km) using CSRZ-DPSK, enhanced FEC, and all-Raman-amplified 100-km UltraWave fiber spans,” J. Lightwave Technol.22(1), 203–207 (2004).
    [CrossRef]
  35. J. Proakis, Digital Communications, 4th ed. (McGraw-Hill Science/Engineering/Math, 2000).
  36. J. M. Gene, M. Soler, R. I. Killey, and J. Prat, “Investigation of 10-Gb/s optical DQPSK systems in presence of chromatic dispersion, fiber nonlinearities, and phase noise,” IEEE Photon. Technol. Lett.16(3), 924–926 (2004).
    [CrossRef]
  37. H. Kim and P. J. Winzer, “Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems,” J. Lightwave Technol.21(9), 1887–1891 (2003).
    [CrossRef]

2013 (1)

2012 (1)

2011 (3)

2010 (6)

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett.22(9), 637–639 (2010).
[CrossRef]

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Quantum Electron.16(1), 250–256 (2010).
[CrossRef]

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: experiment and theoretical investigation,” IEEE J. Quantum Electron.16(5), 1448–1459 (2010).
[CrossRef]

H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenløwe, and P. Jeppesen, “640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion,” Opt. Express18(10), 9961–9966 (2010).
[CrossRef] [PubMed]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. Vlasov, G. M. Carter, and R. M. Osgood, “Tunable wavelength conversion by XPM in a silicon nanowire, and the potential for XPM-multicasting,” J. Lightwave Technol.28(17), 2499–2511 (2010).
[CrossRef]

K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett.35(24), 4093–4095 (2010).
[CrossRef] [PubMed]

2009 (1)

2008 (3)

2006 (1)

A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett.18(12), 1329–1331 (2006).
[CrossRef]

2005 (3)

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic Crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005).
[CrossRef]

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett.17(5), 1052–1054 (2005).
[CrossRef]

T. Yang, C. Shu, and C. Lin, “Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber,” Opt. Express13(14), 5409–5415 (2005).
[CrossRef] [PubMed]

2004 (2)

2003 (2)

H. Kim and P. J. Winzer, “Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems,” J. Lightwave Technol.21(9), 1887–1891 (2003).
[CrossRef]

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

2000 (1)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa(1−x)As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys.87(11), 7825–7837 (2000).
[CrossRef]

1999 (1)

1997 (1)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33(3), 341–348 (1997).
[CrossRef]

1996 (1)

J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, “AlGaAs below half bandgap: a laboratory for spatial soliton physics,” Pure and Appl. Opt.: J. European Opt. Society Part A5, 583–594 (1996).

1994 (1)

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol.12(11), 1916–1920 (1994).
[CrossRef]

1993 (1)

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett.5(8), 947–949 (1993).
[CrossRef]

1992 (1)

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett.61(2), 147–149 (1992).
[CrossRef]

1991 (1)

P. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol.9(11), 1576–1582 (1991).
[CrossRef]

1987 (1)

E. Kapon and R. Bhat, “Low loss single mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(23), 1628–1630 (1987).
[CrossRef]

Aitchison, J. S.

K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express19(13), 12440–12455 (2011).
[CrossRef] [PubMed]

K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, and M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett.35(24), 4093–4095 (2010).
[CrossRef] [PubMed]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33(3), 341–348 (1997).
[CrossRef]

J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, “AlGaAs below half bandgap: a laboratory for spatial soliton physics,” Pure and Appl. Opt.: J. European Opt. Society Part A5, 583–594 (1996).

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett.61(2), 147–149 (1992).
[CrossRef]

Akasaka, Y.

Apiratikul, P.

B. M. Cannon, W. Astar, T. Mahmood, P. Apiratikul, G. A. Porkolab, C. J. K. Richardson, and G. M. Carter, “Data transfer from RZ-OOK to RZ-BPSK by polarization-insensitive XPM in a passive birefringent nonlinear AlGaAs waveguide,” J. Lightwave Technol.31(6), 952–966 (2013).
[CrossRef]

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, and G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AlGaAs waveguide,” IEEE Photon. Technol. Lett.23(19), 1397–1399 (2011).
[CrossRef]

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett.22(9), 637–639 (2010).
[CrossRef]

Astar, W.

B. M. Cannon, W. Astar, T. Mahmood, P. Apiratikul, G. A. Porkolab, C. J. K. Richardson, and G. M. Carter, “Data transfer from RZ-OOK to RZ-BPSK by polarization-insensitive XPM in a passive birefringent nonlinear AlGaAs waveguide,” J. Lightwave Technol.31(6), 952–966 (2013).
[CrossRef]

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, and G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AlGaAs waveguide,” IEEE Photon. Technol. Lett.23(19), 1397–1399 (2011).
[CrossRef]

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett.22(9), 637–639 (2010).
[CrossRef]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. Vlasov, G. M. Carter, and R. M. Osgood, “Tunable wavelength conversion by XPM in a silicon nanowire, and the potential for XPM-multicasting,” J. Lightwave Technol.28(17), 2499–2511 (2010).
[CrossRef]

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: experiment and theoretical investigation,” IEEE J. Quantum Electron.16(5), 1448–1459 (2010).
[CrossRef]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire,” Opt. Express17(15), 12987–12999 (2009).
[CrossRef] [PubMed]

W. Astar, C.-C. Wei, Y.-J. Chen, J. Chen, and G. M. Carter, “Polarization-insensitive, 40 Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF,” Opt. Express16(16), 12039–12049 (2008).
[CrossRef] [PubMed]

Azizoglu, M.

P. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol.9(11), 1576–1582 (1991).
[CrossRef]

Bennike, J.

Berntson, A.

J. Li, A. Berntson, and G. Jacobsen, “Polarization-independent optical demultiplexing using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett.20(9), 691–693 (2008).
[CrossRef]

Bhat, R.

E. Kapon and R. Bhat, “Low loss single mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(23), 1628–1630 (1987).
[CrossRef]

Bjarklev, A.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic Crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005).
[CrossRef]

Camasta, M. C.

Cannon, B. M.

B. M. Cannon, W. Astar, T. Mahmood, P. Apiratikul, G. A. Porkolab, C. J. K. Richardson, and G. M. Carter, “Data transfer from RZ-OOK to RZ-BPSK by polarization-insensitive XPM in a passive birefringent nonlinear AlGaAs waveguide,” J. Lightwave Technol.31(6), 952–966 (2013).
[CrossRef]

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, and G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AlGaAs waveguide,” IEEE Photon. Technol. Lett.23(19), 1397–1399 (2011).
[CrossRef]

Carter, G. M.

B. M. Cannon, W. Astar, T. Mahmood, P. Apiratikul, G. A. Porkolab, C. J. K. Richardson, and G. M. Carter, “Data transfer from RZ-OOK to RZ-BPSK by polarization-insensitive XPM in a passive birefringent nonlinear AlGaAs waveguide,” J. Lightwave Technol.31(6), 952–966 (2013).
[CrossRef]

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, and G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AlGaAs waveguide,” IEEE Photon. Technol. Lett.23(19), 1397–1399 (2011).
[CrossRef]

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett.22(9), 637–639 (2010).
[CrossRef]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. Vlasov, G. M. Carter, and R. M. Osgood, “Tunable wavelength conversion by XPM in a silicon nanowire, and the potential for XPM-multicasting,” J. Lightwave Technol.28(17), 2499–2511 (2010).
[CrossRef]

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: experiment and theoretical investigation,” IEEE J. Quantum Electron.16(5), 1448–1459 (2010).
[CrossRef]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire,” Opt. Express17(15), 12987–12999 (2009).
[CrossRef] [PubMed]

W. Astar, C.-C. Wei, Y.-J. Chen, J. Chen, and G. M. Carter, “Polarization-insensitive, 40 Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF,” Opt. Express16(16), 12039–12049 (2008).
[CrossRef] [PubMed]

A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett.18(12), 1329–1331 (2006).
[CrossRef]

Chen, J.

Chen, Y.-J.

Chow, K. K.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic Crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005).
[CrossRef]

Christian H Mulvad, H.

Clausen, A.

Dadap, J. I.

Dey, S.

Dinu, M.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

Dolgaleva, K.

Driscoll, J. B.

Fallahkhair, A. B.

Fjelde, T.

Futami, F.

M. Galili, C. Schmidt-Langhorst, R. Ludwig, F. Futami, S. Watanabe, and C. Schubert, “All-optical combination of DPSK and OOK to 160 Gbit/s DQPSK data signals,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (2007), pp. 1 –3.
[CrossRef]

Galili, M.

Gao, S.

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Quantum Electron.16(1), 250–256 (2010).
[CrossRef]

Gapontsev, D.

Garcia, H.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

Gehrsitz, S.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa(1−x)As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys.87(11), 7825–7837 (2000).
[CrossRef]

Gene, J. M.

J. M. Gene, M. Soler, R. I. Killey, and J. Prat, “Investigation of 10-Gb/s optical DQPSK systems in presence of chromatic dispersion, fiber nonlinearities, and phase noise,” IEEE Photon. Technol. Lett.16(3), 924–926 (2004).
[CrossRef]

Gourgon, C.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa(1−x)As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys.87(11), 7825–7837 (2000).
[CrossRef]

Green, W. M. J.

Harris, D.

Hasegawa, T.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett.5(8), 947–949 (1993).
[CrossRef]

He, S.

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Quantum Electron.16(1), 250–256 (2010).
[CrossRef]

Herres, N.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa(1−x)As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys.87(11), 7825–7837 (2000).
[CrossRef]

Hryniewicz, J. V.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, and G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AlGaAs waveguide,” IEEE Photon. Technol. Lett.23(19), 1397–1399 (2011).
[CrossRef]

Hu, H.

Humblet, P.

P. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol.9(11), 1576–1582 (1991).
[CrossRef]

Hutchings, D. C.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33(3), 341–348 (1997).
[CrossRef]

Hvam, J. M.

Inoue, K.

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol.12(11), 1916–1920 (1994).
[CrossRef]

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett.5(8), 947–949 (1993).
[CrossRef]

Ironside, C. N.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett.61(2), 147–149 (1992).
[CrossRef]

Ivshin, V.

Jacobsen, G.

J. Li, A. Berntson, and G. Jacobsen, “Polarization-independent optical demultiplexing using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett.20(9), 691–693 (2008).
[CrossRef]

Jeppesen, P.

Ji, H.

Kalmar, A.

Kanakaraju, S.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, and G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AlGaAs waveguide,” IEEE Photon. Technol. Lett.23(19), 1397–1399 (2011).
[CrossRef]

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33(3), 341–348 (1997).
[CrossRef]

J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, “AlGaAs below half bandgap: a laboratory for spatial soliton physics,” Pure and Appl. Opt.: J. European Opt. Society Part A5, 583–594 (1996).

Kapon, E.

E. Kapon and R. Bhat, “Low loss single mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(23), 1628–1630 (1987).
[CrossRef]

Katoh, K.

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett.17(5), 1052–1054 (2005).
[CrossRef]

Kikuchi, K.

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett.17(5), 1052–1054 (2005).
[CrossRef]

Killey, R. I.

J. M. Gene, M. Soler, R. I. Killey, and J. Prat, “Investigation of 10-Gb/s optical DQPSK systems in presence of chromatic dispersion, fiber nonlinearities, and phase noise,” IEEE Photon. Technol. Lett.16(3), 924–926 (2004).
[CrossRef]

Kim, H.

Lenihan, A. S.

A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett.18(12), 1329–1331 (2006).
[CrossRef]

Li, J.

J. Li, A. Berntson, and G. Jacobsen, “Polarization-independent optical demultiplexing using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett.20(9), 691–693 (2008).
[CrossRef]

Li, K. S.

Li, Z.

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Quantum Electron.16(1), 250–256 (2010).
[CrossRef]

Lin, C.

T. Yang, C. Shu, and C. Lin, “Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber,” Opt. Express13(14), 5409–5415 (2005).
[CrossRef] [PubMed]

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic Crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005).
[CrossRef]

Liu, F.

Liu, X.

Ludwig, R.

M. Galili, C. Schmidt-Langhorst, R. Ludwig, F. Futami, S. Watanabe, and C. Schubert, “All-optical combination of DPSK and OOK to 160 Gbit/s DQPSK data signals,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (2007), pp. 1 –3.
[CrossRef]

Mahmood, T.

B. M. Cannon, W. Astar, T. Mahmood, P. Apiratikul, G. A. Porkolab, C. J. K. Richardson, and G. M. Carter, “Data transfer from RZ-OOK to RZ-BPSK by polarization-insensitive XPM in a passive birefringent nonlinear AlGaAs waveguide,” J. Lightwave Technol.31(6), 952–966 (2013).
[CrossRef]

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, and G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AlGaAs waveguide,” IEEE Photon. Technol. Lett.23(19), 1397–1399 (2011).
[CrossRef]

Mamyshev, P.

Mikkelsen, B.

Mulvad, H. C. H.

Murphy, T. E.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, and G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AlGaAs waveguide,” IEEE Photon. Technol. Lett.23(19), 1397–1399 (2011).
[CrossRef]

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett.22(9), 637–639 (2010).
[CrossRef]

A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol.26(11), 1423–1431 (2008).
[CrossRef]

A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett.18(12), 1329–1331 (2006).
[CrossRef]

Ng, W. C.

Oda, K.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett.5(8), 947–949 (1993).
[CrossRef]

Osgood, R. M.

Oxenløwe, L. K.

Palushani, E.

Peucheret, C.

Porkolab, G. A.

Prat, J.

J. M. Gene, M. Soler, R. I. Killey, and J. Prat, “Investigation of 10-Gb/s optical DQPSK systems in presence of chromatic dispersion, fiber nonlinearities, and phase noise,” IEEE Photon. Technol. Lett.16(3), 924–926 (2004).
[CrossRef]

Pu, M.

Qian, L.

Quochi, F.

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

Rasmussen, C.

Reeves-Hall, P.

Reinhart, F. K.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa(1−x)As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys.87(11), 7825–7837 (2000).
[CrossRef]

Richardson, C. J. K.

B. M. Cannon, W. Astar, T. Mahmood, P. Apiratikul, G. A. Porkolab, C. J. K. Richardson, and G. M. Carter, “Data transfer from RZ-OOK to RZ-BPSK by polarization-insensitive XPM in a passive birefringent nonlinear AlGaAs waveguide,” J. Lightwave Technol.31(6), 952–966 (2013).
[CrossRef]

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, and G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AlGaAs waveguide,” IEEE Photon. Technol. Lett.23(19), 1397–1399 (2011).
[CrossRef]

Salem, R.

A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett.18(12), 1329–1331 (2006).
[CrossRef]

Schmidt-Langhorst, C.

M. Galili, C. Schmidt-Langhorst, R. Ludwig, F. Futami, S. Watanabe, and C. Schubert, “All-optical combination of DPSK and OOK to 160 Gbit/s DQPSK data signals,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (2007), pp. 1 –3.
[CrossRef]

Schubert, C.

M. Galili, C. Schmidt-Langhorst, R. Ludwig, F. Futami, S. Watanabe, and C. Schubert, “All-optical combination of DPSK and OOK to 160 Gbit/s DQPSK data signals,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (2007), pp. 1 –3.
[CrossRef]

Serbe, P.

Shu, C.

T. Yang, C. Shu, and C. Lin, “Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber,” Opt. Express13(14), 5409–5415 (2005).
[CrossRef] [PubMed]

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic Crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005).
[CrossRef]

Sigg, H.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa(1−x)As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys.87(11), 7825–7837 (2000).
[CrossRef]

Soler, M.

J. M. Gene, M. Soler, R. I. Killey, and J. Prat, “Investigation of 10-Gb/s optical DQPSK systems in presence of chromatic dispersion, fiber nonlinearities, and phase noise,” IEEE Photon. Technol. Lett.16(3), 924–926 (2004).
[CrossRef]

Sorel, M.

Stegeman, G. I.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33(3), 341–348 (1997).
[CrossRef]

J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, “AlGaAs below half bandgap: a laboratory for spatial soliton physics,” Pure and Appl. Opt.: J. European Opt. Society Part A5, 583–594 (1996).

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett.61(2), 147–149 (1992).
[CrossRef]

Suzuki, J.

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett.17(5), 1052–1054 (2005).
[CrossRef]

Tanemura, T.

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett.17(5), 1052–1054 (2005).
[CrossRef]

van der Wagt, P.

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33(3), 341–348 (1997).
[CrossRef]

J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, “AlGaAs below half bandgap: a laboratory for spatial soliton physics,” Pure and Appl. Opt.: J. European Opt. Society Part A5, 583–594 (1996).

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett.61(2), 147–149 (1992).
[CrossRef]

Vlasov, Y.

Vlasov, Y. A.

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: experiment and theoretical investigation,” IEEE J. Quantum Electron.16(5), 1448–1459 (2010).
[CrossRef]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire,” Opt. Express17(15), 12987–12999 (2009).
[CrossRef] [PubMed]

Vonlanthen, A.

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa(1−x)As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys.87(11), 7825–7837 (2000).
[CrossRef]

Watanabe, S.

M. Galili, C. Schmidt-Langhorst, R. Ludwig, F. Futami, S. Watanabe, and C. Schubert, “All-optical combination of DPSK and OOK to 160 Gbit/s DQPSK data signals,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (2007), pp. 1 –3.
[CrossRef]

Wathen, J. J.

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, and G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AlGaAs waveguide,” IEEE Photon. Technol. Lett.23(19), 1397–1399 (2011).
[CrossRef]

Wei, C.-C.

Wigley, P. G. J.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett.61(2), 147–149 (1992).
[CrossRef]

Winzer, P. J.

Yang, C. C.

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett.61(2), 147–149 (1992).
[CrossRef]

Yang, T.

Yvind, K.

Zhang, X.

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Quantum Electron.16(1), 250–256 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

M. Dinu, F. Quochi, and H. Garcia, “Third-order nonlinearities in silicon at telecom wavelengths,” Appl. Phys. Lett.82(18), 2954–2956 (2003).
[CrossRef]

E. Kapon and R. Bhat, “Low loss single mode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett.50(23), 1628–1630 (1987).
[CrossRef]

A. Villeneuve, C. C. Yang, P. G. J. Wigley, G. I. Stegeman, J. S. Aitchison, and C. N. Ironside, “Ultrafast all optical switching in semiconductor nonlinear directional couplers at half the band gap,” Appl. Phys. Lett.61(2), 147–149 (1992).
[CrossRef]

IEEE J. Quantum Electron. (3)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron.33(3), 341–348 (1997).
[CrossRef]

S. Gao, X. Zhang, Z. Li, and S. He, “Polarization-independent wavelength conversion using an angled-polarization pump in a silicon nanowire waveguide,” IEEE J. Quantum Electron.16(1), 250–256 (2010).
[CrossRef]

J. B. Driscoll, W. Astar, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “All-optical wavelength conversion of 10 Gb/s RZ-OOK data in a silicon nanowire via cross-phase modulation: experiment and theoretical investigation,” IEEE J. Quantum Electron.16(5), 1448–1459 (2010).
[CrossRef]

IEEE Photon. Technol. Lett. (8)

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett.5(8), 947–949 (1993).
[CrossRef]

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic Crystal fiber,” IEEE Photon. Technol. Lett.17(3), 624–626 (2005).
[CrossRef]

J. Li, A. Berntson, and G. Jacobsen, “Polarization-independent optical demultiplexing using XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett.20(9), 691–693 (2008).
[CrossRef]

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett.17(5), 1052–1054 (2005).
[CrossRef]

A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett.18(12), 1329–1331 (2006).
[CrossRef]

W. Astar, P. Apiratikul, T. E. Murphy, and G. M. Carter, “Wavelength conversion of 10-Gb/s RZ-OOK using filtered XPM in a passive GaAs-AlGaAs waveguide,” IEEE Photon. Technol. Lett.22(9), 637–639 (2010).
[CrossRef]

W. Astar, P. Apiratikul, B. M. Cannon, T. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, and G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AlGaAs waveguide,” IEEE Photon. Technol. Lett.23(19), 1397–1399 (2011).
[CrossRef]

J. M. Gene, M. Soler, R. I. Killey, and J. Prat, “Investigation of 10-Gb/s optical DQPSK systems in presence of chromatic dispersion, fiber nonlinearities, and phase noise,” IEEE Photon. Technol. Lett.16(3), 924–926 (2004).
[CrossRef]

J. Appl. Phys. (1)

S. Gehrsitz, F. K. Reinhart, C. Gourgon, N. Herres, A. Vonlanthen, and H. Sigg, “The refractive index of AlxGa(1−x)As below the band gap: accurate determination and empirical modeling,” J. Appl. Phys.87(11), 7825–7837 (2000).
[CrossRef]

J. Lightwave Technol. (8)

P. Humblet and M. Azizoglu, “On the bit error rate of lightwave systems with optical amplifiers,” J. Lightwave Technol.9(11), 1576–1582 (1991).
[CrossRef]

P. J. Winzer and A. Kalmar, “Sensitivity enhancement of optical receivers by impulsive coding,” J. Lightwave Technol.17(2), 171–177 (1999).
[CrossRef]

H. Kim and P. J. Winzer, “Robustness to laser frequency offset in direct-detection DPSK and DQPSK systems,” J. Lightwave Technol.21(9), 1887–1891 (2003).
[CrossRef]

C. Rasmussen, T. Fjelde, J. Bennike, F. Liu, S. Dey, B. Mikkelsen, P. Mamyshev, P. Serbe, P. van der Wagt, Y. Akasaka, D. Harris, D. Gapontsev, V. Ivshin, and P. Reeves-Hall, “DWDM 40G transmission over trans-pacific distance (10 000 km) using CSRZ-DPSK, enhanced FEC, and all-Raman-amplified 100-km UltraWave fiber spans,” J. Lightwave Technol.22(1), 203–207 (2004).
[CrossRef]

A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol.26(11), 1423–1431 (2008).
[CrossRef]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. Vlasov, G. M. Carter, and R. M. Osgood, “Tunable wavelength conversion by XPM in a silicon nanowire, and the potential for XPM-multicasting,” J. Lightwave Technol.28(17), 2499–2511 (2010).
[CrossRef]

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol.12(11), 1916–1920 (1994).
[CrossRef]

B. M. Cannon, W. Astar, T. Mahmood, P. Apiratikul, G. A. Porkolab, C. J. K. Richardson, and G. M. Carter, “Data transfer from RZ-OOK to RZ-BPSK by polarization-insensitive XPM in a passive birefringent nonlinear AlGaAs waveguide,” J. Lightwave Technol.31(6), 952–966 (2013).
[CrossRef]

Opt. Express (7)

K. Dolgaleva, W. C. Ng, L. Qian, and J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express19(13), 12440–12455 (2011).
[CrossRef] [PubMed]

H. Hu, H. Ji, M. Galili, M. Pu, C. Peucheret, H. Christian H Mulvad, K. Yvind, J. M. Hvam, P. Jeppesen, and L. K. Oxenløwe, “Ultra-high-speed wavelength conversion in a silicon photonic chip,” Opt. Express19(21), 19886–19894 (2011).
[CrossRef] [PubMed]

M. Pu, H. Hu, C. Peucheret, H. Ji, M. Galili, L. K. Oxenløwe, P. Jeppesen, J. M. Hvam, and K. Yvind, “Polarization insensitive wavelength conversion in a dispersion-engineered silicon waveguide,” Opt. Express20(15), 16374–16380 (2012).
[CrossRef]

W. Astar, C.-C. Wei, Y.-J. Chen, J. Chen, and G. M. Carter, “Polarization-insensitive, 40 Gb/s wavelength and RZ-OOK-to-RZ-BPSK modulation format conversion by XPM in a highly nonlinear PCF,” Opt. Express16(16), 12039–12049 (2008).
[CrossRef] [PubMed]

W. Astar, J. B. Driscoll, X. Liu, J. I. Dadap, W. M. J. Green, Y. A. Vlasov, G. M. Carter, and R. M. Osgood, “Conversion of 10 Gb/s NRZ-OOK to RZ-OOK utilizing XPM in a Si nanowire,” Opt. Express17(15), 12987–12999 (2009).
[CrossRef] [PubMed]

H. Hu, E. Palushani, M. Galili, H. C. H. Mulvad, A. Clausen, L. K. Oxenløwe, and P. Jeppesen, “640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion,” Opt. Express18(10), 9961–9966 (2010).
[CrossRef] [PubMed]

T. Yang, C. Shu, and C. Lin, “Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber,” Opt. Express13(14), 5409–5415 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Pure and Appl. Opt.: J. European Opt. Society Part A (1)

J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, “AlGaAs below half bandgap: a laboratory for spatial soliton physics,” Pure and Appl. Opt.: J. European Opt. Society Part A5, 583–594 (1996).

Other (5)

A. S. Lenihan and G. M. Carter, “Polarization-insensitive wavelength conversion at 40 Gb/s using birefringent nonlinear fiber,” in Lasers and Electro-Optics, 2007. CLEO 2007. Conference On (2007), pp. 1 –2.

J. Proakis, Digital Communications, 4th ed. (McGraw-Hill Science/Engineering/Math, 2000).

G. P. Agrawal, Nonlinear Fiber Optics, 3rd ed. (Academic Press, 2001).

J. J. Wathen, P. Apiratikul, B. M. Cannon, T. Mahmood, W. Astar, C. J. K. Richardson, G. A. Porkolab, G. M. Carter, and T. E. Murphy, “Efficient continuous-wave four-wave mixing and self-phase modulation in a bandgap-engineered AlGaAs waveguide,” in CLEO: Science and Innovations, OSA Technical Digest (online) (Optical Society of America, 2012), Paper CW1A.4. (2012).

M. Galili, C. Schmidt-Langhorst, R. Ludwig, F. Futami, S. Watanabe, and C. Schubert, “All-optical combination of DPSK and OOK to 160 Gbit/s DQPSK data signals,” in Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference (2007), pp. 1 –3.
[CrossRef]

Supplementary Material (2)

» Media 1: AVI (3318 KB)     
» Media 2: AVI (3093 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scheme for PTM to RZ-QPSK using a RZ-BPSK probe (red) and a RZ-OOK pump (blue). OBPF = optical bandpass filter.

Fig. 2
Fig. 2

(a) Cross-section of the AlGaAs waveguide, and calculated optical mode profile (showing power dB-contours). (b) SEM demonstrates the high-quality, anisotropic etch. For (a), the x-axis is taken to be parallel to the substrate, while the z-axis, into the page.

Fig. 3
Fig. 3

Experimental setup for PTM QPSK. (ODL: optical delay line, PRBS: pseudo-random bit-sequence, ODL: optical delay line, CR: clock recovery, PS: polarization scrambler, AMZI: asymmetric Mach-Zehnder interferometer, BPD: balanced photodector, TIA: transimpedance amplifier, LA: limiting amplifier, Vth: threshold voltage, CDR: clock-data recovery module, EDS: error-detector subsystem, Δα: variable optical attenuator).

Fig. 4
Fig. 4

Fluctuation in the filtered blue side-band of the XPM-broadened probe. The pump was launched off-axis to reduce polarization-induced fluctuations due to scrambling the probe SOP.

Fig. 5
Fig. 5

(a) Media 1: Demonstrates PTM 20-Gb/s RZ-QPSK from 10-Gb/s RZ-BPSK and 10-Gb/s RZ-OOK. (b) Media 2: Demonstrates PTM RZ-QPSK I-component optimization when probe polarization scrambler was enabled.

Fig. 6
Fig. 6

Input and output Power spectra obtained at a resolution bandwidth of 0.06 nm, and for a PPD of 12 nm. The traces have been offset relative to each other for clarity. The output WDM traces exhibit pump and probe spectral broadening as well as FWM with a best conversion efficiency of ≈- 10.5 dB.

Fig. 7
Fig. 7

Precoded-baseline RZ-QPSK transmitter setup. The Ergo-XG was used as the laser. LVPECL: low-voltage positive emitter-coupled logic, Vq: quadrature voltage.

Fig. 8
Fig. 8

Precoder module design.

Fig. 9
Fig. 9

Receiver sensitivity measurement results.

Fig. 10
Fig. 10

Eye-diagrams of RZ-QPSK signal at OSNR > 30 dB / 0.1 nm and captured in ≈15-second color-grade infinite persistence mode using a 40-GHz detector into a sampling module with a 50-GHz bandwidth. (a) baseline RZ-QPSK, and I(top), Q(bottom) when: (b) pump || probe on an axis, (c) probe polarization-scrambled and pump on an axis, (d) probe polarization-scrambled and pump launched off-axis. The polarization scrambling frequency was 12 kHz.

Tables (3)

Tables Icon

Table 1 Approximate Critical Parameters and Values

Tables Icon

Table 2 Received RZ-QPSK Sequence Characteristics, Illustrating Differences Between Precoded RZ-QPSK and PTM RZ-QPSK (Longest Strings of Bits are in Terms of Number of Bits, Whereas Number of Transitions Are in Terms of Consecutive State Changes)

Tables Icon

Table 3 Receiver Sensitivity Measurement Penalties

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ϕ 2 out (t)= ϕ 2 in (t)+ ϕ 2 SPM (t)+ ϕ 1 XPM (t)= ϕ BPSK (t)+γ L eff P 2 (t)+2γ L eff P OOK (t)
γ μνσξ = ω μ n 2σ ( ω μ ) c | F σ (x,y, ω μ ) | 2 | F ξ (x,y, ω ν ) | 2 dS ( | F σ (x,y, ω μ ) | 2 dS )( | F ξ (x,y, ω ν ) | 2 dS ) = ω μ n 2σ ( ω μ ) c A effσ ( ω μ ) δ νμ δ ξσ ; σ,ξ{x,y};μ,ν{1,2}
DGD= λ 2 2 cΔλ
BE R DPSK =( 1 2 + 1 4 ΔB R s OSNR )exp( 2 ΔB R s OSNR )
BE R DQPSK =Q(α,β) 1 2 e [ α 2 + β 2 ]/2 I 0 (αβ). { Q(α,β)= β x I 0 (αx) e ( x 2 + α 2 )/2 dx α 2 =( 1 1 2 ) ( 2ΔB R s OSNR ) 2 β 2 =( 1+ 1 2 ) ( 2ΔB R s OSNR ) 2
I n * = X n Y n I n1 * ¯ + X n ¯ Y n Q n1 * ¯ + X n Y n I n1 * + X n Y n ¯ Q n1 * Q n * = X n Y n Q n1 * ¯ + X n ¯ Y n I n1 * + X n Y n Q n1 * + X n Y n I n1 * ¯

Metrics